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CNRS, INSA, Toulouse, France

firstname.lastname@laas.fr

November 23, 2020

Abstract

The design of embedded real-time systems requires specific toolchains to guaran-
tee time constraints and safe behavior. These tools need to be managed in a coherent
way all along the design process and need to address timing constraints and execution
semantic in a holistic way during the system’s modeling, verification, and implemen-
tation phases. However, modeling languages used by these tools do not always share
a common semantic. This can introduce a dangerous gap between what designers
want to express, what is verified and the behavior of the final executable code. In
order to address this problem, we propose a new toolchain, called Hippo, that in-
tegrates tools for design, verification and implementation built around a common
formalism.

Our formalism is based on an extension of the Fiacre specification language
with runtime features, such as asynchronous function calls and synchronization with
events. We formally define the behavior of these additions and describe a compiler
to generate both an executable code and a verifiable model from the same high-
level specification. The execution of the resulting code is supported by a dedicated
execution engine that guarantees real-time behavior and that reduces the semantic
gap between high-level models and executable code.

We illustrate our approach with a non trivial use case: the autonomous naviga-
tion of a Segway RMP440 robotic platform. We describe how we obtain a Hippo
model from an initial specification of the system based on the robotics programming
framework Gen

oM. We illustrate our approach by describing how the Hippo runtime
is used to control this robot, but also how we can use formal verification to check
critical properties on this system.
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1 Introduction

The design of embedded real-time systems requires specific toolchains to guarantee time
constraints and safe behavior. These tools need to be managed in a coherent way all along
the design process and need to address timing constraints and execution semantic in an
holistic way during the system’s modeling, verification, and implementation phases.

This paper presents such an integrated toolchain, named Hippo, and focuses especially
on tools to carry out real-time executable that can be formally verified. More precisely,
we focus on the solutions adopted in order to guarantee that the timing constraints ex-
pressed in our (formal) model of the system are, beyond verification with model checking,
transcribed and enforced in the executable. This is a classical problem, widely discussed
in the literature, and a difficulty often mentioned in this context is that we should be
wary of semantic gap between the models produced by the designer, the models used for
verification, and the executable.

To overcome this pitfall, we propose to build our approach around the formal specifica-
tion language Fiacre [Berthomieu et al., 2008a]. This language has several nice features.
First, it is rich enough to model the behavioral and timing aspects of concurrent systems
and it already comes with abstractions (concurrent processes, ports, etc.) and a rich type
system (including records, arrays, fifo queues, etc.). Moreover, Fiacre has a formal seman-
tics and can be used with model-checkers in order to check timed and temporal properties
on a given model. Finally, we can reuse several tools that have already been developed
around this language, such has code editors or libraries to perform simulations.

Our approach relies on a dedicated compiler, called frac, that can transform a Fiacre
model into a Time Transition Systems (tts) model [Berthomieu et al., 2008a]; a low-level
representation of the possible synchronizations and state changes in the system. The tts
level plays a role similar to assembly code, where Fiacre is the high-level language, and
a Fiacre model is semantically equivalent to its tts.

For the Hippo toolchain, we chose to generate a code as close as possible to the tts
level. As a result, the code generated after compilation is very close to the semantics of the
initial model. Moreover, we only need to rely on a simple runtime that is used to ensure
that the control flow of the executable is identical, in every detail, to the behavior of the
tts model. Therefore, the generated code, coupled with the Hippo engine, has the same
semantics as the initial specification.
Outline. The remainder of the paper is structured as follows. Section 2 gives an overview
of works relevant to the generation of real-time verifiable executable and analyze their
shortcommings which we want to address in our approach.

Section 3 presents the extensions to the Fiacre language that allow us to describe
Hippo models. In particular, we describe how we extend the description of the functional
and real-time behavior with the addition of tasks and events. A formal definition of these
extensions is also provided to allow the verification of the model.

In Section 4, we describe the design principles of the Hippo runtime. The code gener-
ation and its associated runtime are based on a software design where the control behavior
is implemented synchronously and the execution of the functional processes are managed

2



by an asynchronous scheduler. An overview of the structure of the code generator is given
as well as the orchestration of the execution engine. A focus is also made on the way
scheduling is managed and on different solutions to take it into consideration during the
specification and verification phases. In this section, we also explain the methods used to
increase our confidence in the implementation and show some performance results.

Before concluding, Section 5 presents a case study : how we deploy Hippo and Fi-
acre along Gen

oM to control and verify the autonomous navigation of an outdoor robotic
platform.

2 Motivation and Related Work

We now examine the motivation for this work, some of the related and relevant works and
how we plan to bootstrap our Hippo toolchain.

2.1 Motivation

Many high-level languages have been proposed to facilitate the design of real-time embed-
ded systems. For example, there are generic languages like UML with specialized versions
such as MARTE [Object Management Group, Inc. (OMG), 2009] or some Domain-Specific
Language such as AADL [Feiler et al., 2006]. The typical use of these languages in a de-
sign process allows the designer to produce a high-level model that is refined to obtain a
detailed model of the system’s behavior. This model is then used as an input for verifica-
tion activities and then coding activities. These high-level languages are seldom formally
defined and the verification process usually begins with a translation step in a formalism
that allows verification (see Fig. 1). In addition, depending on the property to be checked
(schedulability, liveness, buffer size, etc.), it is possible that different abstractions may be
required, producing thus multiple models.

On the other hand, the process of transforming the model into executable code can be
entirely done manually, semi-automatically by producing for example a code skeleton, or
fully automatically. For example, the design of an embedded system with AADL can use
Cheddar [Singhoff et al., 2004], MAST [Harbour et al., 2001], Tina [Berthomieu et al.,
2004], etc. to verify properties and Ocarina [Lasnier et al., 2009] can be used to generate
code. In this example, there is no guarantee that the execution semantic considered by
these different tools are strictly the same.

The main problem with this approach is that a significant semantic gap can exist
between verified models and executed ones. This problem comes from the fact that since
the behavior of the high-level model is not formally defined, the transformations cannot
be validated and there is no guarantee that the verified behavior is exactly the one that
will be executed.

We also note that in the literature there are few examples of real and fully functional
applications where verification and code generation is performed jointly. Another of our
motivations is therefore to provide the community with a complete and documented ap-
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Figure 1: A schematic representation of a generic design process for real-time embedded
systems.

plication of a complex critical real-time system for which it is possible to use design, code
generation and verification methods.

The work presented in this paper is part of this context and aims to propose a tool to
reduce this semantic gap for real-time embedded applications and show its usability on a
real case study.

2.2 Related Work

There are many examples of work interested in the generation of executable code (an
implementation) whose behavior is consistent with the model of a system (its specification).
The list of contributions presented in this section is far from exhaustive and we mostly
focus on work that address formal languages, a time-triggered model of computation, and
code generation for embedded systems.

A first body of work is related to models based on a logical (and therefore discrete)
notion of time. The most notable example is SCADE, an industrial toolbox based on the
synchronous language Lustre [Halbwachs et al., 1991]. SCADE is perhaps the best-known
example of a software product that proposes a formally defined modeling language; tools
to model-check behavior; and tools to generate faithful code. A dedicated and certified
compiler can generate C or Ada functions from a Scade sheet which will execute with the
same behavior on an embedded target. On the other hand, the operating assumptions of
this approach are quite strict, since they rely on the synchronous paradigm, which entails a
logical abstraction of time. In the same category, another well-known toolbox is Simulink,
developed by Mathworks. Simulink provides a compiler generating C code for a large
number of targets. The code generator is highly configurable and is mainly based on an
engine with periodic tasks. The used methods do not guarantee a faithful executable but
some extensions exist to connect a subset of Simulink to Scade [Caspi et al., 2003].
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Other work rely on an event-based model, such as Ptolemy [Liu and Lee, 2002] devel-
oped at UC Berkeley. Ptolemy provides a singular example since its semantics can support
a combination of continuous time and synchronous time events [Lee and Sangiovanni-
Vincentelli, 1996]. Nonetheless, when used as an execution engine, rather than for simula-
tion, Ptolemy relies on an event-triggered programming model where actions are controlled
via deadlines and events. This work was the first step in the development of another ap-
proach, called Ptides [Derler et al., 2008], based on a discrete-event model that offers a
formal semantics to achieve deterministic behavior in both time and value.

Another model sharing similarities with Ptides is Giotto [Henzinger et al., 2003], a lan-
guage for modeling control systems with periodic activity and data exchange. The semantic
of Giotto is based on the LET assumption, and a compiler can generate an executable that
respects this paradigm. The execution engine is based on a simple synchronous virtual ma-
chine [Henzinger and Kirsch, 2007] and guarantees the same behavior of the model and the
execution; however, the language is not formally defined. Our approach is greatly inspired
both by Ptides and Giotto for the choice of a “time-deterministic” model of computation.

A similar motivation can also be found in the design choices behind OASIS [Louise
et al., 2011], a framework provided by the CEA LIST to generate an executable based
on a time-triggered approach. The temporal information in an OASIS model is directly
specified in the code using a dedicated language, called ψC. This language introduces
synchronization instants that need to be checked during the execution while execution flow
is controlled by an automata. A specific engine is implemented to perform the execution
of the automata and to guarantee the temporal constraints, whereas concurrency between
tasks is delegated to the operating system. The design principles of OASIS are more focused
on dependability and certification issues, rather than on formal verification of properties
related to the system’s behavior. Nonetheless, this work is interesting in our context since
it shows that it is possible to implement a very efficient and portable execution layer based
on a time-triggered approach, with very low latency. We apply some of the same ideas in
the implementation of Hippo.

Another interesting set of work is related to the use of “process algebra” for the specifi-
cation of systems. Indeed, part of the semantics of Fiacre can be traced back to the LCS
language of Berthomieu [Berthomieu and Le Sergent, 1994] (one of the designers of Fi-
acre). LCS is a high level, asynchronous parallel programming language based upon the
behavioral paradigms introduced by CSP and CCS. Fiacre retains some of the character-
istics of LCS, such as a component-based design; a very versatile type system; and the use
of “channel-based” synchronization primitives. On the other hand, Fiacre descriptions
may be constrained in order to keep the state space of systems finite (for the purposes of
model-checking). Another major addition is the possibility to define real-time constraints
on the synchronization between processes, using a dense time model, as well as time-outs
on events.

Similarly to Fiacre, the BIP framework [Sifakis, 2005] developed at Verimag is a for-
mal language, and a process algebra, used as the input language in a formal verification tool
(RT-DFinder). This framework is particularly interesting in our context since it provides a
compiler from BIP specifications into the BIP Execution Engine. The BIP language offers
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a component-based semantic to design concurrent systems that communicate via ports.
A model in BIP can be compiled to generate an executable in C++ which, together with
the execution engine, enforces real-time constraints. While the initial BIP implementa-
tion did not explicitly take time into account, there is a now a distributed and real-time
implementation of BIP [Dellabani, 2018].

Another related work is CPAL (Cyber-Physical Action Language), a language to model,
simulate, verify and program Cyber-Physical Systems [Navet et al., 2016]. CPAL is jointly
developed at the University of Luxembourg and by the company RTaW since 2011. This
language is based on synchronous programming approach and time-triggered languages
such as Giotto. The syntax of CPAL provides concepts specific to embedded systems with
a formal execution semantics. CPAL also provides a faithful real-time execution engine for
embedded systems. To our knowledge, the CPAL language is not formally defined, even
if the processes are Finite State Machines, and no tools are available to model-check it.
However, the proposed scheduling analysis approach is a source of inspiration for Hippo
and future extensions. Similarly, the implementation choices for simulation and execution
offer interesting leads for future work.

Some studies have also been carried to generate code from timed automata (TA). For
example, Amnell et al. in [Amnell et al., 2002] proposes a method for generating C code
from TA models extended with a notion of real-time tasks that allow them to check the be-
havior of a model and its schedulability. In the same context, Kristensen et al. [Kristensen
et al., 2017] proposed a tool to generate executable code from a deterministic semantic
simplification of a given real-time model in Uppaal. To our knowledge, these works have
never been integrated into a design process, nor coupled with high-level languages.

2.3 Hippo Toolchain

As already mentioned, the work presented in this paper proposes a complete toolchain
to verify and execute real-time applications while minimizing the semantic gap. To do
this, we are working in the environment of the Tina toolbox and the Fiacre modeling
language.

Tina [Berthomieu et al., 2004] is a toolbox for the editing and analysis of Petri Nets,
Time Petri Nets (TPN) and an extension of Time Petri Nets with data handling and
priorities called Time Transition Systems (tts).

A tts is a generalization of a TPN with data variables. Data are managed with
expressions that may be associated with transitions: a guard predicate pre and an action
function act. These expressions may refer to a fixed set of variables that form the data
set of the tts. For a transition t with guards pre t and act t, we have that t is enabled
in a tts if there are both: (1) enough tokens in the places of its pre-condition; and (2)
the predicate pre t is true. When t is fired, the marking of the underlying Petri net is
changed and the data set is updated by executing the action guard act t .

Fiacre [Berthomieu et al., 2008a] is a mature language, with a long history of de-
ployment in academic and industrial projects. It was designed as a pivot language and an
interoperability format (an intermediate format) to simplify the connection between high-
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level modeling languages, such as AADL or SysML, and model-checking tools inside the
Topcased [Berthomieu et al., 2008b] environment. The main purpose of Fiacre is to allow
the modeling of the behavioral and timing aspects of the system for formal verification.

Generally speaking, the tool we propose uses Fiacre as an input language but is based
on the semantics of the tts produced by this language. Thus the engine plays exactly the
same trace as its model in tts. This choice has been made to guarantee the behavior as
easily as possible and to ensure the atomicity of the operations. Coupled with the tools
for translating high-level languages to Fiacre, it is thus possible to obtain a complete
chain allowing to check the behavior of the system on a model as close as possible to the
execution (see Fig. 2).

SysML

H-Fiacre 
Model

TTS Model 
for 

execution

Analyse

Executable
translator

HippoFrac-Hippo

Tina

AADL

…

TTS Model 
for 

verification

Fiacre 
Model

H2Fiacre frac

Figure 2: A schematic representation of the Hippo toolchain.

3 Fiacre extensions

We now briefly present the Fiacre language, the proposed H-Fiacre extensions and their
semantics.

3.1 The Fiacre Language

A presentation of the Fiacre language is available in [Berthomieu et al., 2020]. In order
to illustrate its main elements (this presentation is not exhaustive and does not show, for
example, the first-order functional language included in Fiacre), an example is given in
Listing 1. This example, based on [Carruth and Misra, 1996], is taken from the official
documentation and models the Fischer protocol which ensures mutual exclusion among N
processes using real-time clocks and a shared variable lock.

Fiacre is a component-based language of concurrent systems. We briefly describe
the features of Fiacre by looking at the code in Listing 1, which defines a system with
a single component (Main) built from two instances of the same process (Proc), with
different id but sharing a common lock. A Fiacre specification is composed of parallel
processes (line 3) communicating via ports and/or shared variables (lock line 3). A process
describes the behavior of sequential components and is defined by a set of control states
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(line 4), each associated with an expression built from: classical imperative constructs such
assignments (line 10), conditionals (line 16), while loops, pattern matching, and sequential
compositions; synchronization on data-event ports (with n-way synchronizations, n ≥ 2,
and communication of values); and jumps to the next state (lines 7, 11, 14, etc.). Processes
can be composed together into components (lines 25–30), which are also a unit for defining
communication ports, priorities between event, and shared variables.

Timing constraints in Fiacre are expressed using its wait statement (lines 9 and 13),
of the form wait [a, b], which represents the possible delays during which an event can
occur (where a, b are constants in Q+). The intended meaning is that the control state
needs to wait a duration between a and b before forwarding.

Priorities can be added between communication events to specify that one event should
always occur before another.

1 type tyEvt i s record time : int , id : nat end
2 /* Processes */

3 process Proc (pid : id, &lock : lock) i s
4 states WaitLock , WaitLock2 , SetLock , TestLock , CriticalSection

5 from WaitLock

6 on (lock = 0);

7 to WaitLock2

8 from WaitLock2

9 wait [0, 2];

10 lock := pid;

11 to SetLock

12 from SetLock

13 wait ]2, ...[;

14 to TestLock

15 from TestLock

16 if lock = pid then
17 to CriticalSection

18 else
19 to WaitLock

20 end
21 from CriticalSection

22 lock := 0;

23 to WaitLock

24 /* Main component */

25 component Main i s
26 var lock : lock := 0

27 par
28 Proc (1, &lock)

29 || Proc (2, &lock)

30 end

Listing 1: The Fischer protocol example in Fiacre.

3.2 H-Fiacre: an extension of Fiacre with tasks and events

We want to use Fiacre not only to do verification, but also to generate executable code.
Thus we extend the syntax of Fiacre to take into account tasks and events; this extension
is called H-Fiacre. These new operators allow to express, in the model, when to start
new computations and how to react to external events.
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Functional codes (i.e. controler, filter, position estimation, etc.) are embedded into
functions that we call operations. An operation is basically a C function with input and
output data. These operations are called from an H-Fiacre model through a task. Each
operation has its own task and is scheduled by the operating system (see Sect. 4 for more
details). So, H-Fiacre extends the original language with operators for declaring task
activation and termination.

Aside from tasks, we also extend the syntax to declare external events, which model
events originating from the environment of the system. This is useful, for example, to
define how the system should react when an external sensor sends a message or when a
signal is emitted from the operating system or the task execution space.

Overall, we extend Fiacre with four new statements: task, start, sync, and event.

3.2.1 External task declaration (task)

Tasks are always declared at top-level, like Fiacre functions, processes and components.
The syntax for declaring a task is:

task t (a1 : ty1 , ... , an : tyn) : rty i s c_foo

This declares a task, with local name t, corresponding to an operation coded by the C
function identified as c foo. This identifier is useful during the code generation, when we
actually need to link the model with external code. The task in Hippo and the C function
should both have the same type; the type of functions with n parameters, of respective
types ty1, . . . , tyn, and return type rty.
Task activation (start). A task can be activated using the start statement, with the
name of the task and one expression for each of the required parameters

start t (p1, ..., pn)

where p1, . . . , pn are the parameters of type ty1, . . . , tyn passed to the function.
Task termination (sync). We can synchronize on the termination of the task t and
retrieve the returned value using a sync statement, as follows:

sync t ret

The second parameter of a sync statement should be a variable of type rty. When the
statement is executed, ret is assigned to the value returned by the “call” to c foo. Since
we have records with named fields in Fiacre (a data type similar to struct in C) it is
easy to define one to return multiple values.

The start and sync statements are blocking and immediate, i.e., the transitions that
represent start or sync need to be fired as soon as they are enabled. A consequence is
that the task cannot be reentrant. Moreover, due to the synchronous implementation of
the Hippo runtime, the synchronization of a termination of a task is only done at a global
clock tick (see Sect. 3.3).

3.2.2 External event declaration (event)

An external event is used to model a signal that originates from outside the engine space.
An event e can possibly carry a tuple of values and is defined using a top-level declaration

9



as follows:

event e : ty1 # ... # tyn i s c_event

where ty1, ..., tyn are the types of data bound to the event (or eventually sync if there
is no data) and c event is a symbol matching a C function that catchs the event and
returns a structured data of type ty1, . . . , tyn. The # notation is used to be consistent
with Fiacre channels where a series of types separated by # are associated with ports
transfering several values simultaneously.

To receive and match the values retrieved during a synchronization with an external
event, we reuse the syntax for a reception on a regular Fiacre channel:

e ? d1, d2, ..., dn;

in which d1,...,dn are variables (or possibly patterns) that are assigned with the data
retrieved from e.

For the same reason than with tasks, due to the synchronous implementation of the
Hippo runtime (see Sect. 3.3), synchronization on events only occurs at a global clock tick.
Likewise, reception on an external event is both blocking and immediate.

3.2.3 Restriction of H-Fiacre

H-Fiacre does not impose any restrictions on the usage of Fiacre language, except on
delays. For our purpose, we will require every time interval in a wait [a,b] statement to
be punctual, meaning that a = b. This restriction ensures that the behavior of the timing
system is deterministic1.

3.2.4 A toy example in H-Fiacre

Listing 2 gives a simple example that illustrates the use of external events and tasks.
The purpose of the process double event is to detect when two occurrences of event e

occur less than 200 units of time apart. This can be useful, for example, to implement an
anti-rebound function on a safety critical control panel. This event is declared at line 4
and is bound to the C function c click, which returns a structure with two fields: time

and id (line 1).
Task t is defined at line 5 with a two-element table as a parameter. The C function

bound to t is called c print and returns an integer.
The process starts in state wait first (the first state in its declaration) by waiting for

event e, without any constraints on the time that it should wait (line 11). If and when
the event occurs, the process transition to state wait second where one of two things
can happen (declared using a select statement that models a non-deterministic choice
between several continuations, separated by []). Either 200 units of time elapse without
any event occurring (line 15), or a second e occurs (line 17).

1It is possible to have an interval with different bounds, but during the execution the engine reacts as
soon as possible and fires the waiting transition with its lower bound. The only restriction is to have a
left-half-open interval.
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1 type tyEvt i s record time : int , id : nat end
2 type tyDblEvt i s array 2 of tyEvt

3

4 event e : tyEvt i s c_click

5 task t (tyDblEvt) : nat i s c_print

6

7 process double_event i s
8 states wait_first , wait_second , start_print , wait_print

9 var tmp : tyDblEvt := [{time=0,id=0}, {time=0,id=0}], ret : nat := 0

10 from wait_first

11 e?tmp [0]; /* wait first event */

12 to wait_second

13 from wait_second

14 select
15 wait [200 ,200];

16 to start_print

17 []e?tmp [1]; /* wait second event */

18 to start_print

19 end
20 from start_print

21 start t (tmp); /* start task t */

22 to wait_print

23 from wait_print

24 sync t ret; /* wait end of task t */

25 tmp := [{time=0,id=0}, {time=0,id=0}];

26 to wait_first

Listing 2: An example of model in H-Fiacre: a double events detection.

We assume that function c click returns the date at which the click event occurs (in
field time of the record of type tyEvt). Therefore, if we reach state start print then we
have recorded a pair of events in variable tmp (lines 11 and 17). This information can be
used in function c print to log the exact delay between the two occurrences of e (line 21).
Then the system waits until the end of task t (line 24) before restarting with its initial
behavior.

3.3 Semantic of a Task and an Event

The behavior of our new statements can be formally expressed in Fiacre, and so it is
possible to define a transformation to rewrite an H-Fiacre specification into a “pure”
Fiacre model.

This rewriting process consists in replacing tasks and events with concurrent processes
that model their behavior. Synchronization methods on task activation and termination
(start and sync) as well as event arrival are modeled by ports. These ports then carry
the data exchanged between the Fiacre model and external tasks and events.

3.3.1 Semantic of an external task

Listing 3 gives the template for the translation of an (executable) H-Fiacre into a plain
Fiacre process. Each task t j is modeled by a single Fiacre process. For each start

t j, respectively sync t j, in the H-Fiacre model a port t activate j i is created,
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resp. t terminated j i (see line 1). They are used to model the activation, resp. the
termination, of the task and to pass parameters, resp. the return value.

The behavior of the task is modeled by different states that express the life-cycle
of a task. A state (line 4) synchronizes the task with its activation through one port
t activate j i and copies the parameter values into a local variable param. The select

statement ensures that at most one instance of the task can run at any time.
The running state (line 11) calls the functional C code to compute the return value.

Note that for the Fiacre model the call of a function is assumed to be in null time, so
the execution time is represented by an interval of numbers (line 13) between its best and
worst-case response time. In order to model the real behavior of a task, it is necessary
to model the scheduler of the system. Here, we do not model this scheduler and instead
represent it by the best and worst response times (and not the execution time) (see next
Section for more details).

A terminating state (line 20) signals the end of the task and returns the result through
port.

1 process p_task_t_j [SyncGlobal_j : none, {t_activate_j_i | i } : ty1 , {t_terminated_j_i

| i } : tyOut] i s
2 states waiting , running , synchronizing , terminating

3 var param : tyIn , ret : tyOut

4 from waiting

5 select
6 t_activate_j_0?param; to running

7 [] t_activate_j_1?param; to running

8 ...

9 [] t_activate_j_n?param; to running

10 end
11 from running

12 ret := c_foo(param); /* The computational function is called */

13 wait[$bcrt , $wcrt]; /* simulate the WCRT */

14 ret := any;

15 to synchronizing

16 from synchronizing

17 SyncGlobal_j; /* Synchronization with the global tick */

18 to terminating

19 from terminating

20 select /* The return value are written */

21 t_terminated_j_0! ret; to waiting

22 [] t_terminated_j_1 ! ret; to waiting

23 ...

24 [] t_terminated_j_n ! ret; to waiting

25 end

Listing 3: Template to translate a task in Fiacre.

An additional state (line 16) is added to the model to represent the time-triggered be-
havior of the Hippo runtime (see Section 4). The termination signals, t terminated j i

(lines 20-24), need to be synchronized with the clock of the Hippo runtime. To do
this, a new process global clock is added (see Listing 4) with a port synchronization
SyncGlobal j. The port N is only introduced to allow the clock to progress if no synchro-
nization is required and a priority is added between SyncGlobal j and N to assure that
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SyncGlobal j always happens if a synchronization is needed. This model guarantees that
the termination of a task is only signaled at a tick.

The statement start t param can be simply replaced by a port emission
t activate j i!param and the sync t ret with t terminated j i?ret.

1 process global_clock [{ SyncGlobal_j | j in 1..# tasks }, N : none] i s
2 states timer , tick

3 from timer

4 wait[1,1];
5 to tick

6 from tick

7 select
8 N; to timer

9 [] SyncGlobal_1; to tick

10 ...

11 [] SyncGlobal_j; to tick

12 end

Listing 4: Global clock template.

3.3.2 Semantics for an external event

The Listing 5 shows the formal definition in Fiacre for the behavior of an event. This
rewriting is very close to that of a task. An event is synchronized to the global clock
(line 9) and uses the port e happened k i to synchronize the occurrence of the event with
the main behavior (lines 12 to 17).

Note that an event in H-Fiacre is similar to a port in Fiacre and that the syntax of
the statement e?d1, ..., dn to model an event is exactly the same as a synchronization
with a port.

The real difficulty with modeling an event lies in modeling a realistic timed pattern of
the event occurrence, e.g., is it a periodic event or a sporadic event with an inter-arrival
time? This is a common problem in modeling and is not addressed here. Several studies
[Tanguy et al., 2014, Abdellatif et al., 2013] tackle this problem and can be used as a basis
to extend H-Fiacre in the future. For the example exposed in Listing 5, we suppose that
an event can rehappen at the earliest after 30 units of time and at worst 1000 units.
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1 process p_event_k [SyncGlobal_k : none, {e_happened_k_i | i} : tyEvt] i s
2 states waiting , synchronizing , posting

3 var tmp : tyEvt

4 from waiting

5 wait [30, 1000]; /* timed pattern to produce event */

6 tmp := any;

7 to synchronizing

8 from synchronizing

9 SyncGlobal_k;

10 to posting

11 from posting

12 select
13 e_happened_0!tmp; to waiting

14 [] e_happened_1!tmp; to waiting

15 ...

16 [] e_happened_n!tmp; to waiting

17 end

Listing 5: Event behavior in Fiacre.

4 Execution Engine

The execution engine is a critical component in our approach. We present its principle
and the specific code which is generated for a particular H-Fiacre model to run with
Hippo. The implementation of the engine and its threads, as well as the underlying
scheduling hypothesis are introduced and then we conclude this section with encouraging
implementation and experimental results.

4.1 Principles of the execution engine

Hippo tackles the problem of generating code whose behavior is consistent with a model of
the system, meaning that every sequence of observable events during an execution should
correspond to an acceptable sequence of events (a trace) for the model. For an Hippo
execution, these events are transitions fired and time delays at the tts level. It means
that a H-Fiacre model is compiled into a tts extended with task and event manager and
the engine executes the tts.

The central idea of the execution engine is to separate the execution of the tts from
the execution of functional processes, i.e. tasks and events. The control flow of the tasks
is caught by the operating system while the tts execution is done by a time-triggered
engine. This means that the Hippo runtime is based on a globally asynchronous and
locally synchronous approach and that the tts evolves via a sequence of atomic actions,
indexed by a global logical clock, while the functional part is asynchronously executed
inside concurrent tasks. Hence we can identify two separate and distinct execution spaces:
(1) the tts engine space, devoted to actions that change the state of the H-Fiacre model;
and (2) the task execution space.

We depict this model in Fig. 3, where we make explicit that events related to the tts
engine are always synchronized on the same clock. At each tick, actions in the tts are
performed until a time blocking situation or an external event waiting. In our context, time
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blocking events corresponds to situations in which the system has to wait for an internal
event, coming from the tts engine space. On the opposite, external events originate from
the task space, such as events generated by a sensor or the termination of a task for
instance. Note that, at certain global logical clock ticks, the tts engine does nothing.
This is simply due to the timed events that have not yet expired, e.g., the transition in the
tts that cannot be fired due to its clock race condition.

tick

TTS Engine

Task execution

time
logical task activation logical task termination

Figure 3: A schematic representation of the execution control flow of Hippo.

In Figure 3, we also make obvious the fact that tasks can be executed concurrently
(or even on separate processors). Actually, we are not concerned with the way execution
threads in the task space are managed by the underlying operating system scheduler. This
is irrelevant from the tts engine point of view, since only the activation dates of the
threads are controlled by the runtime. In the same way, we only observe the termination
of a task at a behavior engine tick, even if the task terminates earlier from the operating
system point of view.

To summarize, the Hippo runtime implements an engine that performs actions on the
tts model in a synchronous way, whereas the flow control of tasks is delegated to the
operating systems in an asynchronous way. This clear “separation of concerns” helps us
enforce a time deterministic model of computation.

4.2 Code generator

The code generator produces C code from a H-Fiacre specification. During this step
the H-Fiacre is transformed into tts that preserves the semantic of the original model.
Basically, the tts is obtained after type checking, propagation of constants, and after all
possible synchronization patterns being statically resolved.

In practice, the code generator is written in Standard ML and shares most of its code
(and more than 90% of the front-end code) with the tool used to compile Fiacre specifica-
tion into a tts suitable for model-checking. The main difference between the “verification”
and the “runtime execution” tts formats comes from the presence of additional extern code
in H-Fiacre (such as the code of external tasks).

In Hippo, two type of C files are used to code a tts: a file that describes the discrete
state and the transitions of the system (which is actually a Time Petri net); and a source
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file that contains a set of functions describing the guards (conditions that need to be true)
and actions (updates which are applied on the variables) for all the transitions.

Basically, Hippo executes a binary compiled version of the “runtime” tts obtained
from the model and extended with the C code from the operations and the external events
handlers (see Fig. 4). The engine is a lightweight middleware that schedules operations in
the tts engine space. As a result, we obtain a self-contained executable file that can be
optimized depending on the target architecture and operating system.

POSIX Xenomai

Fiacre 
Model

Exec

frac-hippo

structures 
of the tts

data and guard 
functions

hippo library

functional 
treatments

gcc
C files

programmer

Figure 4: Tools for code generation and compilation.

For the toy example presented in Section 3.2.4, the tts is composed of 4 places, 5 tran-
sitions, 2 external elements (1 task and 1 event), 4 guard functions and 4 update functions.
Two specific data structures have also been generated to manage tyEvt and tyDblEvt

types.

4.3 Engine implementation

The implementation of the Hippo runtime is presently based on Linux (ideally with
PREEMPT-RT) and uses the POSIX services of the operating system with SCHED FIFO
scheduler (similar to a fixed priority scheduler). However, several design choices were made
to easily port the runtime to different operating systems. In particular, the used native
services were deliberately limited and general to ensure that they would be available on
the majority of existing real-time operating systems (RTOS), e.g., management services for
tasks, mutexes and alarms. Currently, a beta version is also available for Xenomai 3.0.6.

All data are static, i.e., no memory allocation occurs during the execution. This design
choice was made to reduce the time execution and to port the runtime on a microcontroller
with a micro-OS such as FreeRTOS or the AUTOSAR family.

All tasks and events have their own thread which is suspended until the tts engine
resumes them. The data used as parameter for task are read at start and data produced
by a task are written when the sync call is performed. Hence, a copy of the data is done
and the execution is only on a local data. This mechanism guarantees the reentrancy of
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the task execution. Note that it does not assure reentrancy if the functions executed by
the thread are not reentrant. This execution model is similar to the Acquisition Execution
Restitution (AER) proposed in [Durrieu et al., 2014] where execution is decoupled from
data access.

Note that the data that are only used at the functional level, i.e. data that are not
used in the behavior model, such as the output value of a control loop computed by an
operation, are not represented in the H-Fiacre model. This means that it is up to the
programmer to plan the data exchanges at the level of the operations. In particular, the
designer has to ensure that functions are thread-safe and that the concurrent access to
shared data is correct and consistent.

The tts engine has its own thread, with the highest priority. A periodic alarm updates
logical time of the engine and calls the tts engine if a task terminates, an event arrives,
or a waiting delay expires. During a run of the engine, the tts is updated until a blocking
state (due to a delay or the waiting of an event) is reached. The state of the tts is updated
using the action functions (for the data part) and the firing rules of the associated Time
Petri Net (for the discrete part).

The source code of Hippo and all scripts for tests and experiments are available on
GitLab at https://gitlab.laas.fr/pehladik/hippo.

4.4 Scheduling model

The scheduling of the tasks is not represented in a H-Fiacre model and is delegated to
the engine. The current implementation uses the SCHED FIFO scheduler of Linux and
all threads that managed tasks have the same priority (threads for events have a highest
priority). The SCHED FIFO scheduler is equivalent to a multiprocessor, global, fixed-
priorities scheduling algorithm with a FIFO rule for tasks with the same priority.

Formally verifying the scheduling behavior of the system could be tedious, because of
the difficulty of effectively modeling preemptive systems using a realtime model-checker.
If the scheduler is non-preemptive, it is relatively simple to explicitly model the scheduler
in Fiacre. In A we give an example of model for the FIFO scheduler used in the actual
implementation.

In the case of a preemptive scheduler, different approaches are possible. A first one is to
develop a model-specific scheduling analysis to compute the best and worst-case response
time and to use them, as mentioned in Sect. 3.3.1, in the Fiacre model to proceed to the
verification. By definition, this response time takes into account the scheduling aftermaths.
The difficulty with this method is to have a tight method to compute response times. By
default, it is possible to estimate an upper bound of the response time using response
time analysis methods assuming that all tasks are independent. This default calculation is
particularly pessimistic and it is preferable to use scheduling analysis with more advanced
task models such as transactions, DAG, etc.

An other approach to consider for scheduling is to combine activation patterns with
scheduling analysis. This method is used to restrict the behavior of tasks to models for
which scheduling analysis methods exist. For example, the Ravenscar profile [Burns, 1999]
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defined this kind of patterns. The Logical Execution Time (LET) assumption introduced
with Giotto [Henzinger et al., 2003] is also based on the same idea. To illustrate our
point, we will examine the LET approach in more detail.

Using LET, the system designer specifies the logical execution time of each task, that
is, the duration between the instant at which the task is activated and the instant at which
the task provides its outputs. When the LET expires, the outputs are made visible for
other tasks. Figure 5 shows examples of LET for three tasks. Each task has its own LET
and can be executed at anytime during this interval. The schedulability analysis for this
model can be done by a simple utilization test [Henzinger et al., 2002, Hladik, 2018].

task A

task B

task C

LET for task A

LET for task B

LET for task C

task activation 
and  input reading

output data writing

Figure 5: Timing diagram for three tasks under the LET assumption.

To model any system with the LET assumption in H-Fiacre, the designer needs to
follow a pattern, especially to call tasks. Listing 6 shows the pattern to use start and
sync under LET. The input data and activation of the task t is triggered at line 5. The
LET assumption is modeled by the value of the wait statement in line 8 (this value is the
duration of the LET delay). The result of the operation is read in line 11 and its value
captured in res. In Fiacre, a value is only updated during a transition, so that the value
of res is made visible, i.e., the outputs are provided, only when the transition to next

(line 12) is fired. So, by adding this pattern for each task activation and termination, a
LET scheduling analysis can be done.

1 task t (a1 : ty1) : rty i s c_foo

2 [...]

3 process pExample i s
4 [...]

5 start t (argOp);/* activate the task */

6 to wait_deadline

7 from wait_deadline

8 wait[$LET , $LET]; /* LET delay */

9 to read_result

10 from read_result

11 sync t res; /* synchronize the end of the task with the LET delay */

12 to next

13 [...]

Listing 6: Pattern to model a task t with a Logical Execution Time.
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4.5 Implementation validation

The translation from H-Fiacre to the C code executable has not been formally proved or
certified yet. However, to increase our confidence in our implementation, we paid particular
attention to the quality and readability of the engine code. More importantly, we wrote
automatic tests to compare traces obtained from actual Hippo executions with the traces
of the formal model. To do this, we use the tool play from the Tina toolbox which is a
stepper simulator that allows to simulate a tts model. In this context, a simulation is a
series of states separated by delay transitions or discrete transitions. A textual format scn
exists to record the transitions of a simulation. Our tests consist in checking that a trace
in scn format generated by Hippo can also be observed in the Fiacre model simulated
with play. So, as shown in the Fig. 6, we can generate a trace in a scn format with Hippo
and play this trace with the tts model generated from the same H-Fiacre model. A test
is valid when the trace can be simulated by the tts, otherwise the analyser returns the
name of the first conflicting transition.

To test our implementation, we use multiple models generated from our use cases or
selected from our catalogue of Fiacre and Tina examples. Twelve tests (of 30 to 200
lines models) were systematically applied to each code evolution, more than 100 generated
models were tested and four complete use cases were released. The current code is 100%
reliable on the basis of tests we have run. All tests are available on the Gitlab repository.

H-Fiacre
Model

TTS
Model

exe

H-Engine

Scn
Trace

Acceptable
y/n

frac

run

play

Analyser

Figure 6: Scheme of the acceptance test for traces.

4.6 Experimental measures

This section presents the performances of Hippo for different sizes models. We have
provided two kinds of measurements, which are the CPU usage and the time spent in the
Hippo engine. The experiments were made in a computer with an Intel i5-8265U (1.6GHz)
processor, with eight cores and 8GB of RAM memory. The system runs the Ubuntu 18.04
distribution, using the PREEMPT RT patched kernel 5.4.47-rt28. In addition, the highest
priority is given to the Hippo engine process, using the POSIX methods of sched.h. The
measurements were carried out using the LTTng, an open source tracing framework for
Linux [The LTTng Project].
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4.6.1 Benchmark

We propose a set of synthetic benchmarks used in our experiments. (We give an example
of a more realistic application in Sect. 5.) We should use models of the form Pm,n built
as the composition of m periodic processes. Each process calls its own and private task n
times in a period. In our case, the tasks are C functions that compute some unoptimized
and arithmetical operations. Listing 7 shows an example of a periodic process, p0, with
two task calls (n = 2). After being activated (line 15) by its periodic clock (lines 3 to 10),
process p0 calls its task (t0) a first time (line 18), then waits for the return value (line 20).
The process returns to its idle state after calling t0 a second time. Note that the number
of places and transitions in the tts of a benchmark Pm,n is proportional to m and n.

1 task t0 (a1 : ty1) : rty i s c_t0

2 [...]

3 process periodic_clock_0 [S_1 : none] i s
4 states a, b, o

5 from o

6 wait [0,0]; to a /* offset */

7 from a

8 wait [3,3]; to b /* period */

9 from b

10 S_1; to a

11

12 process p0 [S_1 : none] i s
13 states a, b, c, d, e

14 var ret : nat := 0

15 from a

16 S_1; to b

17 from b

18 start t0 (1); to c /* start task t1*/

19 from c

20 sync t0 ret; to d /* wait end of task t1 */

21 from d

22 start t0 (1); to e

23 from e

24 sync t0 ret; to a

Listing 7: Example of a p0 periodic process with two task calls

4.6.2 CPU usage

This section reports on the CPU usage of the Hippo engine. The CPU usage is defined
as the rate of CPU time spent in the Hippo engine by the total time of an execution. For
a Hippo execution with a tick frequency Ftick and a given function R[i] that returns the
response time of the tts engine, i.e. the part of the Hippo engine that executes the tts,
activated at the ith tick (i ∈ 1..n), we define the CPU usage as :

U =
Ftick

n

n∑
i=0

R[i]
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For the experiment we have run Hippo models with 2 tasks per process, as described
previously. Hippo engine’s frequency is set to 1 kHz, so every 1 millisecond Hippo updates
the running model and goes on.

For an example that correspond to a realistic application with 20 processes (equivalent
to 140 transitions in the tts model), we measure a CPU charge (on one processor) of
13.2%.

More extensive experiments are shown in Figure 7(a). We can see, that the CPU usage
increases linearly with the number of tasks (number of transitions). This is easily explained
by the fact that the engine has to handle a larger number of transitions at each execution.
A second experiment was conducted by significantly increasing the number of processes
(see Figure 7(b)). For this experiment, the Turbo Boost of the hardware architecture was
used, bringing the processor frequency to 3.9 GHz. We observe the same behavior than
before, but with greater variability.

These experiments show that we can envisage running Hippo with hundreds of parallel
tasks on a modern embedded architecture. The main limitation is the processing speed.
On the other hand, we can predict the expected performance based on the size (in number
of transitions) of the tts and the charge of the tasks.

4.6.3 Time consumption of the tts engine

For our next experiment, we look at the “time consumption” of Hippo by studying the
time spent in one turn of the engine. Like in the previous experiments, we set the frequency
to 1 kHz; meaning that the global tick (one turn of the engine) is at 1 millisecond. So, to
successfully run the model, Hippo must complete all its operations in less than 1 ms.

For the simple example with 20 processes (equivalent to 140 transitions in the tts
model), we measure an average time spent in one turn of Hippo engine of 0.13 ms with a
best-time of 5.5 µs (the engine has no transition to fire) and a worst-time of 0.26 ms.

Figure 8 shows the distribution of the time spent in one turn of the Hippo engine for
three models : a small model with 40 Hippo tasks (20 processes, 2 tasks per process,
140 transitions); an intermediate model with 400 Hippo tasks (100 processes, 4 tasks per
process,1100 transitions); and another one with 800 Hippo tasks (200 processes, 4 tasks
per process, 2200 transitions). None of the experiments use the Turbo Boost.

For the 400-tasks model, the median equals to 0.32 ms and the interquatile range equals
to 0.06 ms, 95% of the values are lower than 0.4 ms and the worst-case is 0.98 ms. So, for
this execution there is no tick miss, i.e. all the Hippo engine turns were executed in less
than 1 ms.

For the 800-tasks model, the median equals to 0.7 ms and 95% of the values are lower
than 0.97 ms. However, 3% of the values are greater than 1 ms, with a worst-case of 1.85 ms
(note that we do not use Turbo Boost here). Indeed, the number of operations performed
by Hippo depends on the running model. For a given model, a big number of operations
to perform during a tick can involve an overrun of the tts engine. This limitation was
expected and the choice of hardware must be made with full knowledge of the facts. The
system with 800-tasks is particularly huge and is not representative of a real application
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(a) Without TurboBoost

(b) With TurboBoost

Figure 7: CPU usage as a function of number of Hippo tasks.
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Figure 8: Time spent in the Hippo engine

(see the use case in Sect. 5). In addition, the operating modes of the systems naturally
exclude a behavior depending on the operating phases, which normally limits the number
of transitions to be evaluated at each engine tick (that is not the case for benchmark’s
models).

An interesting feature of our architecture is that we can increase the predictability of
Hippo by dedicating a processor solely to the engine. This option can easily be added in
the implementation of Hippo by assigning an affinity to the thread.

5 Case Study: A Software Controller for the Mobile

Robot Minnie

Fiacre is a (French) acronym that stands for “Intermediate Format for Distributed, Em-
bedded Component Architectures”. As an intermediary language, its goal is to ease the
interoperability between formal verification tools and high-level (component-based) speci-
fication languages.

The robotic group at LAAS has used for years such a specification language, called
Gen

oM, to program and deploy components for their robot functional architecture. In this
section, we use Gen

oM to generate an H-Fiacre model, and then Hippo to produce the
runtime controller software of a real robot called Minnie. This controller is also used to
perform runtime monitoring of critical assertions and take appropriate corrective actions.
Gen

oM also synthesizes the regular Fiacre model to check several interesting properties on
the system.

Gen
oM (GENerator Of Modules) [Mallet et al., 2010] is a tool to specify and implement

robotic functional components also called modules (see the nine modules on Fig. 9). These
modules provide services in charge of functionalities that may range from simple low-level
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t3d_pos = or::t3d::pos
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joystick = or_joystick::state

Port:

Figure 9: Architecture of the Minnie RMP440 experiment.
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driver control (e.g. the velodyne or imu modules to respectively control a Velodyne
HLV32 or an XSens IMU) to more integrated computations (e.g. pom for localization
with an Unscented Kalman Filter, or PotentialField for navigation). Gen

oM proposes
a language to completely specify the functional components down to (but not including)
the C/C++ functions (also called codels) that implement the services computation steps.

5.1 Gen
oM and the Minnie RMP440 robot

To illustrate how Gen
oM is used, we present a complete navigation experiment for Minnie,

an RMP440 LE robot (see Fig. 9). Minnie is not an autonomous car, nevertheless, it shares
a lot of common sensors and effectors with one: an XSens MTi IMU, a KVH DSP-5000
fiber optic gyro, a Novatel GPS, all connected through serial/USB lines and an HDL-32E
Velodyne lidar (on an ethernet UDP interface).

The RMP440 platform comes with a low-level controller (accessed through an ether-
net interface), which allows controlling the robot with a speed (x-linear and z-angular)
command, and returns the platform wheel odometry. The platform also includes a Nuvis
5306RT i7-6700 CPU with 16 Gb RAM and a 256 Go SSD drive, running Ubuntu 18.04. In
case of emergency, a human operator can take control of the robot using a wireless joystick
communicating with the robot via a USB dongle. Commands emanating from the joystick
should take precedence over commands from the robot controller.

All the hardware components of Minnie are controlled through their respective Gen
oM

modules2 (depicted with boxes, like gps) which produce shared data in ports (depicted
with octagons). Links in the diagram describe which modules read from which ports. Fig. 9
lists, inside each module, the execution tasks they include, their activity services, the ports ’
name and the data type they hold. We can understand the basic behavior of the robot by
looking at the tasks and services implemented in each of these modules, and the exchange
of information between them.

Module pom uses an Unscented Kalman Filter (UKF) to merge pose estimations from
gps, imu and rmp440 (gyro and odometry) and to provide the position of the platform in
the pose port. Module navigation offers services to navigate in a graph of positions in
a topological map of the environment and produces in a port, the next target to navigate
to. This port is used as the goal to reach by PotentialField which produces a speed
reference in port PF Cmd, while avoiding obstacles found in the point cloud port using
a Potential Field method inspired from [Guerra et al., 2016] (the points in the cloud are
collected in an occupancy grid which is then used to provide obstacles position in the local
map). The speed reference is then read by SafetyPilot which, as last resort, checks in
point cloud that no obstacles is too close to the robot, and stops the robot if needed.
It also considers the data in port joystick and uses it as a speed command producer
if the proper joystick buttons are pushed (which is a way to gain control back on the
robot platform in case something goes astray while navigating). The final speed produced,
written in Cmd, is then read by rmp440 (if it is executing the Track service), which

2The gyro is managed inside the rmp440 module.
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pushes it to the low-level controller of the robot. Last, rmp440 also has a JoystickOn
service (incompatible with Track) which computes a speed command and send it to the
wheels controller.

The goal of this section is not to discuss the overall localisation/navigation implemented
on Minnie, but to give a reasonable idea of the overall complexity entailed by a non-
trivial robotic experiment. The complete code of the Minnie experiment is available at
https://redmine.laas.fr/projects/minnie.
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        } 
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Figure 10: A Gen
oM generic functional component (module).

5.1.1 Gen
oM specification

All nine modules in Fig. 9 are an instance of a generic Gen
oM component presented in

Fig. 10. Hence a module is a unit composed of a control task, a set of execution tasks, and
a set of services. Concerning the use of data, each module also includes an Internal Data
Structure (IDS) and may expose/read a set of ports :

Control Task: A component always has an implicit cyclic control task that manages the
control flow by processing requests and sending reports (from/to external clients);
it also runs control services, and activates/interrupts activity services in execution
tasks.
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Execution Task(s): Aside from the control task, whose reactivity must remain high, one
may need one or more cyclic execution tasks, aperiodic or periodic, in charge of longer
computations needed by activity services (e.g. velodyne has three execution tasks:
scan and pose running at 100 Hz, and acquisition aperiodic).

Services: The core algorithms needed by the component are encapsulated within services.
Services are associated to requests (with the same name). The algorithm executed
by these services may require a short computation time or a long one. Short services
are known as control services and are directly executed by the control task. Control
services are in charge of quick computations and may be attributes (setters/getters
of the IDS fields) or functions (in italic on Fig. 9). Longer services are known as ac-
tivities (in bold in Fig. 9) and they are executed by execution tasks (e.g. velodyne
scan task has three activities services, Init, GetScans and GetOneScans).

Activity Automaton and Codels: Activities are long-running services. They are mod-
elled with an automaton that breaks down the computation into different states (see
an example in the lower right part of Fig. 10). Each state is associated with a codel,
which specifies a C or C++ function (top right part of Fig. 10). The execution of
that codel leads to (yield) the next state in the automaton, to execute immediately,
or in the next period if this next state name is prefixed with pause (see for instance
the declaration in Listing 8, line 19).

IDS: A local internal data structure is provided for all the services to share parameters,
computed values or state variables of the component. A codel which needs to access
(in or out) fields from the IDS must specify them in its argument list. Gen

oM will
ensure proper mutual-exclusion when accessing these fields during computation.

Ports: They specify the shared data, in and out, the component needs or produces from/-
for other components (octagons on Fig. 9). Access to ports is also specified in the
codels arguments list and is properly handled/locked with respect to the middleware.

To further illustrate the Gen
oM specification of the Minnie robot, Listing 8 presents

the GetScans activity service of the velodyne module. Note the automata specification,
which is also presented in Fig. 11.

Overall, the Minnie experiment includes: 9 modules, 9 ports, 24 tasks, 38 activity
services (with automata), 41 function services, 43 attribute services, 170 codels over 14k
loc (lines of codes) and their respective WCET. The synthesized Gen

oM modules amount
to 200k loc to which one must add external libraries (middleware, PCL, Euler, etc).

From a specification point of view, Gen
oM has a clear semantics of what should be done

and how it should be properly implemented. This generic component implementation is
thus instantiated for each specific component specification using a template mechanism.
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1 activity GetScans(

2 in double firstAngle = :"First angle of the scan (in degrees)",

3 in double lastAngle = :"Last angle of the scan (in degrees)",

4 in double period = :"Time in between two scans",

5 in double timeout = :"Timeout used when stamping packets")

6 {

7 doc "Acquire full scans from the velodyne sensor periodically";

8 task scan;

9

10 validate GetScansValidate(in firstAngle, in lastAngle, in period);

11

12 codel <start> GetScansStart(in acquisition_params)

13 yield copy_packets;

14 codel <copy_packets> GetOneScanCopyPackets(in acquisition_params,

15 inout scan_buffer) // get packets from acquisition buffer

16 yield stamp_packets;

17 codel <stamp_packets> GetOneScanStampPackets(in acquisition_params, // stamp packets

18 inout pose_data, in timeout) // with the proper pose

19 yield pause::stamp_packets, build_scan; // pause:: if pose not available

20 codel <build_scan> GetOneScanBuildScan(in acquisition_params,

21 in firstAngle, in lastAngle) // build scan repositioning

22 yield end; // individual packet in the first pose.

23 codel <end> GetOneScanEnd(in acquisition_params,

24 port out point_cloud, inout usec_delay) //publish the scan in the

25 yield wait; // point_cloud port. usec_delay is for fault injection.

26 codel <wait> GetScansWait(in period) // wait next user defined scan period

27 yield pause::wait, copy_packets; // then loop back.

28

29 interrupts GetOneScan, SavePCD, GetScans;

30 };

Listing 8: The Gen
oM specification of the GetScans activity (executing in the scan task of

the velodyne module). See the resulting automata Fig. 11.

<start>
GetScansStart

<copy_packet>
GetOneScanCopyPackets

<stamp_packet>
GetOneScanStampPackets

ether

copy_packet

stamp_packet

copy_packet

ether

ether

ether

ether

<end>
GetOneScanEnd

<wait>
GetScansWait

pause::wait

pause::stamp_packet

<build_scan>
GetOneScanBuildScan

build_scan

ether
end

wait

ether

GetScans

Figure 11: Finite-state machine of the GetScans activity (Listing 8)
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5.1.2 Gen
oM templates

A Gen
oM template is a set of text files that include Tcl code, whose evaluation in the context

of a Gen
oM call on a specification file will produce the target of this particular template. The

target can be as simple as one file with the list of the name of the services specified in the
module (in which case the template file will just include a loop over all services and print
their name), or it can be the C code which controls the execution of an activity automaton,
or which implements the module itself using the ROS-Com middleware. Templates are the
building blocks of any output of Gen

oM.
The template mechanism was initially introduced to deal with the middleware inde-

pendency problem [Mallet et al., 2010]. Indeed, the specifications presented above do not
subsume any specific middleware. Different templates are provided to automatically syn-
thesize the components for different middleware which are then linked to the codels library
for the considered module.

A template, when called by Gen
oM on a given module specification, has access to all

the information contained in the specification file such as services names and types, ports
and IDS fields needed by each codel, execution tasks periods, etc. Through the template
interpreter (using Tcl syntax), one specifies what they need the template to synthesize.

There are already templates to synthesize: the component implementation for various
middleware (e.g. PocoLibs3, ROS-Com [Quigley et al., 2009]); client libraries to control the
component (e.g. JSON, C, OpenPRS), etc. Among the available middleware, we rather
focus on PocoLibs as it is the most suitable for real-time applications (notably UAVs).
Yet, its implementation, as efficient as it can be, cannot guarantee crucial properties, for
this we need formal verification.

5.1.3 The Gen
oM toolchain for verification and code generation

The template mechanism used to synthesize the Gen
oM modules from their specifications

and codels can also synthesizes both the Fiacre verification model (which can then be
used with the Tina toolbox) and the H-Fiacre runtime model (which can be compiled
and linked to the codel library to produce an executable module), see Fig. 12. In fact, the
Fiacre Gen

oM template file is really the same, we choose to synthesize one model or the
other with a flag (-tina or -hippo) when calling the Gen

oM command on this template.
The time constraints used in the Fiacre model come both from temporal information

found in the modules (for instance the period of tasks) and from the Worst-Case Execution
Time (WCET) of the codels. At the moment, the WCET are obtained by running the
regular modules with Gen

oM profiling tool: profundis.
Our current template is not the first implementation of a transformation from Gen

oM to
Fiacre. A first experiment was performed in [Foughali, 2018], but was mostly a proof of
concept and remained at a too abstract level to lead to safe execution on critical systems
(e.g. UAVs). Even on less critical robots, such as Minnie, the interleaving of services au-
tomata execution was not properly handled and lead to suboptimal reaction time. Another

3https://git.openrobots.org/projects/pocolibs
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Figure 12: Toolchain with the Fiacre template (which can produce the -tina and the
-hippo versions).

side-effect of this new template is that we can now derive better bounds on the reaction
time of the system.

We also experimented with other V&V templates in previous works (transformations
from Gen

oM to the input language of other real-time model-checkers), namely BIP [Abdel-
latif et al., 2012] and Uppaal/Uppaal-smc [Foughali et al., 2019]. However, none of these
works reached the level of fidelity achieved with our current Fiacre template. We give a
high-level evaluation of our past experiences in Table 1. We compare three different target
frameworks: the current Fiacre, RT BIP, and Uppaal. In each case, we score the fidelity
of our results in three different categories. Offline is for models used for formal verification
or simulation purposes (the equivalent of the -tina version in our work). Online is for
generated, executable code (similar to our -hippo version). We consider two different cases
here, that correspond to two different “robotic middleware”: PocoLibs [Herrb, 1992] and
ROS-Com [Quigley et al., 2009].

The H-Fiacre modules have an execution trace completely equivalent to the regular
PocoLibs or ROS-Com modules. Of course, this does not qualify as a formal proof of
equivalence, but from a roboticist point of view, the fact that such a complex rover experi-
ment behaves the same with Hippo than the regular modules is clearly encouraging. This
confidence is increased by the fact that the very same model can be used with Tina.

In fact, the difference between the synthesized verification model and the Hippo exe-
cutable model are minimal:

• Codels execution is really carried on in the Hippo models (with start/sync), but
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is modeled with a time interval of [0,wcet] (or [wcet,wcet]) in the Tina model.

• Non deterministic choices (e.g. codels returned values, used for activities automata
transition, or control codels success/exception) are handled with Fiacre tasks
start/sync and tests in the Hippo models, but with select []* end in the of-
fline Tina model.

• The Tina model must include a client component to model the behavior of the
environment (i.e. the requests received by the controller). On the opposite, the
Hippo model is simply “linked with the real world” using Hippo event ports and
task executions. In this case, the event port handles the mechanism which receives
new requests (PocoLibs Mbox or the ROS CallBackQueue).

Even though this is not a formal proof, the fact that the online and offline models are
synthesized from the same template and only minimally differ gives a very strong argument
to support that our models have the proper semantics. It increases our confidence that
both models are observationally equivalent and close to the existing templates that directly
target PocoLibs or ROS-Com server.

Formal Frameworks Offline
Online

PocoLibs
Online

ROS-Com

Fiacre
[Berthomieu et al., 2008a]

Tina
[Dal Zilio et al., 2015] +++

Hippo [Hladik, 2020] +++ Hippo ++

RT BIP
[Socci et al., 2013]

RT D-Finder
[Ben Rayana et al., 2016] -

RT BIP Engine
[Abdellatif et al., 2010]++

RT BIP Engine
+

Uppaal [Behrmann et al., 2006]
Uppaal-smc [David et al., 2015]

Uppaal ++ N/A N/A

Table 1: Existing formal framework templates for Gen
oM. The +, ++ and +++ correspond

to our own subjective evaluation of the usability of the approach and the fidelity of the
synthesized formal model to Gen

oM. - indicates that the tool needs more development to
converge in producing meaningful and useful results.

Still, writing these templates is tedious. It requires a very good knowledge of the Gen
oM

specification and implementation, and of course a good knowledge of the formal frameworks
used. But an interesting side effect is that writing the formal version of a synthesized
implementation (e.g. the Pocolibs implementation of the module) requires to also clarify
the specification and/or the implementation when they are subject to ambiguities. This is
a win/win strategy, the Gen

oM designers/programmers are invited to clarify the semantics
of the tool and, in exchange, we are able to properly and formally model it.

5.2 Controlling and monitoring Minnie with Hippo

We have been able to synthesize automatically an Hippo model from the 9 components in
the Gen

oM specification of Minnie. The resulting Hippo model is 35 852 lines of H-Fiacre
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code, with 230 Fiacre processes, 197 Hippo tasks, 9 event ports, 441 external functions,
and 1 760 transitions in the TTS.4 It is linked with the codels library and Hippo runs
the whole experiment at 10kHz in one process. The load on the CPU remain acceptable,
and no noticeable slowdown is observed (5-10% more than the sum of all regular Gen

oM
components load).

The advantage of running Hippo instead of the regular PocoLibs or ROS-Com server
module is to monitor online some critical properties, a first step toward runtime verification.
Here is a list of the ones checked by default and already included in the synthesized model.

Task period overshoot: Periodic execution tasks are specified to run within a given
period, if for some reasons, their period is not respected, the Hippo model will
report the number of cycles they have overshot. If this happens too often and or
with a large number of reported cycles, there is probably something wrong in the
design and the specification or the hardware need to be modified.

WCET overshoot: WCET are obtained by profiling the regular PocoLibs module on
the same setup. Yet, they can sometimes be exceeded, in which case the Hippo
model will report the number of ticks by which it overshot its specified value. This
properties is also a runtime verification that these WCET values, also used for offline
verification (e.g. schedulability) are realistic.

Possible Uninitialized Port Read: When controlling a multi modules experiment, the
Hippo engine checks than no codel will use a port with the in direction before a
codel with an out direction has already been called. If this is the case, most likely
the value read in the port is not semantically “correct”5.

We can also define additional monitors that go beyond these default properties. We
give an example from the Minnie experiment in Listing 9. In this example, we monitor the
time spent between two updates to port point cloud of the velodyne. If the port is not
refreshed for more than 200 ms, the monitor triggers an emergency stop of the robot. This
is achieved by forcing a transition to the stop state of the Track activity in the rmp440
module.

An emergency stop is a safety-critical action. Therefore we would like to compute
a bound (a worst-case response time) on the time that could elapse between sending a
request to stop, and the actually start of this action. By looking at the specification of the
rmp440 module, we find that stopping the Track activity executes a codel, stopTrack,
that immediately sets linear.x and angular.z speeds at 0 (which stops the robot very
abruptly, without a regular deceleration). A careful examination of multiple traces shows
that the robot typically stops 17–35 ms after detecting the problem, which is consistant
with the TrackTask task period of 50 ms (so on average the stopTrack will be executed
after 25 ms). Section 5.6 presents a more rigorous evaluation of this response time, using
formal verification on the offline model.

4Code is available here: https://redmine.laas.fr/projects/minnie/gollum.
5This type of error often occurs upon startup of the experiment where all the modules are starting at

once, and subtle race condition can lead to these situations.
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1 process Velodyne_Scans_rmp440_Track_Stopper(

2 &scan_updated:bool, //boolean shared with the GetScans service.

3 &TrackTask_activities: Activities_rmp440_TrackTask_Array,

4 Track_index: act_inst_rmp440_TrackTask_index_type) is
5

6 states monitor_start, monitor_wait, monitor_error

7

8 from monitor_start

9 on (scan_updated); //monitor_start scan_updated

10 scan_updated := false;

11 to monitor_wait

12

13 from monitor_wait

14 select
15 wait [2000,2000]; // 200ms at 10 kHz = 2000 tick

16 to monitor_error //monitor_wait 200ms elapsed

17 []

18 on (scan_updated); //scan_updated before 200ms elapsed

19 scan_updated := false;

20 to monitor_wait

21 end
22

23 from monitor_error

24 if (TrackTask_activities[Track_index].status = ACT_RUN_FCR) then //Track running?

25 TrackTask_activities[Track_index].stop := true // emergency stop

26 end;
27 to monitor_start

Listing 9: Example of user-defined monitor for module velodyne.

5.3 Verification

Since we have a formal model for the modules in Minnie, it is also possible to check
its behavior using the tools available in Tina: play to simulate the model; selt and sift
to model-check properties; plan to find possible firing schedules times from an execution
sequence; etc. This verification step allows the designer to check specific properties such
as schedulability, the reachability (or better impossibility to reach) particular state and
maximum response time between two states. But what is also interesting during this phase
is that while checking a property, the designer may also discover inappropriate behaviors
that are not directly expressed in the property. For example, by checking the maximum
delay for taking an action, the designer may discover an execution sequence that leads to
the immediate realization of this action when the system starts up. Here, the property is
verified but it permits to identify an inappropriate behavior. Thus, the verification stage
can be considered both as a means of proving the good behavior of the system and as a
means of debugging it.

As mentioned previously, to proceed to the verification of Minnie, one need to provide
a client which sends requests and receives replies, otherwise the model only starts the
permanent services (if any). These requests are dispatched to the proper modules for
“execution” and replies are received accordingly. On the complete (offline/verification)
model generated from Minnie, we are not able to explore the complete state set of the
system (with a limit of 16 GB of RAM). Yet, we can perform complete verification on one
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of the components.
The verification of a safety invariant is straightforward. It is enough to express the

property that we expect to be true on each reachable states as a Boolean combination
of atomic properties. Then the property can be checked on the fly with the sift tool.
sift enumerates the reachable state of the system, stopping if the invariant is false, in
which case it returns a counter-example that can be used to compute an execution trace
explaining how to reproduce the error. In the cases where we are able to generate the
whole state space, we can use one of the model-checkers included in Tina, called selt, to
prove more complex properties (properties than can be expressed as formulas in Linear
Temporal Logic, LTL).

We have used this mechanism to check several properties on the Minnie use case. We
now give three different examples.

5.4 Schedulability

We can check that a periodic task, in a module, will always finish its execution before its
next activation. To this end, it is enough to check that a (Fiacre) task can never reach
its overshoot state (this state is the same used in the Hippo version to detect overshoot
at runtime, see Section 5.2). This is an example of safety property. So for the velodyne
module, which includes only two periodic tasks (velodyne_scan and velodyne_pose), it
is enough to check an invariant of the form:

¬(velodyne scan overshoot ∨ velodyne pose overshoot)
Our model also includes a specific mechanism for dealing with CPU cores. We can fix

a maximal number of available cores, with the constraint that two codels cannot share the
same core at the same time. Even if we cannot generate the whole state space for the
model, sift was able to find a scheduling errors when using only 3 cores with velodyne.
This led us to change and optimise the codels for the velodyne to solve the problem.

5.5 Mutual exclusion

The rmp440 module is critical, since it commands the speed of the wheels, and needs a
careful verification. When running the Track service, it grabs the speed Cmd from Safe-
tyPilot, and when running the JoystickOn service, it computes a speed from joystick.
These two services are declared as interrupting each other: they should never run together.

We are able to check the property in two symmetrical scenarios (expressed using differ-
ent models of the client), considering the rmp440 module alone (i.e. without inclusion of
other modules): a scenario where a JoystickOn request is sent, shortly followed by a Track
request; and the other way around. We are able to prove that our invariant is true. This
is the worst-case since it means that we have to explore the whole state space. We give
some information on the complexity of the problem in Table 2. In this context, a marking
is a particular set of states and values for all the processes and variables in the system. A
class is a state extended with timing information on the enabled transitions (therefore we
can have several classes with the same marking).
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Scenario JoystickOn then Track Track then JoystickOn
Time 16 min. 10 h.
#classes 4,2714,945 832,778,752
#markings 5,817,082 44,533,432

Table 2: Complexity of checking mutual exclusion between services

5.6 Delay to stop

The last property we check is related to the Hippo monitor presented in Sect. 5.2, Listing 9.
The problem here is to compute, offline, the Worst-Case Response Time (WCRT) between
an interrupt from the Track activity, and the end of the execution of the stopTrack codel.
This is an example of quantitative property that can be checked by adding a monitor to the
model. (Listing 10 gives a the code for this monitor.) Indeed, it is possible to reach state
robot NOT stopped in process rmp440 Track Stopper if and only if the timeout used in
state wait delay (141 ms in this case, see line 17) is less or equal to the WCRT. Hence, to
compute the right value, it is enough to try different values for the timeout.

1 process rmp440_Track_Stopper(&track_started:bool, &track_stopped:bool,
2 &TrackTask_activities: Activities_rmp440_TrackTask_Array,

3 Track_index: act_inst_rmp440_TrackTask_index_type) is
4

5 states wait_started, wait_stop, wait_delay, finished, robot_stopped, robot_NOT_stopped

6

7 from wait_started

8 wait [0,0];

9 on (track_started); // wait the Track service has started

10 to wait_stop

11

12 from wait_stop // (no wait) can stop anytime

13 TrackTask_activities[Track_index].stop := true;

14 to wait_delay

15

16 from wait_delay

17 wait [141,141]; //<--- This is the response time value we want to measure

18 to finished

19

20 from finished

21 wait [0,0];

22 if (track_stopped) then
23 to robot_stopped //The robot has been stopped before the delay

24 else
25 to robot_NOT_stopped //The robot has not been fully stopped yet

26 end

Listing 10: A Fiacre monitor used to measure a response time with sift (the
track started and track stopped booleans are set by the Track activity Fiacre process).

We used this approach to compute a theoretical WCRT value (141 ms) with a precision
of 1 ms. This value is much higher than the one measured during our tests with the
real robot. On the other hand, with our approach, it is possible to generate a scenario
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corresponding to this worst-case. An analysis of the counter-example computed by Tina
shows that this scenario is indeed possible in the real system. This scenario corresponds
to an extreme situation where we added twice the running time (WCET) of a slow codel
(43 ms), conflicting with the codel in charge of stopping the robot.

Yet, the theoretical WCRT is still “reasonable”; even at 6 m s−1, Minnie will travel at
most 85 cm before pulling the brakes. Also, while this scenario is very unlikely, the value
of 141 ms should be the one chosen when performing a safety analysis, or in case we want
to certify our system.

Overall, the automatic synthesis for such a complex robotic experiment of a complete
formal model which can be both used for offline and online verification is rather encourag-
ing. It shows that some non trivial critical properties can be checked beforehand, even at
design time; and that some specifications can be translated into online monitor which will
formally enforce them. Last, but not the least, the deployment of both models also provides
a positive feedback on the tool itself and its semantics, but also on the specific architec-
ture needed to run a particular experiment (number of cores needed, proper initialization
sequence, etc).

6 Conclusion

We describe a language and a compiler, called Hippo, able to generate executable code
that has the same semantics than its formal model. This tool is based on an extension of
the formal language Fiacre with new operators for activating and waiting on the result
of external tasks. Our implementation follows a synchronous principle for the behavior
engine and uses a more flexible, asynchronous model for tasks scheduling.

We make several contributions beyond the implementation of this approach. First, we
show how to interpret the semantics of Hippo in plain Fiacre, which means that we are
still able to check temporal properties on this new, “runtime oriented” language. Next, we
show the effectiveness of this approach by reporting our experience with a non-trivial use
case; a mobile robot navigation application derived from a high-level specification written
in the Gen

oM framework. This specification has been translated into Hippo to allow the
automatic generation of an executable which fully controls the robot in place of the regular
Gen

oM synthesized module. We also discuss how this executable can be enhanced in order to
enforce critical safety properties at runtime. Using the same template, the specification can
also be used to synthesize a verification model which can be analyzed offline, strengthening
the confidence we put in the application.

The performance of the applications generated with Hippo is also evaluated and the
overhead seems reasonable for a real usage.

We have several ideas for future works. For example, we discuss the problem of schedu-
lability analysis, which should be further explored in subsequent works. It would also
be interesting to port our engine on embedded and low-resource systems, particularly on
micro-controller architectures. Another interesting research direction will be to add more
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support for expressing user-level properties; for example towards runtime verification by
integrating a property language in our toolchain. We also want to add support for defining
runtime monitors that could run alongside an application.
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A Fiacre model of a FIFO scheduler

A SMP FIFO scheduler can be simply modeled with a queue. The proposed model is
inspired from [Foughali et al., 2018]. The scheduler is coded by a process (line 6) with two
shared data (see Listing 11 for an example). The ready list (line 36) is a queue (native
type of Fiacre) used as the classical ready list in a scheduler and it is used to stack the
tasks that are ready to be executed. The launch (line 37) variable is an array of booleans
that states if a task can start its execution or not. When a task is activated, its id is
queued in the ready list (line 21) and a test is done to know if a processor is available to
execute the new task (line 9). If it is possible, the launch is updated (line 11). Then, the
task waits that a processor is available to continue its execution by checking the status of
launch (line 23). When a task terminates its execution, a processor is free (line 27) and
if the ready list queue is not empty the first task is resumed by changing its status in
launch (line 9).

Remark that we use the best-case execution time and the worst-case execution to
represent the execution time of the task (line 26). The translation from a Hippo model to
a Fiacre model with a FIFO scheduler is implemented and available on the gitlab.
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1 const nbOfProcessors : nat i s 2

2 const nbOfTasks : nat i s 120

3 type fifo i s queue nbOfTasks of 0..( nbOfTasks -1)

4 type start_tab i s array nbOfTasks of bool
5 ...

6 process scheduler (& ready_list: fifo , &launch: start_tab , &unused_proc: nat) i s
7 states exec

8 from exec

9 on (not (empty ready_list)) and (unused_proc > 0);

10 unused_proc := unused_proc -1;

11 launch [ f i r s t ready_list ]:= true;

12 ready_list := dequeue ready_list;

13 wait [0,0]; to exec

14

15 process p_task [SyncG : none, t_a : ty1 , t_t : tyOut] (id : 0.. nbOfTasks -1, &

unused_proc : nat , &ready_list : fifo , &launch : start_tab) i s
16 states waiting , sched_activate , sched_resume , running , sched_terminate , synchronizing

, terminating

17 var param : tyIn , ret : tyOut

18

19 from waiting

20 t_a?param; to sched_activate

21 from sched_activate /* task activation: scheduler call */

22 ready_list := enqueue(ready_list , id); wait [0,0]; to sched_resume

23 from sched_resume

24 on launch[id]; launch[id] := false; wait [0,0]; to running

25 from running

26 ret := c_foo(param); wait [$bcet , $wcet]; to sched_terminate

27 from sched_terminate /* task termination: scheduler call */

28 unused_proc := unused_proc + 1; wait [0,0]; to synchronizing

29 from synchronizing

30 SyncG; to terminating

31 from terminating

32 t_t! ret; to waiting

33 ...

34 component Main i s
35 var
36 ready_list : fifo := {||},

37 launch : start_tab := [false ,..., false],

38 unused_proc : nat := nbOfProcessors

39 ...

40 par
41 ...

42 || scheduler (&ready_list , &launch , &unused_proc)

43 || p_task [SG, t_a , t_t](1, &unused_proc , &ready_list , &launch)

44 ...

45 end

Listing 11: An example of FIFO scheduler in Fiacre.
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