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Abstract

The design of embedded real-time systems requires specific toolchains to guarantee time
constraints and safe behavior. These tools and their artifacts need to be managed in a coherent
way all along the design process and need to address timing constraints and execution semantic
in a holistic way during the system’s modeling, verification, and implementation phases.
However, modeling languages used by these tools do not always share a common semantic.
This can introduce a dangerous gap between what designers want to express, what is verified
and the behavior of the final executable code. In order to address this problem, we propose a
new toolchain, called Hippo, that integrates tools for design, verification and execution built
around a common formalism.

Our approach is based on an extension of the Fiacre specification language with runtime
features, such as asynchronous function calls and synchronization with events. We formally
define the behavior of these additions and describe a compiler to generate both an executable
code and a verifiable model from the same high-level specification. The execution of the
resulting code is supported by a dedicated execution engine that guarantees real-time behavior
and that reduces the semantic gap between high-level models and executable code.

We illustrate our approach with a non-trivial use case: the autonomous navigation of a
Segway RMP440 robotic platform. We describe how we derive a Hippo model from an initial
specification of the system based on the robotics programming framework Gen

oM. We also
show how to use the Hippo runtime to control this robot, and how to use formal verification
in order to check critical properties on this system.

1 Introduction

The design of embedded real-time systems requires specific toolchains to guarantee time constraints
and safe behavior. These tools, and their artifacts, need to be coherently managed all along the
design process and need to address timing constraints and execution semantic in a holistic way
during the system’s modeling, verification, and implementation phases.

This paper presents such an integrated toolchain, named Hippo, that focuses on the generation
of formally verifiable, real-time applications. More precisely, we focus on the solutions adopted in
order to guarantee that the timing constraints expressed in our (formal) model of the system are,
beyond verification with model checking, transcribed and enforced in the executable. This is a
classical problem, widely discussed in the literature. A difficulty often mentioned in this context is
that we should be wary of semantic gap between the models produced by the designer, the models
used for verification, and the executable.

To overcome this pitfall, we propose to build our approach around the formal specification
language Fiacre [Berthomieu et al., 2008a]. This language has several nice features. First, it
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is rich enough to model the behavioral and timing aspects of concurrent systems and it already
comes with abstractions (concurrent processes, ports, etc.) and a rich type system (including
records, arrays, fifo queues, etc.). Moreover, Fiacre has a formal semantics and can be used with
model-checkers in order to check timed and temporal properties on a given model. Finally, we can
reuse several tools that have already been developed around this language, such has code editors
or libraries to perform simulations.

Our approach relies on a dedicated compiler, called frac, that can transform a Fiacre model
into a Time Transition Systems (tts) [Berthomieu et al., 2008a], a low-level representation of the
possible synchronizations and state changes in the system. The tts level plays a role similar to
assembly code, where Fiacre is the high-level language, and the behavior of a Fiacre “program”
is defined as the semantics of its tts.

For the Hippo toolchain, we chose to generate code at the tts level, so the compilation result
can stay very close to the semantics of the initial model. An advantage of this choice is that
we only need to rely on a simple runtime, that is used to ensure that the control flow of the
executable is subsumed into the behavior of the tts model. As a consequence, we guarantee that
the behavior of the generated code, coupled with the Hippo engine, is included in the behavior
of the formal model.

Outline and Contributions of the Paper The remainder of the paper is structured as follows.
Section 2 gives an overview of works relevant to the generation of real-time verifiable executable and
analyze their shortcomings which we want to address in our approach. Our results are organized
along three main parts.

The first part (Section 3) is dedicated to a presentation of Hippo. We give a high-level overview
of the Fiacre specification language and describe how Hippo is obtained from Fiacre with the
addition of tasks and events. We explain how each of the new constructs can be interpreted inside
of Fiacre, which gives a formal definition of these extensions and allow us to apply model-checking
tools on a model.

The second part (Sections 4 and 5) is dedicated to the description of the execution engine and
its performance. We describe the design principles of the Hippo runtime in Section 4. The code
generation and its associated runtime are based on a software design where the control behavior
is implemented synchronously and the execution of the functional processes are managed by an
asynchronous scheduler. An overview of the structure of the code generator is given as well as
the orchestration of the execution engine. A focus is also made on the way scheduling is managed
and on different solutions to take it into consideration during the specification and verification
phases. This section also includes a discussion on the methods used to increase our confidence in
the implementation of the Hippo engine. We report some experimental results on the performance
of the engine in Section 5 by studying time overheads of the engine and the effect of model’s size
on CPU usage.

The last part (Sections 6 and 7) is a detailed description of a complex, real-life case study. We
describe how we deploy Hippo and Fiacre along Gen

oM, a robotics programming framework, and
how we apply it to a complex autonomous outdoor robotic platform. We also report on the results
obtained with online run-time monitoring and offline verification of this autonomous robot.

We make contributions in each of these three parts. At the language level, we describe an
executable specification language that is expressive enough to control complex systems, while
retaining the possibility to perform formal verification on the concurrent and real-time behavior
of a model. At the execution level, we describe a real-time engine that enforces the predictability
of the system and that reduces the semantic gap between a specification and its implementation.
Lastly, in our experiments, we give an example of how to use our toolchain to model and formally
verify a complete and realistic robotic system. More generally, since the tooling developed for
our use case support all the features of Gen

oM, we can apply our approach on all the robotic
experiments built using Gen

oM.
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2 Motivations and Related Work

We now examine the motivation for this work, some of the related and relevant works and how
we bootstrapped the Hippo toolchain.

2.1 A Language-Based Solution for Solving the Semantic Gap Issue

Many high-level languages have been proposed to facilitate the design of real-time embedded
systems. For example, there are generic languages like UML with specialized versions such as
MARTE [Object Management Group, Inc. (OMG), 2009] or some Domain-Specific Languages
such as AADL [Feiler et al., 2006]. The typical use of these languages in a design process allows
the designer to produce a high-level model that is refined to obtain a detailed model of the system’s
behavior. This model is then used as an input for verification activities and then coding activities.
These high-level languages are seldom formally defined and the verification process usually begins
with a translation step in a formalism that allows verification (see Fig. 1). In addition, depending
on the property to be checked (schedulability, liveness, buffer size, etc.), it is possible that different
abstractions may be required, thus producing multiple models.

Model for 
verification

Verification 
results

translator analyser

Model for 
verification

Verification 
results

translator analyser

Model for 
verification

Verification 
results

translator analyser

High-level Model

code

generator

Verification

Code production

Figure 1: A schematic representation of a generic design process for real-time embedded systems.

Another source of murkiness lies in transformation of the model into executable code, where
processes can vary a lot: it can be done entirely manually; semi-automatically (for example
by producing a code skeleton); or fully automatically. For example, the design of an embed-
ded system with AADL can use Cheddar [Singhoff et al., 2004], MAST [Harbour et al., 2001],
Tina [Berthomieu et al., 2004], etc. to verify properties and Ocarina [Lasnier et al., 2009] can
be used to generate code. In this example, there is no guarantee that the execution semantic
considered by these different tools are strictly the same.

The main problem with these approaches is that a significant semantic gap can exist between
verified models and executed ones. This problem comes from the fact that since the behavior of
the high-level model is not formally defined, the transformations cannot be validated and there
is no guarantee that the verified behavior is exactly the one that will be executed. As a matter
of proof, we observe that there are few examples, in the literature, of real and fully functional
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applications where verification and code generation are performed jointly.
Our main motivation in this work is to propose a tool to reduce this semantic gap for real-time

embedded applications and show its applicability on a real case study. In particular, beside a
description of the Hippo framework, we provide a complete and documented example of complex
critical real-time system for which we apply our approach during the design, code generation and
verification stages.

2.2 A Concern for Pragmatism

Another motivation is to follow a practical approach. Obtaining a toolchain that allows modeling,
code generation in a faithful way, and checking formal properties presents many difficulties. One of
these difficulties lies in proving that the multiple transformations preserve semantics. A possible
solution in this case is to write a formally verified translator, using for instance an interactive
theorem prover. We decided not to follow this approach for pragmatic reasons.

Our main goal in this work is to show the feasibility of a toolchain based on Fiacre and Tina
coupled with a study of its applicability on a real case. In order to gain some trust on the quality
of our tools, we choose to use a testing based approach. At the present time, we cannot state that
Hippo produces faithful code, but we describe a method for testing that the behaviors (traces)
observed in a real execution are valid executions in the formal model.

2.3 Related Work

There are many examples of work interested in the generation of executable code (an implemen-
tation) whose behavior is consistent with the model of a system (its specification). The list of
contributions presented in this section is far from exhaustive and we mostly focus on work that ad-
dress formal languages, a time-triggered model of computation, and code generation for embedded
systems.

Synchronous Models A first body of work is related to models based on a logical (and therefore
discrete) notion of time. The most notable example is SCADE, an industrial toolbox based on the
synchronous language Lustre [Halbwachs et al., 1991]. SCADE is perhaps the best-known example
of a software product that proposes a formally defined modeling language; tools to model-check
behavior; and tools to generate faithful code. A dedicated and certified compiler can generate C
or Ada functions from a SCADE sheet which will execute with the same behavior on an embedded
target. On the other hand, the operating assumptions of this approach are quite strict, since they
rely on the synchronous paradigm, which entails a logical abstraction of time.

In the same category, another well-known toolbox is Simulink, developed by Mathworks.
Simulink provides a compiler generating C code for a large number of targets. The code gen-
erator is highly configurable and is mainly based on an engine with periodic tasks. The used
methods do not guarantee a faithful executable but some extensions exist to connect a subset of
Simulink to SCADE [Caspi et al., 2003].

Another approach based on the synchronous paradigm is Prelude [Forget et al., 2009], a data-
flow synchronous language with support for multi-periodic systems. The toolchain for Prelude
include a compiler that generates a set of real-time tasks programmed in C with POSIX. This
framework was extended in [Pagetti et al., 2018] to generate time-predictable code targeting mul-
ticore platforms.

Event-Based Models Other works rely on an event-based model, such as Ptolemy [Liu and
Lee, 2002] developed at UC Berkeley. Ptolemy provides a singular example since its semantics
can support a combination of continuous time and synchronous time events [Lee and Sangiovanni-
Vincentelli, 1996]. Nonetheless, when used as an execution engine, rather than for simulation,
Ptolemy relies on an event-triggered programming model where actions are controlled via dead-
lines and events. This work was the first step in the development of another approach, called
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Ptides [Derler et al., 2008], based on a discrete-event model that offers a formal semantics to
achieve deterministic behavior in both time and value.

Another model sharing similarities with Ptides is Giotto [Henzinger et al., 2003], a language
for modeling control systems with periodic activity and data exchange. The semantic of Giotto
is based on the Logical Execution Time (LET) assumption, and a compiler can generate an
executable that respects this paradigm. The execution engine is based on a simple synchronous
virtual machine [Henzinger and Kirsch, 2007] and guarantees the same behavior of the model and
the execution; however, the language is not formally defined. Our approach is greatly inspired
both by Ptides and Giotto for the choice of a “time-deterministic” model of computation.

A similar motivation can also be found in the design choices behind OASIS [Louise et al., 2011],
a framework provided by the CEA LIST to generate an executable based on a time-triggered ap-
proach. The temporal information in an OASIS model is directly specified in the code using a
dedicated language, called ψC. This language introduces synchronization instants that need to
be checked during the execution while execution flow is controlled by an automata. A specific
engine is implemented to perform the execution of the automata and to guarantee the temporal
constraints, whereas concurrency between tasks is delegated to the operating system. The design
principles of OASIS are more focused on dependability and certification issues, rather than on
formal verification of properties related to the system’s behavior. Nonetheless, this work is inter-
esting in our context since it shows that it is possible to implement a very efficient and portable
execution layer based on a time-triggered approach, with very low latency. We apply some of the
same ideas in the implementation of Hippo.

Process Algebraic Approaches Another interesting set of work is related to the use of “pro-
cess algebra” for the specification of systems. Indeed, part of the semantics of Fiacre can be
traced back to the LCS language of Berthomieu [Berthomieu and Le Sergent, 1994] (one of the
designers of Fiacre). LCS is a high level, asynchronous parallel programming language based
upon the behavioral paradigms introduced by CSP and CCS. Fiacre retains some characteristics
of LCS, such as a component-based design; a very versatile type system; and the use of “channel-
based” synchronization primitives. On the other hand, Fiacre descriptions may be constrained
in order to keep the state space of systems finite (for the purposes of model-checking). Another
major addition is the possibility to define real-time constraints on the synchronization between
processes, using a dense time model, as well as time-outs on events.

Another ancestor in the genealogy of Fiacre is LOTOS [Garavel et al., 2017], a formal speci-
fication language that includes concurrent processes, for describing the control part of distributed
systems, together with support for rich data structures. A key difference with our approach is that
LOTOS does not provide support for expressing timing constraints. Nonetheless, in the absence
of time, it is possible to compile a Fiacre specification into LOTOS using a compiler called flac.
LOTOS models can be formally verified using the CADP toolbox, which also includes the EX-
EC/CÆSAR tool for generating executable C code [Garavel et al., 2001]. This work was extended
in [Evrard and Lang, 2015] to support the generation of systems of distributed tasks, able to syn-
chronize using a multiway rendezvous. Our current implementation of Hippo does not support
distribution of code; hence we do not share the same concerns regarding the implementation of
synchronization in our engine.

Similarly to Fiacre, the BIP framework [Sifakis, 2005] developed at Verimag is a formal
language, and a process algebra, used as the input language in a formal verification tool (RT-
DFinder). This framework is particularly interesting in our context since it provides a compiler
from BIP specifications into the BIP Execution Engine. The BIP language offers a component-
based semantic to design concurrent systems that communicate via ports. A model in BIP can be
compiled to generate an executable in C++ which, together with the execution engine, enforces real-
time constraints. While the initial BIP implementation did not explicitly take time into account,
a distributed and real-time implementation of BIP was recently proposed [Dellabani, 2018]. The
work presented in this article uses the same approach than BIP but exploiting a different set of
formal verification tools (Fiacre and Tina). Moreover, the runtime implementation of Hippo
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guarantees a synchronous behavior coupled with an asynchronous scheduling in order to facilitate
the verification, which is not the case of BIP.

Automata-Based Models Another related work is CPAL (Cyber-Physical Action Language),
a language to model, simulate, verify and program Cyber-Physical Systems [Navet et al., 2016].
CPAL is jointly developed at the University of Luxembourg and by the company RTaW since 2011.
This language is based on synchronous programming approach and time-triggered languages such
as Giotto. The syntax of CPAL provides concepts specific to embedded systems with a formal
execution semantics. CPAL also provides a faithful real-time execution engine for embedded
systems. To our knowledge, the CPAL language is not formally defined, even if the processes
are Finite State Machines, and no tools are available to model-check it. However, the proposed
scheduling analysis approach is a source of inspiration for Hippo and future extensions. Similarly,
the implementation choices for simulation and execution offer interesting leads for future work.

Some studies have also been carried to generate code from timed automata (TA). For example,
Amnell et al. in [Amnell et al., 2002] proposes a method for generating C code from TA models
extended with a notion of real-time tasks that allow them to check the behavior of a model and its
schedulability. In the same context, Kristensen et al. [Kristensen et al., 2017] proposed a tool to
generate executable code from a deterministic semantic simplification of a given real-time model
in Uppaal. To our knowledge, these works have never been integrated into a design process, nor
coupled with high-level languages.

2.4 Hippo Toolchain

Our work takes place in the context of the Tina toolbox and the Fiacre modeling language.
Tina [Berthomieu et al., 2004] is a toolbox for the editing and analysis of Petri Nets, Time Petri
Nets (TPN) and an extension of Time Petri Nets with data handling and priorities called Time
Transition Systems (tts).

A tts is a generalization of a TPN with data variables. Data are managed with expressions
that may be associated with transitions: a guard predicate pre and an action function act. These
expressions may refer to a fixed set of variables that form the data set of the tts. For a transition
t with guards pre t and act t, we have that t is enabled in a tts if there are both: (1) enough
tokens in the places of its pre-condition; and (2) the predicate pre t is true. When t is fired,
the marking of the underlying Petri net is changed and the data set is updated by executing the
action guard act t .

Fiacre [Berthomieu et al., 2008a] is a mature language, with a long history of deployment
in academic and industrial projects. It was designed as a pivot language and an interoperability
format (an intermediate format) to simplify the connection between high-level modeling languages,
such as AADL or SysML, and model-checking tools inside the Topcased [Berthomieu et al., 2008b]
environment. The main purpose of Fiacre is to allow the modeling of the behavioral and timing
aspects of the system for formal verification.

Generally speaking, the tool we propose uses Fiacre as an input language but is based on
tts for its semantics. Our goal is that every trace played by the engine should be a trace of its
tts model. Also, like in tts, we ensure the atomicity of operations: it is not possible to observe a
state during the firing of a transition. Coupled with the tools for translating high-level languages
to Fiacre, it is thus possible to obtain a complete chain allowing to check the behavior of the
system on a model where the semantic gap with the execution is lessened (see Fig. 2).

3 Fiacre Extensions

We briefly present the Fiacre language, the proposed H-Fiacre extensions and their semantics.
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Figure 2: A schematic representation of the Hippo toolchain.

3.1 The Fiacre Language

A presentation of the Fiacre language is available in [Berthomieu et al., 2020]. In order to
illustrate its main elements (this presentation is not exhaustive and does not show, for example,
the subset of Fiacre used to define functions, akin to a first-order functional language), an
example is given in Listing 1. This example, based on [Carruth and Misra, 1996], is taken from
the official documentation and models the Fischer protocol which ensures mutual exclusion among
N processes using real-time clocks and a shared variable lock.

Fiacre is a component-based language of concurrent systems. We briefly describe the features
of Fiacre by looking at the code in Listing 1, which defines a system with a single component
(Main) built from two instances of the same process (Proc), with different id but sharing a common
lock. A Fiacre specification is composed of parallel processes (line 3) communicating via ports
and/or shared variables (lock line 3). A process describes the behavior of sequential components
and is defined by a set of control states (line 4), each associated with an expression built from:
classical imperative constructs such as assignments (line 10), conditionals (line 16), while loops,
pattern matching, and sequential compositions; synchronization on data-event ports (with n-way
synchronizations, n ≥ 2, and communication of values); and jumps to the next state (lines 7, 11,
14, etc.). Processes can be composed together into components (lines 25–30), which are also a
unit for defining communication ports, priorities between event, and shared variables.

Timing constraints in Fiacre are expressed using its wait statement (lines 9 and 13) with
an open or closed time interval where bound values are constants in Q+ (... is used to denoted
infinity). It means that the control state has to be delayed for a duration within the interval before
forwarding.

Priorities can be added between communication events to specify that one event should always
occur before another if they happen at the same time.

3.2 H-Fiacre: an Extension of Fiacre with Tasks and Events

We want to use Fiacre not only to do verification, but also to generate executable code. Thus,
we extend the syntax of Fiacre to take into account tasks and events; this extension is called
H-Fiacre. These new operators allow to express, in the model, when to start new computations
and how to react to external events.

Functional codes (i.e. controller, filter, position estimation, etc.) are embedded into functions
that we call operations. An operation is basically a C function with input and output data. These
operations are called from a H-Fiacre model through a task. Each operation has its own task
and is scheduled by the operating system (see Section 4 for more details). So, H-Fiacre extends
the original language with operators for declaring task activation and termination.

Aside from tasks, we also extend the syntax to declare external events, which model events
originating from the environment of the system. This is useful, for example, to define how the
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1 type tyEvt i s record time : int , id : nat end
2 /* Process */
3 process Proc (pid : id, &lock : lock) i s
4 states WaitLock , WaitLock2 , SetLock , TestLock , CriticalSection
5 from WaitLock
6 on (lock = 0);
7 to WaitLock2
8 from WaitLock2
9 wait [0, 2];

10 lock := pid;
11 to SetLock
12 from SetLock
13 wait ]2, ...[;
14 to TestLock
15 from TestLock
16 i f lock = pid then
17 to CriticalSection
18 else
19 to WaitLock
20 end
21 from CriticalSection
22 lock := 0;
23 to WaitLock
24 /* Main component */
25 component Main i s
26 var lock : lock := 0
27 par
28 Proc (1, &lock)
29 || Proc (2, &lock)
30 end

Listing 1: The Fischer protocol example in Fiacre.

system should react when an external sensor sends a message or when a signal is emitted from the
operating system or the task execution space.

Overall, we extend Fiacre with four new statements: task, start, sync, and event.

3.2.1 External Task Declaration (task)

Tasks are always declared at top-level, like Fiacre functions, processes and components. The
syntax for declaring a task is:

task t (a1 : ty1 , ... , an : tyn) : rty i s c_foo

This declares a task, with local name t, corresponding to an operation coded by the C function
identified as c foo. This identifier is useful during the code generation, when we actually need to
link the model with external code. The task in Hippo and the C function should both have the
same type; the type of functions with n parameters, of respective types ty1, . . . , tyn, and return
type rty.

Task activation (start). A task can be activated using the start statement, with the name of
the task and one expression for each of the required parameters

start t (p1, ..., pn)

where p1, . . . , pn are the parameters of type ty1, . . . , tyn passed to the function.

Task termination (sync). We can synchronize on the termination of the task t and retrieve
the returned value using a sync statement, as follows:

sync t ret

The second parameter of a sync statement should be a variable of type rty. When the
statement is executed, ret is assigned to the value returned by the “call” to c foo. Since we have
records with named fields in Fiacre (a data type similar to struct in C) it is easy to define one
to return multiple values.
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The start and sync statements are blocking and immediate, i.e., the transitions that represent
start or sync need to be fired as soon as they are enabled. A consequence is that the task
cannot be reentrant. Moreover, due to the synchronous implementation of the Hippo runtime,
the synchronization of a termination of a task is only done at a global clock tick (see Section 3.3).

3.2.2 External Event Declaration (event)

An external event is used to model a signal that originates from outside the engine space. An
event e can possibly carry a tuple of values and is defined using a top-level declaration as follows:

event e : ty1 # ... # tyn i s c_event

where ty1, ..., tyn are the types of data bound to the event (or eventually sync if there is no data)
and c event is a symbol matching a C function that catches the event and returns a structured
data of type ty1, . . . , tyn. The # notation is used to be consistent with Fiacre channels where a
series of types separated by # are associated with ports transferring several values simultaneously.

To receive and match the values retrieved during a synchronization with an external event, we
reuse the syntax for a reception on a regular Fiacre channel:

e ? d1, d2, ..., dn;

in which d1,...,dn are variables (or possibly patterns) that are assigned with the data retrieved
from e.

For the same reason than with tasks, due to the synchronous implementation of the Hippo
runtime (see Section 3.3), synchronization on events only occurs at a global clock tick. Likewise,
reception on an external event is both blocking and immediate.

3.2.3 Restriction of H-Fiacre

H-Fiacre does not impose any restrictions on the usage of Fiacre language, except on delays.
A first restriction is that we forbid left-open intervals in a wait statement. Moreover, the engine
is deterministic and imposes to react as soon as possible. It means that a time interval [a,b] will
always “expires” after duration a. That is why we should restrict to punctual time constraints, of
the form wait [a,a].

3.2.4 A Toy Example in H-Fiacre

Listing 2 gives a simple example that illustrates the use of external events and tasks. The
purpose of the process double event is to detect when two occurrences of event e occur less than
200 units of time apart. This can be useful, for example, to implement an anti-rebound function
on a safety critical control panel. This event is declared at line 4 and is bound to the C function
c click, which returns a structure with two fields: time and id (line 1).

Task t is defined at line 5 with a two-element table as a parameter. The C function bound to
t is called c print and returns an integer.

The process starts in state wait first (the first state in its declaration) by waiting for event
e, without any constraints on the time that it should wait (line 11). If and when the event occurs,
the process transitions to state wait second where one of two things can happen (declared using a
select statement that models a non-deterministic choice between several continuations, separated
by []). Either 200 units of time elapse without any event occurring (line 15), or a second e occurs
(line 17).

We assume that function c click returns the date at which the click event occurs (in field time

of the record of type tyEvt). Therefore, if we reach state start print then we have recorded a
pair of events in variable tmp (lines 11 and 17). This information can be used in function c print

to log the exact delay between the two occurrences of e (line 21). Then the system waits until the
end of task t (line 24) before restarting with its initial behavior.
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1 type tyEvt i s record time : int , id : nat end
2 type tyDblEvt i s array 2 of tyEvt
3

4 event e : tyEvt i s c_click
5 task t (tyDblEvt) : nat i s c_print
6

7 process double_event i s
8 states wait_first , wait_second , start_print , wait_print
9 var tmp : tyDblEvt := [{time=0,id=0}, {time=0,id=0}], ret : nat := 0

10 from wait_first
11 e?tmp [0]; /* wait first event , assign value to tmp[0] */
12 to wait_second
13 from wait_second
14 select
15 wait [200 ,200];
16 to wait_first
17 []e?tmp [1]; /* wait second event , assign value to tmp[1] */
18 to start_print
19 end
20 from start_print
21 start t (tmp); /* start task t */
22 to wait_print
23 from wait_print
24 sync t ret; /* wait end of task t */
25 tmp := [{time=0,id=0}, {time=0,id=0}];
26 to wait_first

Listing 2: An example of model in H-Fiacre: a double events detection.

3.3 Semantic of a Task and an Event

The semantic of our new statements can be formally expressed in Fiacre, and thus defines a
transformation to rewrite a H-Fiacre specification into a “pure” Fiacre model.

This rewriting process consists in replacing tasks and events with concurrent processes that
model their behavior. Synchronization methods on task activation and termination (start and
sync) as well as event arrival are modeled by ports. These ports then carry the data exchanged
between the Fiacre model and external tasks and events.

3.3.1 Semantic of an External Task

Listing 3 gives the template for the translation into a plain Fiacre model of a H-Fiacre task
declared as task t (p:tyIn):tyOut is c foo. We suppose that the task t is called n times in
the model (i.e. the statements start, respectively sync, are used n times for the task t) then we
use an indice i to distinguish these calls.

A task t is modeled by a new Fiacre process. For each statements start t (p), respectively
sync t ret, in the H-Fiacre model, a port t activate i is created, resp. t terminated i (see
lines 3 and 4). They are used to model the activation, resp. the termination, of the task and to
pass parameters, resp. the return value. The ith statement start t (p) in the H-Fiacre model
is replaced by a port emission t activate i!p and sync t ret with t terminated i?ret.

The behavior of the task is modeled by different states that express the life-cycle of a task. A
state (line 8) synchronizes the task with its activation through one port t activate i and copies
the parameter values into a local variable param. The select statement ensures that at most one
instance of the task can run at any time.

The running state (line 15) calls the functional C code to compute the return value. Note that
for the Fiacre model, the call to a function is assumed to be in null time, so the execution time
is represented by an interval of numbers (line 17) between its best and worst-case response time.
In order to model the real behavior of a task, it is necessary to model the scheduler of the system.
Here, we do not model this scheduler and instead represent it by the best and worst-case response
times (and not the execution time) (see next Section for more details).

A terminating state (line 23) signals the end of the task and returns the result through port.
An additional state (line 19) is added to represent the time-triggered behavior of the Hippo

runtime (see Section 4). The termination signals, t terminated i (lines 23-27), need to be syn-
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chronized with the clock of the Hippo runtime. To do this, a synchronization is added through
the port t SyncGlobal (line 20). The global clock process is described in the next section.

1 process p_task_t [
2 t_SyncGlobal : none,
3 t_activate_1 , t_activate_2 , ..., t_activate_n : tyIn ,
4 t_terminated_1 , t_activate_2 , ... t_activate_n : tyOut
5 ] i s
6 states waiting , running , synchronizing , terminating
7 var param : tyIn , ret : tyOut
8 from waiting
9 select

10 t_activate_1?param; to running
11 [] t_activate_2?param; to running
12 ...
13 [] t_activate_n?param; to running
14 end
15 from running
16 ret := c_foo(param); /* The computational function is called */
17 wait[$bcrt , $wcrt]; /* simulate the WCRT */
18 to synchronizing
19 from synchronizing
20 t_SyncGlobal; /* Synchronization with the global tick */
21 to terminating
22 from terminating
23 select /* The return value are written */
24 t_terminated_1! ret; to waiting
25 [] t_terminated_2 ! ret; to waiting
26 ...
27 [] t_terminated_n ! ret; to waiting
28 end

Listing 3: Template to implement a H-Fiacre task ”task t (p:tyIn):tyOut is c foo” in
Fiacre.

3.3.2 Global Clock Process

Listing 4 shows the process to synchronize all tasks of a H-Fiacre model on a global clock. We
assume that the set of tasks is t1, . . . , tm. Each task has its own synchronization port, for
example t1 SyncGlobal for task t1. The port nop is introduced to allow the clock to progress if
no synchronization is required and priorities are added (line 16) between nop and all other ports
to assure that task synchronization always happens before nop. This model guarantees that the
termination of a task is only signaled at a tick.

1 process global_clock [
2 t1_SyncGlobal , t2_SyncGlobal , ..., tm_SyncGlobal , nop : none
3 ] i s
4 states timer , tick
5 from timer
6 wait[1,1];
7 to tick
8 from tick
9 select

10 nop; to timer
11 [] t1_SyncGlobal; to tick
12 ...
13 [] tm_SyncGlobal; to tick
14 end
15 ...
16 priority
17 t1_SyncGlobal > nop
18 ...
19 tm_SyncGlobal > nop

Listing 4: Global clock template to synchronize a set of tasks.
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3.3.3 Semantics for an External Event

The Listing 5 shows the formal definition in Fiacre for the behavior of an event declared as event
e : tyEvt is c foo. This rewriting is very close to that of a task. An event is synchronized
to the global clock (line 12) and uses the port e happened i (indice i is used to denote multiple
synchronization points) to synchronize the occurrence of the event with the main behavior (lines 15
to 20).

Note that an event in H-Fiacre is similar to a port in Fiacre and that the syntax of the
statement e?d1, ..., dn to model an event is exactly the same as a synchronization with a port.

The real difficulty with modeling an event lies in modeling a realistic timed pattern of the
event occurrence, e.g., is it a periodic event or a sporadic event with an inter-arrival time? This
is a common problem in modeling and is not addressed here. Several studies [Tanguy et al., 2014,
Abdellatif et al., 2013] tackle this problem and can be used as a basis to extend H-Fiacre in
the future. For the example exposed in Listing 5, we suppose that an event can rehappen at the
earliest after 30 units of time and at worst 1000 units.

1 process p_event_e [
2 e_SyncGlobal : none,
3 e_happened_1 , e_happened_2 , ..., e_happened_n : tyEvt
4 ] i s
5 states waiting , synchronizing , posting
6 var tmp : tyEvt
7 from waiting
8 wait [30, 1000]; /* timed pattern to produce event */
9 tmp := any;

10 to synchronizing
11 from synchronizing
12 e_SyncGlobal;
13 to posting
14 from posting
15 select
16 e_happened_0!tmp; to waiting
17 [] e_happened_1!tmp; to waiting
18 ...
19 [] e_happened_n!tmp; to waiting
20 end

Listing 5: Template to implemente a H-Fiacre event ”event e : tyEvt is c foo” in Fiacre.

4 Execution Engine

The execution engine is a critical component in our approach. We present its principle and the
specific code which is generated for a particular H-Fiacre model to run with Hippo. We also
describe the implementation of the engine and its threads, as well as the underlying scheduling
hypothesis. Some experimental measures of Hippo performance are given in the next Section.

4.1 Principles of the Execution Engine

Hippo tackles the problem of generating code whose behavior is consistent with a model of the
system, meaning that every sequence of observable events during an execution should correspond
to an acceptable sequence of events (a trace) for the model. For a Hippo execution, these events
are transitions fired and time delays at the tts level. It means that a H-Fiacre model is compiled
into a tts extended with task and event manager and the engine executes the tts.

The central idea of the execution engine is to separate the execution of the tts from the
execution of functional processes, i.e. tasks and events. The control flow of the tasks is caught
by the operating system while the tts execution is done by a time-triggered engine. This means
that the Hippo runtime is based on a globally asynchronous and locally synchronous approach
and that the tts evolves via a sequence of atomic actions, indexed by a global logical clock, while
the functional part is asynchronously executed inside concurrent tasks. Hence we can identify two
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separate and distinct execution spaces: (1) the tts engine space, devoted to actions that change
the state of the H-Fiacre model; and (2) the task execution space.

We depict this model in Fig. 3, where we make explicit that events related to the tts engine are
always synchronized on the same clock. At each tick, actions in the tts are performed until a time
blocking situation or an external event waiting. In our context, time blocking events correspond
to situations in which the system has to wait for an internal event, coming from the tts engine
space. On the opposite, external events originate from the task space, such as events generated by
a sensor or the termination of a task for instance. Note that, at certain global logical clock ticks,
the tts engine does nothing. This is simply due to the timed events that have not yet expired,
e.g., the transition in the tts that cannot be fired due to its clock race condition.

tick

TTS Engine

Task execution

time
logical task activation logical task termination

Figure 3: A schematic representation of the execution control flow of Hippo.

In Fig. 3, we also make obvious the fact that tasks can be executed concurrently (or even on
separate processors). Actually, we are not concerned with the way execution threads in the task
space are managed by the underlying operating system scheduler. This is irrelevant from the tts
engine point of view, since only the activation dates of the threads are controlled by the runtime.
In the same way, we only observe the termination of a task at a behavior engine tick, even if the
task terminates earlier from the operating system point of view.

To summarize, the Hippo runtime implements an engine that performs actions on the tts
model in a synchronous way, whereas the flow control of tasks is delegated to the operating
systems in an asynchronous way. This clear “separation of concerns” helps us enforce a time
deterministic model of computation.

4.2 Code Generator

The code generator produces C code from a H-Fiacre specification. During this step the H-
Fiacre is transformed into tts that preserves the semantic of the original model. Basically, the
tts is obtained after type checking, propagation of constants, and after all possible synchronization
patterns being statically resolved.

In practice, the code generator is written in Standard ML and shares most of its code (and
more than 90% of the front-end code) with the tool used to compile Fiacre specification into a
tts suitable for model-checking. The main difference between the “verification” and the “runtime
execution” tts formats comes from the presence of additional extern code in H-Fiacre (such as
the code of external tasks).

In Hippo, two types of C files are used to code a tts: a file that describes the discrete state
and the transitions of the system (which is actually a Time Petri net); and a source file that
contains a set of functions describing the guards (conditions that need to be true) and actions
(updates which are applied on the variables) for all the transitions.
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Basically, Hippo executes a binary compiled version of the “runtime” tts obtained from the
model and extended with the C code from the operations and the external events handlers (see
Fig. 4). The engine is a lightweight middleware that schedules operations in the tts engine space.
As a result, we obtain a self-contained executable file that can be optimized depending on the
target architecture and operating system.

POSIX Xenomai

Fiacre 
Model

Exec

frac-Hippo

structures 
of the tts

data and guard 
functions

hippo library

functional 
treatments

gcc
C files

programmer

Figure 4: Tools for code generation and compilation.

For the toy example presented in Section 3.2.4, the tts is composed of 4 places, 5 transitions,
2 external elements (1 task and 1 event), 4 guard functions and 4 update functions. Two specific
data structures have also been generated to manage tyEvt and tyDblEvt types.

4.3 Engine Implementation

The implementation of the Hippo runtime is presently based on Linux (ideally with PRE-
EMPT RT) and uses the POSIX services of the operating system with SCHED FIFO scheduler
(similar to a fixed priority scheduler). However, several design choices were made to easily port the
runtime to different operating systems. In particular, the used native services were deliberately
limited and general to ensure that they would be available on the majority of existing real-time
operating systems (RTOS), e.g., management services for tasks, mutexes and alarms. Currently,
a beta version is also available for Xenomai 3.0.6.

All data are static, meaning no memory allocation occurs during execution. This design choice
was made to reduce execution time and to keep the opportunity to port the runtime on RTOS for
microcontroller, such as FreeRTOS or RTOS from the AUTOSAR family.

All tasks and events have their own thread which is suspended until the tts engine resumes
them. The data used as parameter for task are read at start and data produced by a task are
written when the sync call is performed. Hence, a copy of the data is done and the execution
is only on a local data. This mechanism guarantees the reentrancy of the task execution. Note
that it does not assure reentrancy if the functions executed by the thread are not reentrant. This
execution model is similar to the Acquisition Execution Restitution (AER) proposed in [Durrieu
et al., 2014] where execution is decoupled from data access.
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Note that the data that are only used at the functional level, i.e. data that are not used in
the behavior model, such as the output value of a control loop computed by an operation, are not
represented in the H-Fiacre model. This means that it is up to the programmer to plan the data
exchanges at the level of the operations. In particular, the designer has to ensure that functions
are thread-safe and that the concurrent access to shared data is correct and consistent.

The tts engine has its own thread, with the highest priority. A periodic alarm updates logical
time of the engine and calls the tts engine if a task terminates, an event arrives, or a waiting
delay expires. During a run of the engine, the tts is updated until a blocking state (due to a delay
or the waiting of an event) is reached. The state of the tts is updated using the action functions
(for the data part) and the firing rules of the associated Time Petri Net (for the discrete part).

The source code of Hippo and all scripts for tests and experiments are available on GitLab at
https://gitlab.laas.fr/pehladik/hippo.

4.4 Scheduling Model

The scheduling of the tasks is not represented in a H-Fiacre model and is delegated to the engine.
The current implementation uses the SCHED FIFO scheduler of Linux and all threads that man-
aged tasks have the same priority (threads for events have a highest priority). The SCHED FIFO
scheduler is equivalent to a multiprocessor, global, fixed-priorities scheduling algorithm with a
FIFO rule for tasks with the same priority.

Formally verifying the scheduling behavior of the system could be tedious, because of the diffi-
culty of effectively modeling preemptive systems using a realtime model-checker. If the scheduler
is non-preemptive, it is relatively simple to explicitly model the scheduler in Fiacre. In A we
give an example of model for the FIFO scheduler used in the actual implementation.

In the case of a preemptive scheduler, different approaches are possible. A first one is to develop
a model-specific scheduling analysis to compute the best and worst-case response time and to use
them, as mentioned in Section 3.3.1, in the Fiacre model to proceed to the verification. By
definition, this response time takes into account the scheduling aftermaths. The difficulty with
this method is to have a tight method to compute response times. By default, it is possible to
estimate an upper bound of the response time using response time analysis methods assuming that
all tasks are independent. This default calculation is particularly pessimistic and it is preferable
to use scheduling analysis with more advanced task models such as transactions, DAG, etc.

Another approach to consider for scheduling is to combine activation patterns with scheduling
analysis. This method is used to restrict the behavior of tasks to models for which scheduling
analysis methods exist. For example, the Ravenscar profile [Burns, 1999] defined this kind of
patterns. The Logical Execution Time (LET) assumption introduced with Giotto [Henzinger
et al., 2003] is also based on the same idea. To illustrate our point, we will examine the LET
approach in more detail.

Using LET, the system designer specifies the logical execution time of each task, that is, the
duration between the instant at which the task is activated and the instant at which the task
provides its outputs. When the LET expires, the outputs are made visible for other tasks. Fig. 5
shows examples of LET for three tasks. Each task has its own LET and can be executed at
anytime during this interval. The schedulability analysis for this model can be done by a simple
utilization test [Henzinger et al., 2002, Hladik, 2018].

To model any system with the LET assumption in H-Fiacre, the designer needs to follow a
pattern, especially to call tasks. Listing 6 shows the pattern to use start and sync under LET.
The input data and activation of the task t is triggered at line 5. The LET assumption is modeled
by the value of the wait statement in line 8 (this value is the duration of the LET delay). The
result of the operation is read in line 11 and its value captured in res. In Fiacre, a value is
only updated during a transition, so that the value of res is made visible, i.e., the outputs are
provided, only when the transition to next (line 12) is fired. So, by adding this pattern for each
task activation and termination, a LET scheduling analysis can be done.

Note that the hypothesis of a multiprocessor architecture (or not) has no impact on the ap-
proach. From an execution point of view, this is completely transparent because the scheduling is
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Figure 5: Timing diagram for three tasks under the LET assumption.

1 task t (a1 : ty1) : rty i s c_foo
2 [...]
3 process pExample i s
4 [...]
5 start t (argOp);/* activate the task */
6 to wait_deadline
7 from wait_deadline
8 wait[$LET , $LET]; /* LET delay */
9 to read_result

10 from read_result
11 sync t res; /* synchronize the end of the task with the LET delay */
12 to next
13 [...]

Listing 6: Pattern to model a task t with a Logical Execution Time.

entirely delegated to the operating system. However, as we will see in the performance evaluation
part (see Section 5), it would be possible to optimize the execution of the engine by dedicating a
core to it. As far as verification is concerned, either the approach abstracts the architecture (by
delegating the scheduling analysis to an estimation of the response times), which also makes the
multiprocessor assumption irrelevant, or it must be considered in the scheduler model (which is
done for example in A) at the risk of increasing the state space explosion.

4.5 Implementation Validation

The translation from H-Fiacre to the C code executable has not been formally proven or certified
yet. However, to increase our confidence in our implementation, we paid particular attention to the
quality and readability of the engine code. More importantly, we wrote automatic tests to compare
traces obtained from actual Hippo executions with the traces of the formal model. To do this,
we use the tool play from the Tina toolbox which is a stepper simulator that allows to simulate
a tts model. In this context, a simulation is a series of states separated by delay transitions or
discrete transitions. A textual format scn exists to record the transitions of a simulation. Our
tests consist in checking that a trace in scn format generated by Hippo can also be observed in the
Fiacre model simulated with play. So, as shown in the Fig. 6, we can generate a trace in a scn

format with Hippo and play this trace with the tts model generated from the same H-Fiacre
model. A test is valid when the trace can be simulated by the tts, otherwise the analyser returns
the name of the first conflicting transition.

To test our implementation, we use multiple models generated from our use cases or selected
from our catalogue of Fiacre and Tina examples. Twelve tests (of 30 to 200 lines models) were
systematically applied to each code evolution, more than 100 generated models were tested and
four complete use cases were released. The current code is 100% reliable on the basis of tests we
have run. All tests are available on the Gitlab repository.
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Figure 6: Scheme of the acceptance test for traces.

4.6 Semantic Distance Between the Execution and Verification Models

Our verification strategy relies on an interpretation of H-Fiacre into Fiacre, see Fig. 2. The
value of the properties that we check on the formal model also depend on the faithfulness of
our execution engine; meaning that execution traces observed in the execution should have an
equivalent in the formal model. (This is the purpose of the property-based testing approach
described in the previous section.) As a consequence, we over-approximate the set of possible
executions in the system. The same applies for the set of reachable states.

In this work—and more precisely in our case studies—we rather rely on a complementary
approach, where we synthesize both the execution and verification models (the implementation and
the specification) from the same high-level description of the system. This solution fits nicely with
our pragmatic approach, since it is easier in this case to tailor the model generation framework. For
instance, one can imagine generating more constrained models for the environment, by restricting
some classes of failures, or by abstracting whole parts of a system. In this case, we use the same
interpretation of H-Fiacre constructs described in Section 3.3, and therefore still deal with an
over-approximation of the behavior.

Our choice to merely over-approximate the behavior has a direct impact on the usefulness of
verification. In practice, it means that we can only utilize verification to check safety properties:
that the system cannot reach an unsafe state, like with a mutual-exclusion property for example.
Likewise, with timed properties, we can only rely on the computation of upper-bounds for worst-
case execution (or traversal) times. These are the kind of properties that we check in our use case
(see Section 6).

The distance between the specification and implementation models is actually not that big
in practice. One main difference is the fact that our execution engine has a deterministic firing
policy: “transitions” are totally ordered and we always fire the “smallest transition” first. As a
result, a deadlock in the implementation model should always be witnessed in the specification.
On the opposite, the specification model is non-deterministic. This discrepancy could be solved
by adding priorities, but this could have an adverse effect on the state explosion problem. A more
subtle difference lies in the interpretation of H-Fiacre tasks (see Listing 3) and the fact that our
engine will always react “as soon as possible” (see the discussion in Section 3.2.3). A possible
choice to reduce the semantic gap in this case could be to fix the duration of each task (a task
execution time will always be equal to its worst-case), but this may be too restrictive.

Another legitimate question is the level of trust that can be placed on our toolchain. At present,
it is not possible to state that Hippo produces faithful code, meaning that the specification and the
implementation models have equivalent observational semantics. To prove such result with a very
high degree of confidence would require defining the operational semantics of our execution engine
very precisely; with the same level of details than when proving the correctness of a compiler. We
would also need to rewrite each language transformation using a formal framework and to prove
the correctness of each transformation. This could be the subject of future works but it is not
part of our priorities yet. Indeed, these tasks are very time-consuming and their results are often
“brittle”, meaning that proofs can break and are not easy to adapt when we decide to change
some aspects of the semantics or the encodings.

17



A mitigating solution would be to extend the tts model with support for tasks and events
(resulting in a H-tts) and to prove a full abstraction result between tts and H-tts, which should
be easier. We could also adapt our model-checker to directly accept H-tts models, internalizing
the behavior of the execution engine into the semantics of the model. In practice, our approach
is closer in spirit to that of tools qualification. As such, it is still useful to catch specification
problems early in the design of a system.

5 Empirical Analysis of the Hippo Engine

This section presents the performance of Hippo for different size models. We have provided two
kinds of measurements, which are the CPU usage and the time spent in the Hippo engine. The
experiments were performed on a computer with an Intel i5-8265U (1.6 GHz) processor, with eight
cores and 8GB of RAM memory. The system runs the Ubuntu 18.04 distribution, using the
PREEMPT RT patched kernel 5.4.47-rt28. In addition, the highest priority is given to the Hippo
engine process, using the POSIX methods of sched.h. The measurements were carried out using
LTTng, an open source tracing framework for Linux [The LTTng Project].

5.1 Benchmark

We propose a set of synthetic benchmarks used in our experiments (an example of a more realistic
application is given in Section 6.) We should use models of the form Pm,n built as the composition
of m periodic processes. Each process calls its own and private task n times in a period. In
our case, the tasks are C functions that compute some unoptimized and arithmetical operations.
Listing 7 shows an example of a periodic process, p0, with two task calls (n = 2). After being
activated (line 15) by its periodic clock (lines 3 to 10), process p0 calls its task (t0) a first time
(line 18), then waits for the return value (line 20). The process returns to its idle state after calling
t0 a second time. Note that the number of places and transitions in the tts of a benchmark Pm,n

is proportional to m and n.

1 task t0 (a1 : ty1) : rty i s c_t0
2 [...]
3 process periodic_clock_0 [S_1 : none] i s
4 states a, b, o
5 from o
6 wait [0,0]; to a /* offset */
7 from a
8 wait [3,3]; to b /* period */
9 from b

10 S_1; to a
11

12 process p0 [S_1 : none] i s
13 states a, b, c, d, e
14 var ret : nat := 0
15 from a
16 S_1; to b
17 from b
18 start t0 (1); to c /* start task t1*/
19 from c
20 sync t0 ret; to d /* wait end of task t1 */
21 from d
22 start t0 (1); to e
23 from e
24 sync t0 ret; to a

Listing 7: Example of a p0 periodic process with two task calls

5.2 CPU Usage

This section reports on the CPU usage of the Hippo engine. The CPU usage is defined as the rate
of CPU time spent in the Hippo engine by the total time of an execution. For a Hippo execution
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with a tick frequency Ftick and a given function R[i] that returns the response time of the tts
engine, i.e. the part of the Hippo engine that executes the tts, activated at the ith tick (i ∈ 1..n),
we define the CPU usage as :

U =
Ftick

n

n∑
i=0

R[i]

For the experiment we have run Hippo models with 2 tasks per process, as described previously.
Hippo engine’s frequency is set to 1 kHz, so every 1 ms Hippo updates the running model and
goes on.

For an example that corresponds to a realistic application with 20 processes (equivalent to 140
transitions in the tts model), we measure a CPU charge (on one processor) of 13.2%.

More extensive experiments are shown in Fig. 7(a). We can see, that the CPU usage increases
linearly with the number of tasks (number of transitions). This is easily explained by the fact that
the engine has to handle a larger number of transitions at each execution. A second experiment was
conducted by significantly increasing the number of processes (see Fig. 7(b)). For this experiment,
the Turbo Boost of the hardware architecture was used, bringing the processor frequency to
3.9 GHz. We observe the same behavior than before, but with greater variability.

These experiments show that we can envisage running Hippo with hundreds of parallel tasks
on a modern embedded architecture. The main limitation is the processing speed. On the other
hand, we can predict the expected performance based on the size (in number of transitions) of the
tts and the charge of the tasks.

(a) Without TurboBoost (b) With TurboBoost

Figure 7: CPU usage as a function of number of Hippo tasks.

5.3 Time Overheads of the tts Engine

For our next experiment, we look at the “time overhead” of Hippo by studying the time spent in
one turn of the engine. Like in the previous experiments, we set the frequency to 1 kHz; meaning
that the global tick (one turn of the engine) is at 1 millisecond. So, to successfully run the model,
Hippo must complete all its operations in less than 1 ms.

For the simple example with 20 processes (equivalent to 140 transitions in the tts model), we
measure an average time spent in one turn of Hippo engine of 0.13 ms with a best-time of 5.5 µs
(the engine has no transition to fire) and a worst-time of 0.26 ms.

The Fig. 8 shows the distribution of the time spent in one turn of the Hippo engine for three
models: a small model with 40 Hippo tasks (20 processes, 2 tasks per process, 140 transitions);
an intermediate model with 400 Hippo tasks (100 processes, 4 tasks per process,1100 transitions);
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Figure 8: Time spent in the Hippo engine

and another one with 800 Hippo tasks (200 processes, 4 tasks per process, 2200 transitions). None
of the experiments use the Turbo Boost.

For the 400-tasks model, the median equals to 0.32 ms and the interquartile range equals to
0.06 ms, 95% of the values are lower than 0.4 ms and the worst-case is 0.98 ms. So, for this execution
there is no tick miss, i.e. all the Hippo engine turns were executed in less than 1 ms.

For the 800-tasks model, the median equals to 0.7 ms and 95% of the values are lower than
0.97 ms. However, 3% of the values are greater than 1 ms, with a worst-case of 1.85 ms (note that
we do not use Turbo Boost here). Indeed, the number of operations performed by Hippo depends
on the running model. For a given model, a big number of operations to perform during a tick can
involve an overrun of the tts engine. This limitation was expected and the choice of hardware
must be made with full knowledge of the facts. The system with 800-tasks is an extreme case,
not representative of a real application (see the use case in Section 6 for a realistic example).
In addition, the operating modes of the systems naturally exclude a behavior depending on the
operating phases, which normally limits the number of transitions to be evaluated at each engine
tick (which is not the case for the models in our benchmark).

An interesting feature of our architecture is that we can increase the predictability of Hippo by
dedicating a processor solely to the engine. This option can easily be added in the implementation
of Hippo by assigning an affinity to the thread.

6 Case Study: a Software Controller for the Mobile Robot
Minnie

Fiacre is first and foremost an intermediary language, defined with the goal to ease the interoper-
ability between formal verification tools and high-level (component-based) specification languages.

The robotic group at LAAS has used for years such a specification language, called Gen
oM, to

program and deploy components for their robot functional architecture. In this section, we show
how we use Gen

oM to generate both a H-Fiacre (execution) model and a Fiacre (verification)
model. The former is used with Hippo to produce the runtime controller software of a real robot
called Minnie to perform runtime monitoring of critical assertions and take appropriate corrective
actions. The latter is used with model checking tools to verify several interesting properties on the
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system. In the following, we should simply use the terms Hippo/Tina models to refer to them,
or sometimes use the qualifiers online/offline models.

Gen
oM (GENerator Of Modules) [Mallet et al., 2010] is a tool to specify and implement robotic

functional components also called modules (see the nine modules on Fig. 9). These modules
provide services in charge of functionalities that may range from simple low-level driver control
(e.g. the velodyne or imu modules to respectively control a Velodyne HLV32 or an XSens IMU)
to more integrated computations (e.g. pom for localization with an Unscented Kalman Filter, or
PotentialField for navigation). Gen

oM proposes a language to completely specify the functional
components down to (but not including) the C/C++ functions (also called codels) that implement
the services computation steps.

6.1 Gen
oM and the Minnie RMP440 Robot

To illustrate how Gen
oM is used, we present a complete navigation experiment for Minnie, an

RMP440 LE robot (see Fig. 9). Minnie is not an autonomous car, nevertheless, it shares a lot of
common sensors and effectors with one: an XSens MTi IMU, a KVH DSP-5000 fiber optic gyro,
a Novatel GPS, all connected through serial/USB lines and a HDL-32E Velodyne lidar (on an
ethernet UDP interface). The goal of this section is not to discuss the overall localisation/naviga-
tion implemented on Minnie, but to give a reasonable idea of the overall complexity entailed by a
non-trivial robotic experiment1.

The RMP440 platform comes with a low-level controller (accessed through an ethernet inter-
face), which allows controlling the robot with a speed (x-linear and z-angular) command, and
returns the platform wheel odometry. The platform also includes a Nuvis 5306RT i7-6700 CPU
with 16 GiB RAM and a 256 GiB SSD drive, running Ubuntu 18.04. In case of emergency, a human
operator can take control of the robot using a wireless joystick communicating with the robot via
a USB dongle. Commands emanating from the joystick should take precedence over commands
from the robot controller.

All the hardware components of Minnie are controlled through their respective Gen
oM modules2

(depicted with boxes, like gps) which produce shared data in ports (depicted with octagons). Links
in the diagram describe which modules read from which ports. Fig. 9 lists, inside each module,
the execution tasks they include, their activity services, the ports’ name and the data type they
hold. We can understand the basic behavior of the robot by looking at the tasks and services
implemented in each of these modules, and the exchange of information between them.

Module pom uses an Unscented Kalman Filter (UKF) to merge pose estimations from gps, imu
and rmp440 (gyro and odometry) and to provide the position of the platform in the pose port.
Module navigation offers services to navigate in a graph of positions in a topological map of the
environment and produces in a port, the next target to navigate to. This port is used as the goal
to reach by PotentialField which produces a speed reference in port PF Cmd, while avoiding
obstacles found in the point cloud port using a Potential Field method inspired from [Guerra
et al., 2016] (the points in the cloud are collected in an occupancy grid which is then used to
provide obstacles position in the local map). The speed reference is then read by SafetyPilot
which, as last resort, checks in point cloud that no obstacles is too close to the robot, and stops
the robot if needed. It also considers the data in port joystick and uses it as a speed command
producer if the proper joystick buttons are pushed (which is a way to gain control back on the
robot platform in case something goes astray while navigating). The final speed produced, written
in Cmd, is then read by rmp440 (if it is executing the Track service), which pushes it to the
low-level controller of the robot. Last, rmp440 also has a JoystickOn service (incompatible with
Track) which computes a speed command and send it to the wheels controller.

1The complete code of the Minnie experiment is available at https://redmine.laas.fr/projects/minnie.
2The gyro is managed inside the rmp440 module.
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Figure 9: Architecture of the Minnie RMP440 experiment.
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Figure 10: A Gen
oM generic functional component (module).

6.2 Gen
oM Specification

All nine modules in Fig. 9 are an instance of a generic Gen
oM component presented in Fig. 10.

Hence a module is a unit composed of a control task, a set of execution tasks, and a set of services.
Concerning the use of data, each module also includes an Internal Data Structure (IDS) and may
expose/read a set of ports:

Control Task: A component always has an implicit cyclic control task that manages the control
flow by processing requests and sending reports (from/to external clients); it also executes
control services, and activates/interrupts activity services in execution tasks.

Execution Task(s): Aside from the control task, whose reactivity must remain high, one may
need one or more cyclic execution tasks, aperiodic or periodic, in charge of longer computa-
tions needed by activity services (e.g. velodyne has three execution tasks: scan and pose
running at 100 Hz, and acquisition aperiodic).

Services: The core algorithms needed by the component are encapsulated within services. Ser-
vices are associated to requests (with the same name). The algorithm executed by these
services may require a short computation time or a long one. Short services are known as
control services and are directly executed by the control task. Control services are in charge
of quick computations and may be attributes (setters/getters of the IDS fields) or functions
(in italic on Fig. 9). Longer services are known as activities (in bold in Fig. 9) and they
are executed by execution tasks (e.g. velodyne scan task has three activities services, Init,
GetScans and GetOneScans).

Activity Automaton and Codels: Activities are long-running services. They are modelled
with an automaton that breaks down the computation into different states (see an example
in the lower right part of Fig. 10). Each state is associated with a codel, which specifies a C
or C++ function (top right part of Fig. 10). The execution of that codel leads to (yields)
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the next state in the automaton, to execute immediately, or in the next period if this next
state name is prefixed with pause (see for instance the declaration in Listing 8, line 19).

IDS: A local internal data structure is provided for all the services to share parameters, computed
values or state variables of the component. A codel which needs to access (in or out) fields
from the IDS must specify them in its argument list. Gen

oM will ensure proper mutual-
exclusion when accessing these fields during computation.

Ports: They specify the shared data, in and out, the component needs or produces from/for other
components (octagons on Fig. 9). Access to ports is also specified in the codels arguments
list and is properly handled/locked with respect to the middleware.

The Gen
oM language fully specifies the shared ports (the green octagons in Fig. 9) between

components (in and out), as well as the shared variables in a component, and the periodic tasks
(i.e. threads) in which the services run. For each service, one defines the arguments (in and out),
and the automata specifying the steps to follow to execute the codels, as well as their arguments.

To further illustrate the Gen
oM specification of the Minnie robot, Listing 8 presents the GetScans

activity service of the velodyne module. Note the automata specification, which is also presented
in Fig. 11.

1 activity GetScans(
2 in double firstAngle = :"First angle of the scan (in degrees)",
3 in double lastAngle = :"Last angle of the scan (in degrees)",
4 in double period = :"Time in between two scans",
5 in double timeout = :"Timeout used when stamping packets")
6 {
7 doc "Acquire full scans from the velodyne sensor periodically";
8 task scan;
9

10 validate GetScansValidate(in firstAngle, in lastAngle, in period);
11

12 codel <start> GetScansStart(in acquisition_params)
13 yield copy_packets;
14 codel <copy_packets> GetOneScanCopyPackets(in acquisition_params,
15 inout scan_buffer) // get packets from acquisition buffer
16 yield stamp_packets;
17 codel <stamp_packets> GetOneScanStampPackets(in acquisition_params, // stamp packets
18 inout pose_data, in timeout) // with the proper pose
19 yield pause::stamp_packets, build_scan; // pause:: if pose not available
20 codel <build_scan> GetOneScanBuildScan(in acquisition_params,
21 in firstAngle, in lastAngle) // build scan repositioning
22 yield end; // individual packet in the first pose.
23 codel <end> GetOneScanEnd(in acquisition_params,
24 port out point_cloud, inout usec_delay) //publish the scan in the
25 yield wait; // point_cloud port. usec_delay is for fault injection.
26 codel <wait> GetScansWait(in period) // wait next user defined scan period
27 yield pause::wait, copy_packets; // then loop back.
28

29 interrupts GetOneScan, SavePCD, GetScans;
30 };

Listing 8: The Gen
oM specification of the GetScans activity (executing in the scan task of the

velodyne module). See the resulting automata Fig. 11.

Overall, the Minnie experiment includes: 9 modules, 9 ports, 24 tasks, 38 activity services (with
automata), 41 function services, 43 attribute services, 170 codels over 14k loc (lines of codes) and
their respective WCET. The synthesized Gen

oM modules amount to 200k loc to which one must
add external libraries (middleware, PCL, Euler, etc).

From a specification point of view, Gen
oM has a clear semantics of what should be done and how

it should be properly implemented. This generic component implementation is thus instantiated
for each specific component specification using a template mechanism.

6.3 Gen
oM Templates

Gen
oM alone, just parses and builds an internal representation of .gen specification files. To
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Figure 11: Finite-state machine of the GetScans activity (Listing 8). Each state is labeled with
its name between <> and its codel (the C/C++ function called). Transitions are labeled with
the name of the next state (i.e. the returned value from the originating state codel).

produce output, Gen
oM has to be called along with a template. The templates are the real building

blocks used to synthesize source code files adapted to the current specification. These codes can be
the sources implementing the component itself, or client libraries to interact with the component,
or, as we will see in Section 6.4, formal model of the component implementation.

A Gen
oM template is a set of text files that include Tcl code [Ousterhout and Jones, 2008],

whose evaluation in the context of a Gen
oM call on a specification file will produce the target of

this particular template. The target can be as simple as one file with the list of the names of the
services specified in the module (in which case the template file will just include a Tcl loop over all
services and print their name), or it can be the C code which controls the execution of an activity
automaton, or which implements the module itself using the ROS-Com middleware.

The template mechanism was initially introduced to deal with the middleware independency
problem [Mallet et al., 2010]. Indeed, the specifications presented above do not subsume any
specific middleware. Different templates are provided to automatically synthesize the components
for different middleware which are then linked to the codels library for the considered module (see
the workflow on Fig. 12).

A template, when called by Gen
oM on a given module specification, has access to all the in-

formation contained in the specification file such as service names and types, ports and IDS
fields needed by each codel, execution tasks periods, activities automata, etc. Through the
template interpreter (using Tcl syntax), one specifies what they need the template to syn-
thesize. For instance, Listing 9 shows an excerpt of a template code and Listing 10 the
C code it produces when called together with the Navigation component specification file.
The interpreter evaluates anything enclosed in markers <’ ’> without output, while on the
code between <” ”>, variables and commands substitution is performed and the result is
output in the destination file, together with the text outside of the markers. For exam-
ple, <’foreach s [$component services] {’> ... <"[$s name]"> ... <’}’> iterates over
the list of services of the component, contained in the $component variable; while <"[$s name]">

is replaced by the name of the service contained in the $s variable bound by the foreach statement.
As shown on Fig. 12, there are already templates to synthesize: the component implementation
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1 void genom_<"$comp">_activity_report(struct genom_component_data *self,
2 struct genom_activity *a)
3 {
4 switch(a->sid) {
5 case -1: return; /* permanent activity reports nothing */
6 <’foreach s [$component services] {’>
7 case <"$comp">_<"[$s name]">_RqstId:
8 genom_<"$comp">_<"[$s name]">_activity_report(
9 self, (struct genom_<"$comp">_<"[$s name]">_activity *)a);

10 return;
11 <’}’>
12 }

Listing 9: A simple template code snippet. Note the mix of Tcl code (between <’ ’> and <” ”>)
and the targeted C code.

1 void genom_Navigation_activity_report(struct genom_component_data *self,
2 struct genom_activity *a)
3 {
4 switch(a->sid) {
5 case -1: return; /* permanent activity reports nothing */
6 case Navigation_connect_port_RqstId:
7 genom_Navigation_connect_port_activity_report(
8 self, (struct genom_Navigation_connect_port_activity *)a);
9 return;

10 ...
11 case Navigation_GotoPosition_RqstId:
12 genom_Navigation_GotoPosition_activity_report(
13 self, (struct genom_Navigation_GotoPosition_activity *)a);
14 return;
15 case Navigation_GotoNode_RqstId:
16 genom_Navigation_GotoNode_activity_report(
17 self, (struct genom_Navigation_GotoNode_activity *)a);
18 return;
19 }

Listing 10: Excerpt of the synthesized C code for the PocoLibs Navigation component
corresponding to the template in Listing 9. Note how the C code is synthesized for all the services
of the component.

for two middleware: PocoLibs3 and ROS-Com [Quigley et al., 2009]. There are pros and cons to use
one or the other, for example for port communication mechanism, PocoLibs uses shared memory
while ROS implements it with publish/subscribe over sockets. Note that the only source code
provided by the programmer is the .gen component specification, and the .c/.c++ component
codels. Everything else is automatically synthesized by the templates. There exist other templates
to produce client libraries to control the component (e.g. JSON, C, OpenPRS), stubs for the initial
codel definition, etc.

6.4 The Gen
oM Toolchain for Verification and Code Generation

The Fiacre template presented and deployed in this paper is not the first implementation of a
transformation from Gen

oM to Fiacre. A first experiment was performed in [Foughali, 2018], but
was mostly a proof of concept and remained at a too abstract level to lead to safe execution on
critical systems (e.g. UAVs). Even on less critical robots, such as Minnie, the interleaving of
service automata execution was not properly handled and led to suboptimal reaction time. Based
on this first experience, new templates have been implemented such that we can now derive better
bounds on the reaction time of the system.

As the Fig. 13 shows, the template mechanism used to synthesize the Gen
oM modules from their

specifications and codels can also synthesize both the Fiacre verification model (which can then be
used with the Tina toolbox) and the H-Fiacre runtime model (which can be compiled and linked

3https://git.openrobots.org/projects/pocolibs
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Figure 12: Toolchain with the regular PocoLibs and ROS template.

to the codel library to produce an executable module). These models contains Fiacre processes
implementing the algorithms of all the internal components of a Gen

oM module as presented Fig. 10.
These Fiacre processes, similar to the ones on Listings 1 and 2, model each and every algorithms
of the Control Task, the Execution Tasks and their respective Timer, the handling of the Services
within the Control Task, and the execution of the Activity Services with their codel Automata, etc.
A careful examination of these Fiacre processes show that they indeed replicate the algorithms of
the Pocolibs or ROS-Com version of the module. All theses Fiacre processes are then composed
in parallel, sharing Fiacre ports and shared variables (Section 3.1), to produce one large Fiacre
component modelling one or more Gen

oM modules. As for the codels, they are encapsulated within
called using H-Fiacre task and called using start/sync (Section 3.2.1). Communication with the
PocoLibs Mbox (or the ROS CallBackQueue) is modelled with event ports (Section 3.2.2).

Note that our workflow slightly differs from the more generic one presented in section 2.4 and
illustrated on Fig. 2 (where the Fiacre model is obtained from the H-Fiacre one). This choice
was made to simplify the implementation because the Fiacre Gen

oM template file is in fact the
same (the two models share 95% of their code). It is when we call the Gen

oM command on this
template, that a flag (-tina or -hippo) is used to synthesize one model or the other4. Moreover,
the Gen

oM versatile template mechanism allows us a more fine grained control on the produced
model with for example varying level of abstraction for the Fiacre model.

The time constraints used in both models come from temporal information found in the modules
(for instance the period of tasks) and from the Worst-Case Execution Time (WCET) of the codels.
At the moment, the WCET are obtained by running the regular modules with Gen

oM embedded
profiling tool: profundis.

The difference between the synthesized verification model in Fiacre and the Hippo executable
model in H-Fiacre are minimal:

• Codels execution is really carried out in the Hippo models (with start/sync), but is modeled
as a time delay in the interval [0, wcet] (or [wcet, wcet]) in the Tina model.

• Non deterministic choices (e.g. codels returned values, used for activities automata tran-
sition, or control codels success/exception) are handled with H-Fiacre tasks start/sync

4The Fiacre GenoM template is available here: https://redmine.laas.fr/projects/genom3-fiacre-template/

gollum
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(only the PocoLibs version of the Hippo branch is presented here).

and tests/case on the codel returned values in the H-Fiacre models, but with a simple non-
deterministic choice operation (a select) between all possible returned values in the Tina
model.

• The Tina model must include a client Fiacre process to model the behavior of the environ-
ment (i.e. the requests sent to the controller). On the opposite, the Hippo model is simply
“linked with the real world” using H-Fiacre event ports and task executions. In this case,
the H-Fiacre event port handles the mechanism which receives new requests (PocoLibs
Mbox or the ROS CallBackQueue).

Even though this is not a formal proof, the fact that the online and offline models are synthe-
sized from the same template and only minimally differ gives a very strong argument to support
that our models have the proper semantics. It increases our confidence that both models are obser-
vationally equivalent and close to the modules produced with the existing PocoLibs or ROS-Com
template.

6.5 Comparison with Previous Experimentations with Gen
oM

We experimented with other V&V templates in previous works (transformations from Gen
oM to

the input language of other V&V frameworks), namely BIP [Abdellatif et al., 2012] and Up-
paal/Uppaal-smc [Foughali et al., 2019]. However, none of these works reached the level of
fidelity achieved with our current Fiacre template. We give a high-level evaluation of our past
experiences in Table 1. We compare three different target frameworks: the current Fiacre, RT
BIP, and Uppaal. In each case, we score the fidelity of our results in three different categories.
Offline is for models used for formal verification or simulation purposes (the equivalent of the -tina
version in our work). Online is for generated, executable code (similar to our -hippo version). We
consider two different cases here, that correspond to two different “robotic middleware”: PocoLibs
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[Herrb, 1992] and ROS-Com [Quigley et al., 2009]. The two formal models of the PocoLibs version
and the ROS-Com are identical, except for the part which models the Gen

oM port communication
mechanism. PocoLibs implements it with shared memory (with locking) while ROS-Com uses
publish/subscribe over sockets.

The H-Fiacre modules together with a Hippo engine at 10 kHz have an execution trace
completely equivalent to the regular PocoLibs or ROS-Com modules. Of course, this does not
qualify as a formal proof of equivalence, but from a roboticist point of view, the fact that such
a complex rover experiment behaves the same with Hippo than the regular modules is clearly
encouraging. This confidence is increased by the fact that the very same model can be used with
Tina (See Section 7).

Still, writing these templates is tedious. It requires a very good knowledge of the Gen
oM

specification and implementation, and of course a good knowledge of the formal frameworks used.
But an interesting side effect is that writing the formal version of a synthesized implementation
(e.g. the Pocolibs implementation of the module) requires to also clarify the specification and/or
the implementation when they are subject to ambiguities. This is a win/win strategy, the Gen

oM
designers/programmers are invited to clarify the semantics of the tool and, in exchange, we are
able to properly and formally model it.

Formal Frameworks Offline
Online

PocoLibs
Online

ROS-Com

Fiacre
[Berthomieu et al., 2008a]

Tina
[Dal Zilio et al., 2015] +++

Hippo [Hladik, 2020] +++ Hippo ++

RT BIP
[Socci et al., 2013]

RT D-Finder
[Ben Rayana et al., 2016] –

RT BIP Engine
[Abdellatif et al., 2010]++

RT BIP Engine
+

Uppaal [Behrmann et al., 2004]
Uppaal-smc [David et al., 2015]

Uppaal ++ N/A N/A

Table 1: Existing formal framework templates for Gen
oM. The +, ++ and +++ correspond to our

own subjective evaluation of the applicability of the approach and the fidelity of the synthesized
formal model to Gen

oM. – indicates that the tool needs more development to converge in producing
meaningful and useful results.

7 Case Study: Online Control and Offline Verification Re-
sults

We report here the results obtained on the Minnie use case presented in Section 6, to which we
apply the online and offline tools presented in Sections 4.2 and 4.5. We start with the results
obtained online while using Hippo and the H-Fiacre model. Next, we focus on the use of offline
verification tools from the Tina toolchain.

7.1 Controlling and Monitoring Minnie with Hippo

We have been able to synthesize automatically a Hippo model from the 9 components in the Gen
oM

specification of Minnie. The resulting Hippo model is 35 852 lines of H-Fiacre code, with 230
Fiacre processes, 197 Hippo tasks, 9 event ports, 441 external functions, and 1 760 transitions
in the TTS.5 It is linked with the codels library and Hippo runs the whole experiment at 10 kHz
in one process. The load on the CPU remains acceptable, and no noticeable slowdown is observed
(5-10% more than the sum of all regular Gen

oM components load).
The advantage of running Hippo instead of the regular PocoLibs or ROS-Com module is to

monitor online some critical properties, a first step toward runtime verification. Here is a list of
the ones checked by default and already included in the synthesized model.

5Code is available here: https://redmine.laas.fr/projects/minnie/gollum.
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Task period overshoot: Periodic execution tasks are specified to run within a given period, if
for some reasons, their period is not respected, the Hippo model will report the number of
cycles they have overshot. If this happens too often and or with a large number of reported
cycles, there is probably something wrong in the design and the specification or the hardware
need to be modified.

WCET overshoot: WCET are obtained by profiling the regular PocoLibs module on the same
setup. Yet, they can sometimes be exceeded, in which case the Hippo model will report the
number of ticks by which it overshot its specified value. This properties is also a runtime
verification that these WCET values, also used for offline verification (e.g. schedulability),
are realistic.

Possible Uninitialized Port Read: When controlling a multi modules experiment, the Hippo
engine checks than no codel will use a port with the in direction before a codel with an out

direction has already been called. If this is the case, most likely the value read in the port
is not semantically “correct”6.

We can also define additional monitors that go beyond these default properties. We give an
example from the Minnie experiment in Listing 11. In this example, we monitor the time spent
between two updates to the point cloud port of the velodyne. If the port is not refreshed for
more than 200 ms (2000 cycles at 10 kHz), the monitor triggers an emergency stop of the robot.
This is achieved by forcing a transition to the stop state of the Track activity in the rmp440
module.

1 process Velodyne_Scans_rmp440_Track_Stopper(
2 &scan_updated:bool, //boolean shared with the GetScans service.
3 &TrackTask_activities: Activities_rmp440_TrackTask_Array,
4 Track_index: act_inst_rmp440_TrackTask_index_type) is
5

6 states monitor_start, monitor_wait, monitor_error
7

8 from monitor_start
9 on (scan_updated); //monitor_start scan_updated

10 scan_updated := false;
11 to monitor_wait
12

13 from monitor_wait
14 select
15 wait [2000,2000]; // 200ms at 10 kHz = 2000 tick
16 to monitor_error //monitor_wait 200ms elapsed
17 []
18 on (scan_updated); //scan_updated before 200ms elapsed
19 scan_updated := false;
20 to monitor_wait
21 end
22

23 from monitor_error
24 if (TrackTask_activities[Track_index].status = ACT_RUN_FCR) then //Track running?
25 TrackTask_activities[Track_index].stop := true // emergency stop
26 end;
27 to monitor_start

Listing 11: Example of user-defined monitor for module velodyne.

An emergency stop is a safety-critical action. Therefore we would like to compute a bound (a
worst-case response time) on the time that could elapse between sending a request to stop, and
the actual start of this action. By looking at the specification of the rmp440 module, we find that
stopping the Track activity executes a codel, stopTrack, that immediately sets linear.x and
angular.z speeds at respectively 0 m/s and 0 rad/s (this stops the robot very abruptly, without
a regular deceleration). A careful examination of multiple traces shows that the robot typically
stops within 17 ms to 35 ms after detecting the problem, which is consistant with the TrackTask

6This type of error often occurs upon startup of the experiment where all the modules are starting at once, and
subtle race condition can lead to these situations.
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task period of 50 ms (so on average the stopTrack will be executed after 25 ms). Section 7.5
presents a more rigorous evaluation of this response time, using formal verification on the offline
model.

7.2 Verification

Since we have a formal model for the modules in Minnie, it is also possible to check its behavior
using the tools available in Tina: play to simulate the model; selt and sift to model-check proper-
ties; plan to find possible firing schedules times from an execution sequence; etc. This verification
step allows the designer to check specific properties such as schedulability, the reachability of (or
better impossibility to reach) particular state and maximum response time between two states.
But what is also interesting during this phase is that while checking a property, the designer may
also discover inappropriate behaviors that are not directly expressed in the property. For exam-
ple, by checking the maximum delay for taking an action, the designer may discover an execution
sequence that leads to the immediate realization of this action when the system starts up. Here,
the property is verified but it permits to identify an inappropriate behavior. Thus, the verification
stage can be considered both as a means of proving the good behavior of the system and as a
means of debugging it.

As mentioned previously, to proceed to the verification of Minnie, one needs to provide a client
which sends requests and receives replies, otherwise the model only starts the permanent services
(if any). These requests are dispatched to the proper modules for “execution” and replies are
received accordingly. On the complete (offline/verification) model generated from Minnie, we are
not able to explore the complete state set of the system (with a limit of 16 GB of RAM). Yet, we
can perform complete verification on one of the components.

The verification of a safety invariant is straightforward. It is enough to express the property
that we expect to be true on each reachable state as a Boolean combination of atomic properties.
Then the property can be checked on the fly with the sift tool. sift enumerates the reachable
states of the system, stopping if the invariant is false, in which case it returns a counter-example
that can be used to compute an execution trace explaining how to reproduce the error. In the
cases where we are able to generate the whole state space, we can use one of the model-checkers
included in Tina, called selt, to prove more complex properties (properties than can be expressed
as formulas in Linear Temporal Logic, LTL).

We have used this mechanism to check several properties on the Minnie use case. We now give
three different examples.

7.3 Schedulability

We can check that a periodic task, in a module, will always finish its execution before its next
activation. To this end, it is enough to check that the Fiacre process modeling the Gen

oM execution
task can never reach its overshoot state (this state is the same one used in the Hippo version to
detect overshoot at runtime, see Section 7.1). This is an example of safety property. So for the
velodyne module, which includes only two periodic tasks (velodyne_scan and velodyne_pose),
it is enough to check an invariant of the form:

¬(velodyne scan overshoot ∨ velodyne pose overshoot)
Our model also includes a specific mechanism for dealing with CPU cores. We can fix a

maximal number of available cores, with the constraint that two codels cannot share the same
core at the same time. Even if we cannot generate the whole state space for the model, sift was
able to find scheduling errors when using only 3 cores with velodyne. This led us to change and
optimize the codels for the velodyne to solve the problem.

7.4 Mutual Exclusion

The rmp440 module is critical, since it commands the speed of the wheels, and needs a careful
verification. When running the Track service, it grabs the speed Cmd from SafetyPilot, and
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when running the JoystickOn service, it computes a speed from joystick. These two services are
declared as interrupting each other: they should never run together.

We are able to check the property in two symmetrical scenarios (expressed using different
models of the client), considering the rmp440 module alone (i.e. without inclusion of other
modules): a scenario where a JoystickOn request is sent, shortly followed by a Track request; and
the other way around. We are able to prove that our invariant is true. This is the worst-case
since it means that we have to explore the whole state space. We give some information on the
complexity of the problem in Table 2. In this context, a marking is a particular set of states
and values for all the processes and variables in the system. A class is a state extended with
timing information on the enabled transitions (therefore we can have several classes with the same
marking).

Scenario JoystickOn then Track Track then JoystickOn
Time 16 min 10 h
#classes 42,714,945 832,778,752
#markings 5,817,082 44,533,432

Table 2: Complexity of checking mutual exclusion between services

7.5 Delay to Stop

The last property we check is related to the Hippo monitor presented in Section 7.1, Listing 11.
The problem here is to compute, offline, the Worst-Case Response Time (WCRT) between an
interrupt from the Track activity, and the end of the execution of the stopTrack codel. This
is an example of quantitative property that can be checked by adding a monitor to the model.
(Listing 12 gives the code for this monitor.) Indeed, it is possible to reach state robot NOT stopped

in process rmp440 Track Stopper if and only if the timeout used in state wait delay (141 ms in
this case, see line 17) is less or equal to the WCRT. Hence, to compute the right value, it is enough
to try different values for the timeout.

1 process rmp440_Track_Stopper(&track_started:bool, &track_stopped:bool,
2 &TrackTask_activities: Activities_rmp440_TrackTask_Array,
3 Track_index: act_inst_rmp440_TrackTask_index_type) is
4

5 states wait_started, wait_stop, wait_delay, finished, robot_stopped, robot_NOT_stopped
6

7 from wait_started
8 wait [0,0];
9 on (track_started); // wait the Track service has started

10 to wait_stop
11

12 from wait_stop // (no wait) can stop anytime
13 TrackTask_activities[Track_index].stop := true;
14 to wait_delay
15

16 from wait_delay
17 wait [141,141]; //<--- This is the response time value we want to measure
18 to finished
19

20 from finished
21 wait [0,0];
22 if (track_stopped) then
23 to robot_stopped //The robot has been stopped before the delay
24 else
25 to robot_NOT_stopped //The robot has not been fully stopped yet
26 end

Listing 12: A Fiacre monitor used to measure a response time with sift (the track started

and track stopped booleans are set by the Track activity Fiacre process).
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We used this approach to compute a theoretical WCRT value (141 ms) with a precision of 1 ms.
This value is much higher than the one measured during our tests with the real robot. On the
other hand, with our approach, it is possible to generate a scenario corresponding to this worst-
case. An analysis of the counter-example computed by Tina shows that this scenario is indeed
possible in the real system. This scenario corresponds to an extreme situation where we added
twice the running time (WCET) of a slow codel (43 ms), conflicting with the codel in charge of
stopping the robot.

Yet, the theoretical WCRT is still “reasonable”; even at 6 m/s, Minnie will travel at most 85 cm
before pulling the brakes. Also, while this scenario is very unlikely, the value of 141 ms should be
the one chosen when performing a safety analysis, or in case we want to certify our system.

Overall, the automatic synthesis for such a complex robotic experiment of a complete formal
model which can be both used for offline and online verification is rather encouraging. It shows
that some non trivial critical properties can be checked beforehand, even at design time; and that
some specifications can be translated into online monitor which will formally enforce them. Last,
but not the least, the deployment of both models also provides a positive feedback on the tool
itself and its semantics, but also on the specific architecture needed to run a particular experiment
(number of cores needed, proper initialization sequence, etc).

8 Conclusion

We describe a language and a compiler, called Hippo, able to generate executable code from
its formal model. This tool is based on an extension of the formal language Fiacre with new
operators for activating and waiting on the result of external tasks. Our implementation follows
a synchronous principle for the behavior engine and uses a more flexible, asynchronous model
for tasks scheduling. We evaluated the performance of applications generated with Hippo and
measured the overhead of our execution engine, with both synthetic benchmarks and a robotic
use case. Our results are promising and reasonable for a real usage.

We make several contributions beyond the implementation of this approach. First, we show
how to interpret the semantics of Hippo in plain Fiacre, which means that we are still able to
check temporal properties on this new, “runtime oriented” language. Next, we show the effec-
tiveness of this approach by reporting our experience with a non-trivial use case; a mobile robot
navigation application derived from a high-level specification written in the Gen

oM framework. This
specification has been translated into Hippo to allow the automatic generation of an executable
which fully controls the robot in place of the regular Gen

oM synthesized module. We also discuss
how this executable can be enhanced in order to enforce critical safety properties at runtime. Us-
ing the same template, the specification can also be used to synthesize a verification model which
can be analyzed offline, strengthening the confidence we put in the application.

We have also identified some of the limitations of our approach that we would like to address
in future works. Concerning formal verification, it is not possible to state that Hippo produces
faithful code, meaning that the online and offline models have equivalent observational semantics.
Instead, we focus on checking that the behavior of the (Hippo) implementation is included in the
behavior of its (Fiacre) specification. We benefit in this case from the compositionality of our
encodings. Our experiments also expose the limits of using formal verification due to the state-
explosion problem. We are able to prove many safety invariants on our most complex models,
but we sometimes need to abstract some of the behavior (for instance by limiting the ability for
a component to randomly fail) or to limit the state space of the system by focusing on particular
“scenarios” (see our experiments in Section 7.4). We plan to continue our investigations on these
issues. For example, we are trying to better take into account the deterministic aspects of Hippo
(which would reduce interleavings) as well as to take into account the different “modes” of the
system (nominal mode, failure, etc.). In addition, there are perspectives on the development of
specific design tools (debugging, simulator) based on model-checking methods.

To conclude, we would like to stress that the most innovative parts of our contributions are the
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result of confronting viewpoints and objectives that originate from the diverse fields of expertise
of the authors: real-time system design and analysis; execution control and planning; formal
verification;. . . This is definitely an asset in this context. This is evidenced, for example, in our
design choices for the scheduling model of our engine, which is in part motivated by formal
verification—because we want to avoid complex preemptive behaviors that could make verification
harder—but is also influenced by the kind of system we target. Another example can be seen in our
use of runtime monitoring, where we use the same high-level model to generate both an observer
for the verification model (to check a timed property with model-checking) and a runtime monitor
for the execution code (to check the same property at runtime). This also helps explain why each
aspects of our design may appear as the result of a trade-offs: our scheduling strategy prioritize
predictability but it may not be optimal; we are good in terms of verification but our toolchain
is not formally certified; we target the control part of robotic systems but we do not address
other interesting problems, such as planning or control at the acting level. Each of these aspects
naturally lead to possible improvements and are the subject of possible future works.
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A Fiacre model of a FIFO scheduler

A SMP FIFO scheduler can be simply modeled with a queue. The proposed model is inspired
from [Foughali et al., 2018]. The scheduler is coded by a process (line 6) with two shared data
(see Listing 13 for an example). The ready list (line 40) is a queue (native type of Fiacre)
used as the classical ready list in a scheduler and it is used to stack the tasks that are ready to
be executed. The launch (line 41) variable is an array of booleans that states if a task can start
its execution or not. When a task is activated, its id is queued in the ready list (line 25) and a
test is done to know if a processor is available to execute the new task (line 10). If it is possible,
the launch is updated (line 12). Then, the task waits that a processor is available to continue
its execution by checking the status of launch (line 27). When a task terminates its execution, a
processor is free (line 31) and if the ready list queue is not empty the first task is resumed by
changing its status in launch (line 10).

Remark that we use the best-case execution time and the worst-case execution to represent
the execution time of the task (line 30). The translation from a Hippo model to a Fiacre model
with a FIFO scheduler is implemented and available on gitlab.

1 const nbOfProcessors : nat i s 2
2 const nbOfTasks : nat i s 120
3 type fifo i s queue nbOfTasks of 0..( nbOfTasks -1)
4 type start_tab i s array nbOfTasks of bool
5 ...
6 process scheduler (& ready_list: fifo , &launch: start_tab ,
7 &unused_proc: nat) i s
8 states exec
9 from exec

10 on (not (empty ready_list)) and (unused_proc > 0);
11 unused_proc := unused_proc -1;
12 launch [ f i r st ready_list ]:= true;
13 ready_list := dequeue ready_list;
14 wait [0,0]; to exec
15

16 process p_task [SyncG : none, t_a : ty1 , t_t : tyOut]
17 (id : 0.. nbOfTasks -1, &unused_proc : nat ,
18 &ready_list : fifo , &launch : start_tab) i s
19 states waiting , sched_activate , sched_resume , running ,
20 sched_terminate , synchronizing , terminating
21 var param : tyIn , ret : tyOut
22

23 from waiting
24 t_a?param; to sched_activate
25 from sched_activate /* task activation: scheduler call */
26 ready_list := enqueue(ready_list , id); wait [0,0]; to sched_resume
27 from sched_resume
28 on launch[id]; launch[id] := false; wait [0,0]; to running
29 from running
30 ret := c_foo(param); wait [$bcet , $wcet]; to sched_terminate
31 from sched_terminate /* task termination: scheduler call */
32 unused_proc := unused_proc + 1; wait [0,0]; to synchronizing
33 from synchronizing
34 SyncG; to terminating
35 from terminating
36 t_t! ret; to waiting
37 ...
38 component Main i s
39 var
40 ready_list : fifo := {||},
41 launch : start_tab := [false ,..., false],
42 unused_proc : nat := nbOfProcessors
43 ...
44 par
45 ...
46 || scheduler (& ready_list , &launch , &unused_proc)
47 || p_task [SG , t_a , t_t](1, &unused_proc , &ready_list , &launch)
48 ...
49 end

Listing 13: An example of FIFO scheduler in Fiacre.
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