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THE MOMENT-SOS HIERARCHY AND THE

CHRISTOFFEL-DARBOUX KERNEL

JEAN B. LASSERRE

Abstract. We consider the global minimization of a polynomial on a
compact set B. We show that each step of the Moment-SOS hierarchy
has a nice and simple interpretation that complements the usual one.
Namely, it computes coefficients of a polynomial in an orthonormal basis
of L2(B, µ) where µ is an arbitrary reference measure whose support is
exactly B. The resulting polynomial is a certain density (with respect to
µ) of some signed measure on B. When some relaxation is exact (which
generically takes place) the coefficients of the optimal polynomial den-
sity are values of orthonormal polynomials at the global minimizer and
the optimal (signed) density is simply related to the Christoffel-Darboux
(CD) kernel and the Christoffel function associated with µ. In contrast
to the hierarchy of upper bounds which computes positive densities, the
global optimum can be achieved exactly as integration against a poly-
nomial (signed) density because the CD-kernel is a reproducing kernel,
and so can mimic a Dirac measure (as long as finitely many moments
are concerned).

1. Introduction

Consider the Polynomial Optimization Problem (POP):

f∗ = min
x

{ f(x) : x ∈ B },

where B ⊂ R
n is a compact basic semi-algebraic set. For the hierarchy of

upper bounds discussed below, B is restricted to be a “simple” set like e.g.
a box, an ellipsoid, a simplex, a discrete-hypercube, or their image by an
affine transformation. Indeed, to define an SOS-hierarchy of upper bounds
converging to the global minimum f∗ as described in e.g. [1, 4, 9], we use a
measure µ whose support is exactly B, and for which all moments

µα :=

∫

B

xα dµ , α ∈ N
n ,

can be obtained numerically or in closed-form. For instance if B is a box, an
ellipsoid or a simplex, µ can chosen to be the Lebesgue measure restricted
to B. On the hypercube {−1, 1}n µ one may choose for µ the counting
measure, etc.
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1.1. Background. Let B ⊂ R
n be the basic semi-algebraic set defined by

(1.1) B = {x ∈ R
n : gj(x) ≥ 0 j = 1, . . . ,m } ,

for some polynomials gj ∈ R[x], j = 1, . . . ,m. Let g0(x) = 1 for all x, and let
dj := ⌈deg(gj)/2⌉, j = 0, . . . ,m. Define Σ[x]t be the set of sums-of-squares
(SOS) polynomials of degree at most 2t.

A hierarchy of lower bounds. To approximate f∗ from below, consider
the hierarchy of semidefinite programs indexed by t ∈ N:

(1.2) ρt = sup
λσj

{λ : f − λ =

m∑

j=0

ψj gj ; ψj ∈ Σ[x]t−dj , j = 0, . . . ,m } ,

where Σ[x]t denotes the space of sum-of-squares (SOS) polynomials of degree
at most 2t. Under some Archimedean assumption on the gj ’s, ρt ≤ f∗ for
all t and the sequence of lower bounds (ρt)t∈N is monotone non decreasing
and converges to f∗ as t increases. Moreover, by a result of Nie [7], its
convergence is finite generically, and global minimizers can be extracted from
an optimal solution of the semidefinite program which is the dual of (1.2);
see e.g. [5]. The sequence of semidefinite programs (1.2) and their duals,
both indexed by t, forms what is called the Moment-SOS hierarchy initiated
in the early 2000’s. For more details on the Moment-SOS hierarchy and its
numerous applications in and outside optimization, the interested reader is
referred to [3, 5].

A hierarchy of upper bounds. Let µ be a finite Borel measure whose
support is exactly B, where now B is a “simple” set as mentioned earlier.
(Hence all moments of µ are available in closed form.) To approximate f∗

from above, consider the hierarchy of semidefinite programs

(1.3) ut = inf
σ

{

∫

B

f σ dµ :

∫

B

σ dµ = 1 ; σ ∈ Σ[x]t } .

That ut ≥ f∗ is straightforward since

f ≥ f∗ on B ⇒

∫

B

f σ dµ ≥ f∗
∫

B

σ dµ = f∗ ,

for any feasible SOS σ. In [4] it was proved that ut ↓ f
∗ as t increases, and

in fact solving the dual of (1.3) is solving a generalized eigenvalue problem
for a certain pair of real symmetric matrices. In a series of papers, de Klerk,
Laurent an co-workers have provided several rates of convergence of ut ↓ f

∗

for several examples of sets B. For more details and results, the interested
reader is referred to [1, 9, 10, 11] and references therein.

The meaning of (1.3) is clear if one recalls that

(1.4) f∗ = inf
φ

{

∫

B

f dφ : φ(B) = 1 ; φ ∈ M (B)+ },



THE MOMENT-SOS HIERARCHY AND THE CHRISTOFFEL-DARBOUX KERNEL 3

where M (B)+ is the space of all finite Borel measures on B. Indeed in (1.3)
one only considers the (restricted) subset of probability measures on B that
have a density (an SOS of degree at most 2t) with respect to µ whereas in
(1.4) one considers all probability measures on B. In particular, the Dirac
measure φ := δξ at any global minimiser ξ ∈ B belongs to M (B)+ but does
not have a density with respect to µ, which explains why the convergence
ut ↓ f

∗ as t increases, can be only asymptotic and not finite; an exception
is when B is a finite set (e.g. B = {−1, 1}n and µ is the counting measure).

1.2. Contribution. Our contribution is to show that in fact the dual of
the semidefinite program (1.2) for computing the lower bound ρt has also
an interpretation of the same flavor as (1.3) where one now considers signed
Borel measures φt with a distinguished polynomial density with respect to
µ. Namely, the dual of (1.2) minimizes

∫

B
fdφt over signed measures φt of

the form:

(1.5) dφt(x) = σt(x) dµ(x) =




∑

|α|≤2t

σα Tα(x)



 dµ(x) ,

where :
- (Tα) ⊂ R[x] is a family of polynomials that are orthonormal with respect

to µ, and
- the coefficients σt = (σα)α∈Nn

2t
of the polynomial σt ∈ R[x]2t satisfy the

usual semidefinite constraints that are necessary for σt to be moments of a
measure on B.

Eventually for some t ∈ N, σt satisfies:

(1.6) σα = Tα(ξ) =

∫

B

Tα(x) δξ(dx) , |α| ≤ 2t ,

where ξ is an arbitrary global minimizer and δξ is the Dirac measure at
ξ ∈ B. Indeed then

∫

B

f(x) dφt(x) :=

∫

B

f(x)
∑

|α|≤2t

Tα(ξ)Tα(x) dµ(x) = f(ξ) ,

because the Christoffel-Darboux KernelKt(x,y) :=
∑

|α|≤2t Tα(x)Tα(y) is a

reproducing kernel for R[x]2t, considered to be a finite-dimensional subspace
of the Hilbert space L2(B, µ). Moreover, σt(ξ)

−1 is nothing less than the
Christoffel function evaluated at the global minimizer ξ of f on B.

As a take home message and contribution of this paper, it turns out that
the dual of the step-t semidefinite relaxation (1.2) is a semidefinite program
that computes the coefficients σt = (σα) of the polynomial density σt in
(1.5). In addition, when the relaxation is exact then σt(ξ)

−1 is the Christoffel
function of µ, evaluated at a global minimizer ξ of f on B.

Interestingly, in the dual of (1.2) there is no mention of the reference
measure µ. Only after we fix some arbitrary reference measure µ on B,
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we can interpret an optimal solution as coefficients σt of an appropriate
polynomial density with respect to µ.

So in both (1.3) and the dual of (1.2), one searches for a polynomial “den-
sity” with respect to µ. In (1.3) one searches for an SOS density (hence a
positive density) whereas in the dual of (1.2) one searches for a signed poly-
nomial density whose coefficients (in the basis of orthonormal polynomials)
are moments of a measure on B (ideally the Dirac at a global minimizer).

The advantage of the (signed) polynomial density in (1.5) compared to the
(positive) SOS density in (1.3), is to be able to obtain the global optimum
f∗ as the integral of f against this density, which is impossible with the SOS
density of (1.3).

At last but not least, this interpretation establishes another (and rather
surprising) simple link between polynomial optimization (here the Moment-
SOS hierarchy), the Christoffel-Darboux kernel and the Christoffel function,
fundamental tools in the theory of orthogonal polynomials and the theory of
approximation. Previous contributions in this vein include [6] to characterize
upper bounds (1.3), [1, 9, 10] to analyze their rate of convergence to f∗, and
the more recent [11] for rate of convergence of both upper and lower bounds
on B = {0, 1}n.

2. Main result

2.1. Notation and definition. Let R[x] = R[x1, . . . , xn] be the ring of real
polynomials in the variables x1, . . . , xn and let R[x]t ⊂ R[x] be its subspace
of polynomials of degree at most t. Let N

n
t := {α ∈ N

n : |α| ≤ t} where
|α| =

∑

i αi. For an arbitrary Borel subset X of Rn, denote by M (X )+ the
convex cone of finite Borel measures on X ⊂ R

n, and by P(X ) is subset of
probability measures on X ..

2.2. Moment and localizing matrices. Given an sequence y = (yα)α∈Nn

and polynomial g ∈ R[x], x 7→ g(x) :=
∑

γ gγ x
γ , the localizing matrix

Mt(g y) associated with g and y is th real symmetric matrix with rows and
columns indexed by α ∈ N

n
t and with entries

(2.1) Mt(g y)(α, β) :=
∑

γ

gγ yα+β+γ , α, β ∈ N
n
t .

If g(x) = 1 for all x then Mt(g y) (= Mt(y)) is called the moment matrix.
A sequence y = (yα)α∈Nn has a representing measure if there exists a

(positive) finite Borel measure φ on R
n such that yα =

∫
xα dφ for all α ∈ N

n.
If y has a representing measure supported on {x : g(x) ≥ 0} thenMt(y) �

0 andMt(g y) � 0 for all t ∈ N. The converse is not true in general; however,
the following important result is at the core of the Moment-SOS hierarchy.

Theorem 2.1. (Putinar [8]) Let gj ∈ R[x], j = 0, . . . ,m with g0(x) = 1
for all x, and let G := {x ∈ R

n : gj(x) ≥ 0, j = 1, . . . ,m } be compact.
Moreover, assume that for some M > 0, the quadratic polynomial x 7→
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M −‖x‖2 can be written in the form
∑m

j=0 ψj gj , for some SOS polynomials
ψ0, . . . ψm.

Then a sequence y = (yα)α∈Nn has a representing measure on G if and
only if Mt(gj y) � 0 for all t ∈ N, and all j = 0, . . . ,m.

Orthonormal polynomials. Let B ⊂ R
n be the compact basic semi-

algebraic set defined in (1.1) assumed to have a nonempty interior. Let
µ be a finite Borel (reference) measure whose support is exactly B and with
associated sequence of orthonormal polynomials (Tα)α∈Nn ⊂ R[x]. That is

∫

B

Tα Tβ dµ = δα=β , ∀α, β ∈ N
n .

For instance, if B = [−1, 1]n and µ is the uniform probability distribution on
B, one may choose for the family (Tα) the tensorized Legendre polynomials.
Namely if (Tj) ⊂ R[x] is the family of univariate Legendre polynomials, then

Tα(x) :=

n∏

j=1

Tαj
(xj) , α ∈ N

n .

For every t ∈ N, the mapping Kt : B×B → R,

(x,y) 7→ Kt(x,y) :=
∑

|α|≤t

Tα(x)Tα(y) , x,y ∈ B

is called the Cristoffel-Darboux kernel associated with µ. An important
property of Kt is to reproduce polynomials of degree at most t, that is:

(2.2) p(x) =

∫

B

p(y)Kt(x,y) dµ(y) ∀x ∈ B , ∀p ∈ R[x]t .

This is why Kt is called a reproducing kernel, and R[x]t viewed as a finite-
dimensional vector subspace of the Hilbert space L2(B, µ), is called a Re-
producing Kernel Hilbert Space (RKHS). For more details on the theory of
orthogonal polynomials, the interested reader is referred to e.g. [2] and the
many references therein.

2.3. Main result.
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An observation. Let f ∈ R[x] and let t ≥ deg(f) = df be fixed. Let
P(B) ⊂ M (B)+ be the space of probability measures on B. Then

f∗ = min
φ∈P(B)+

∫

B

f dφ

= min
φ∈P(B)+

∫

B

∫

B

f(y)Kt(x,y) dµ(y) dφ(x)

= min
φ∈P(B)+

∫

B

f(y) (

∫

B

Kt(x,y) dφ(x) ) dµ(y)

= min
φ∈P(B)+

∫

B

f(y)







∑

|α|≤t

(

∫

B

Tα(x) dφ(x)

︸ ︷︷ ︸

σα

)Tα(y)






dµ(y)

= min
φ∈P(B)+

∫

B

f(y) (
∑

|α|≤t

σα Tα(y)

︸ ︷︷ ︸

σt(y)∈R[x]t

) dµ(y) ,

where the second equality follows from Fubini-Tonelli interchange theorem
valid in this simple setting. In other words, we have proved the following:

Lemma 2.2. Let B ⊂ R
n be as in (1.1) and let µ be a finite Borel (refer-

ence) measure whose support is exactly B and with associated sequence of
orthonormal polynomials (Tα)α∈Nn . Let f∗ = min {f(x) : x ∈ B}. Then for
every fixed t ≥ deg(f):

(2.3) f∗ = inf
σ∈R[x]t

∫

B

f(y)σ(y) dµ(y) ,

where the infimum is over all polynomials σ ∈ R[x]t of the form:

σ(x) =
∑

|α|≤t

σα Tα(x) , ∀x ∈ B with(2.4)

σα =

∫

B

Tα(x) dφ(x) , ∀α ∈ N
n
t , for some φ ∈ P(B).(2.5)

So solving (2.3) is equivalent to searching for a signed measure σ dµ with
polynomial (signed) density σ ∈ R[x]t that satisfies (2.4)-(2.5).

2.4. A hierarchy of relaxations of (2.3). In this section we show the
SOS-hierarchy defined in (1.2) is the dual semidefinite program of a natural
SDP-relaxation of (2.3). In fact the only difficult constraint in (2.3) is (2.5)
which demands σ to admit a representing probability measure φ on B.

Let Dt be the lower triangular matrix for the change of basis of R[x]2t
from the monomial basis v2t(x) = (xα)α∈Nn

2t
of R[x]2t to the basis (Tα)α,
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i.e.,

(2.6)







T0
· · ·
Tα
· · ·







= Dt ·







1
· · ·
xα

· · ·







= Dt · v2t(x)

and denote D′
t the transpose of Dt. The matrix Dt is nonsingular with

positive diagonal. Then with σ = (σα)α∈Nn
2t
, (2.5) reads

(2.7) σ = Dt · y with y =

∫

B

v2t(x) dφ(x).

That is, y = (yα)α∈Nn
2t

is required to be a moment sequence as it has a
representing probability measure φ ∈ P(B). So in view of Theorem 2.1,
the constraint (2.7) can be relaxed to

σ = Dt · y with y0 = 1 and Mt−dj (gj y) � 0 , j = 0, . . . ,m .

Therefore, consider the following relaxation of (2.3)

(2.8)
ρ2t = inf

σ∈R[x]2t
{

∫

B

f(x) (
∑

α∈Nn
2t

σα Tα(x)) dµ(x) : σ = Dt · y ;

y0 = 1 ; Mt−dj (gj y) � 0 , j = 0, . . . ,m } .

Lemma 2.3. Let B ⊂ R
n be as in (1.1) and let µ be a finite Borel (ref-

erence) measure whose support is exactly B and with associated sequence
of orthonormal polynomials (Tα)α∈Nn . The semidefinite relaxation (2.8) of
(2.3) reads:

(2.9) inf
y

{ 〈f ,y〉 : y0 = 1 ; Mt−dj (gj y) � 0 , j = 0, . . . ,m } ,

which is the dual of (1.2)

Proof. With f(x) =
∑

α fα x
α = 〈f ,v2t(x)〉, write f(x) =

∑

α∈Nn
2t
f̃α Tα(x)

in the basis (Tα)α∈Nn
2t
. Then with f̃ = (f̃α) one obtains

〈f̃ ,Dt · v2t(x)〉 = 〈D′
t f̃ ,v2t(x)〉 = 〈f ,v2t(x)〉 ⇒ f̃ = (D′

t)
−1f .

Finally, as the Tα’s form an orthonormal basis, the criterion
∫

B

f(x) (
∑

α∈Nn
2t

σα Tα(x)) dµ(x)

to minimize in (2.8) reads:
∫

B

f(x) (
∑

α∈Nn
2t

σα Tα(x)) dµ(x) = 〈f̃ ,σ〉 = 〈(D′
t)
−1f ,Dt y〉 = 〈f ,y〉 ,

which yields that (2.8) is exactly (2.9). Next, that (2.9) is a dual of (1.2) is
a standard result in polynomial optimization [3, 5]. �
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Of course by reverting the process of the above proof, the semidefinite
program (2.9) can be transformed to (2.8) once a reference measure µ with
support exactly B is defined with its associated orthonormal polynomials
(Tα). Indeed, once µ and the Tα’s are defined, one may use the change of
basis matrix D in (2.6) to pass from (2.9) to (2.8).

Corollary 2.4. Let B ⊂ R
n be as in (1.1) and let µ be a finite Borel

(reference) measure whose support is exactly B and with associated sequence
of orthonormal polynomials (Tα)α∈Nn . Let f∗ be the global minimum of f
on B.

Let t be such that the semidefinite relaxation (2.8) (or equivalently (2.9))
is exact, i.e., if ρ2t = f∗. If an optimal solution y∗ of (2.9) has a represent-
ing measure φ∗ ∈ M (B)+, then an optimal polynomial density σ∗ ∈ R[x]2t
of (2.8) satisfies:

σ∗(ξ) =
∑

α∈Nn
2t

Tα(ξ)
2 = K2t(ξ, ξ) , ∀ξ ∈ supp(φ∗) ,

that is, σ∗(ξ)−1 is the Christoffel function evaluated at the global minimizer
ξ ∈ B.

Proof. If y∗ has a representing measure φ∗ ∈ M (B)+ then necessarily
f(ξ) = f∗ for all ξ ∈ sup(φ∗); see e.g. [3, 5]. In particular, for every
ξ ∈ sup(φ∗), the vector ŷ := (ξα)α∈Nn

2t
is also an optimal solution of (2.9).

Then

σ∗ = Dt · ŷ = Dt · v2t(ξ) =







T0(ξ)
· · ·
Tα(ξ)
· · ·






,

i.e., σ∗α = Tα(ξ) for all α ∈ N
n
2t. Therefore,

x 7→ σ∗(x) =
∑

α∈Nn
2t

Tα(ξ)Tα(x) = K2t(ξ,x) ,

and so σ∗(ξ) = K2t(ξ, ξ). In other words, σ∗(ξ)−1 is the Christoffel function
associated with µ, evaluated at ξ ∈ B. �

Discussion. Observe that the formulation (2.8) does not require that the
set B is a “simple” set as it is required in (1.3). Indeed the orthonormal
polynomials (Tα) are only used to provide an interpretation of the hierarchy
of lower bounds (2.9) (and its dual (1.2)). On the other hand, for the
hierarchy of upper bounds (1.3), B indeed needs to be a “simple” set for
computational purposes. This is because one needs the numerical value of
the moments of µ for a practical implementation of (1.3).

Lemma 2.3 shows that the Moment-SOS hierarchy described in [3, 5]
amounts to compute a hierarchy of signed polynomial densities with respect
to some reference measure µ with support exactly B. When the step-t
relaxation is exact (which takes place generically [7]) the resulting optimal
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density σ in (2.8) is nothing less than the polynomial x 7→ Kt(ξ,x) where
ξ is a global minimizer of f on B, Kt(ξ,x) is the celebrated Cristoffel-
Darboux kernel in approximation theory, and σ(ξ, ξ) is the reciprocal of the
Christoffel function evaluated at a global minimizer ξ.

3. Conclusion

We have shown that the Moment-SOS hierarchy that provides an in-
creasing sequence of lower bounds on the global minimum of a polynomial
f on a compact set B, has a simple interpretation related to orthogonal
polynomials associated with an arbitrary reference measure whose support
is exactly B. This interpretation strongly relates polynomial optimization
(here the Moment-SOS hierarchy) with the Christoffel-Darboux kernel and
the Christoffel function, fundamental tools in the theory of orthogonal poly-
nomials and the theory of of approximation.

It is another item in the list of previous contributions [6, 1, 9, 10] that also
link some issues in polynomial optimization with orthogonal polynomials
associated with appropriate measures. We hope that such connections will
stimulate even further investigations in this direction.
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