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Comparison of predictive controllers
for locomotion and balance recovery of quadruped robots

Thomas Corbères a, Thomas Flayols a, Pierre-Alexandre Léziart a, Rohan Budhiraja a, Nicolas Mansard a,b

Abstract— As locomotion decisions must be taken by consid-
ering the future, most existing quadruped controllers are based
on a model predictive controller (MPC) with a reduced model
of the dynamics to generate the motion, followed by a second
whole-body controller to follow the movement. Yet the choice of
the considered reduction in the MPC is often ad-hoc or decided
by intuition. In this article, we focus on particular MPCs and
analyze the effect of the reduced models on the robot behavior.
Based on existing formulations, we offer additional controllers
to better understand the influence of the reductions in the
controller capabilities. Finally, we propose a robust predictive
controller capable of optimizing the foot placements, gait
period, center-of-mass trajectory and corresponding ground
reaction forces. The behavior of these controllers is statistically
evaluated in simulation. This empirical study is a basis for
understanding the relative importance of the components of
the optimal control problem (variables, costs, dynamics), that
are sometimes arbitrarily emphasized or neglected. We also
provide a qualitative study in simulation and on the real robot
Solo.

I. INTRODUCTION

Locomotion with quadruped robots is challenging as well
as rewarding for roboticists. With lighter feet than bipeds and
more stability, quadrupeds can be used for highly dynamic
motions and gaits, as already tried on the Cheetah [1],
Anymal [2], HyQ [3] etc.

As a result, controllers that can generate real-time motion
trajectories for online robot control are a hot research do-
main. Among these, non-linear model predictive controllers
(MPC) [4], [5] can provide real-time computations [3],
reactive control [6], [7], and because of optimal control
over a time horizon, they can take care of disturbances and
perturbations to the system [8].

Whole-body dynamics allows maximum utilization of our
knowledge about the robot model [10]. However, the non-
linearity introduced by the dynamics, and the high dimen-
sions are prohibitive with respect to the computation times.
The classical consequence is to use reduced dynamics of
lower dimensions instead [11]–[13], very often with addi-
tional assumptions to simplify further the non-linearities of
the problem. In such cases, the plan provided by the reduced
model is followed by the low-level controller using inverse
dynamics, e.g. in [6], [14]. Several reduced models can
be considered to build a MPC for quadruped locomotion:
table-cart [11] (or with foothold optimization [14], [15]),
centroidal [16] (or with contact timings optimization [17]).
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Fig. 1. Solo [9] performing trotting during the experiments. Motions from
different controllers were tried on Solo. While all controllers were able to
perform these simple motions, we provide comparison of their performances
for more extreme cases.

For quadruped robots, a sound reduction is to approximate
the angular momentum to the rotation of the rigid body,
neglecting the limb dynamics [18]–[20], which we chose in
this work [13].

The simplification of dynamics is mostly the result of
limited resources available for online real-time MPC. In this
paper, we propose to simultaneously evaluate the interest and
drawbacks implied by these simplifications. After recalling
the main concepts in Sec. II, we start by introducing the
general optimal control problem (OCP) formulation : based
on the convex problem detailed in [13], a first OCP is
presented in Sec. III to clearly pose the optimization problem
and serve as a point of comparison. Three other optimal
problems are then proposed, by successively removing some
linearization assumptions done in [13] (Sec. IV), extend the
formulation to footholds optimization (Sec. V) and include
the period of the walk as parameter of optimization (Sec VI).
All OCPs are presented following the same template in
order to better exhibit their similarities and particularities.
As the two last OCP implies the simultaneous optimiza-
tion of trajectories and static parameters (foothold positions
and timings), we explain in Section VII how a differential
dynamic programming (DDP) solver can be used to solve
a parametric OCP. The MPC implementing the OCP to
perform the feedback control of the robot is detailed in
Sec. VIII, which is used to benchmark in Sec. IX the several
OCP formulations in simulation and on the robot Solo.



II. OPTIMAL CONTROL WITH REDUCED DYNAMICS

The centroidal dynamics [21] describes exactly the dy-
namics of the center of mass (CoM) of the robot due to
its interactions with the environment and corresponds to the
under-actuated dynamics [22]. Since most quadruped robots
are built with lightweight limbs, it is classically preferred to
use the centroidal dynamics to approximate the whole-body
dynamics, as described below:

mp̈ =

nc∑
i=1

fi +mg (1a)

Iω̇ + ω × (Iω) =

nc∑
i=1

(ri − p)× fi (1b)

where p = (x, y, z) is the position of the body, ω is the
angular velocity of the body, m and I are mass and inertia
of the body, and g = (0, 0,−9.8) is the gravity vector. nc 3D
forces fi are applied at the contact points ri. Consequently,
the robot state is composed by linear and angular positions
and velocities, belonging to R12:

x =
[
p Θ ṗ ω

]T
. (2)

where Θ = (θ, φ, ψ) is the rotation of the body frame Rl
with regards to the world frame R0. To ease the reading of
the following, we make now the choice of representing the
rotation Θ by the 3 Euler angles. The rotation matrix from
body to world is then : Rzyx = Rz(ψ)Ry(φ)Rx(θ).

In the next section, we will follow [13] and suppose
small body inclination φ and θ. Consequently, i) the roll
and pitch angles in the rotational matrices can be neglected
: Rz(ψ)Ry(φ)Rx(θ) ≈ Rz(ψ). ii) ω = Θ̇. iii) The rep-
resentation of inertia matrix in world frame is simplified :
I ≈ Rz(ψ)IlRz(ψ)T [23], and iv) the cross-product term
ω × (Iω) is neglected leading to a linear variation of the
angular momentum :

d

dt
(Iω) ≈ Iω̇ (3)

where I is approximately constant in the world frame.
We can now set up the generic form of the optimal control
problem for locomotion. We formulate the optimization over
a sequence of contacts phases s. Each phase is defined by
its duration Ts and contact location rs :

min
{x},{u}

∑
s∈phases

Ts∑
t=0

`(xt, ut|rs) + `T (xT )

s.t. x0 = x̂ (4a)
∀t, s xt+1 = f(xt, ut|rs) (4b)
∀t ut ∈ U (4c)
∀t, s xt ∈ Xs (4d)

where `k and `N are respectively the running and terminal
cost. {x} and {u} are the decision variables which we take
as discretized at the nodes indexed by t. The control vector u

contains the 3D forces at each contact point, constrained to
the friction cone U . The centroidal states x should be chosen
so that there exists a valid whole body movement that can
achieve x [22]. We put this last constraint under the abstract
form x ∈ Xs depending on the phase s and will come back
later on it. This OCP is still quite abstract. In the following,
we will derive several versions of this OCP by increasing
the complexity, starting from the OCP formulated in [22].
Our goal is to show how several motion features can be
formulated to augment the accuracy or the range of decision
of the MPC and experimentally show the consequences of
these augmentations.

III. LINEARIZATION OF THE DYNAMICS

The first problem is a simple reformulation of the convex
formulation proposed in [13]. The CoM is approximated
by the desired CoM p∗ in the Euler equation (1b). With
this assumption, we can reduce the complexity and make
the system convex as the dynamic matrix no longer induces
coupling between control and state vector :

Iω̇ =

nc∑
i=1

(ri − p)× fi ≈
nc∑
i=1

(ri − p∗)× fi (5)

A. Convex Dynamic Model

The chosen dynamic (1a) - (5) is discretized with an
implicit scheme of integration such as Pt+1 = Pt + ∆tVt+1

to estimate with more accuracy the position, bringing ∆t2

terms in the B matrix.

xt+1 = ft(xt, ut) = Axt +But (6a)

A =

[
I6 ∆tI6
06 I6

]
(6b)

B =


∆t2

m I3 ... ∆t2

m I3

∆t2I-1[r1 − p∗]× ... ∆t2I-1[rn − p∗]×
∆t
m I3 ... ∆t

m I3

∆tI-1[r1 − p∗]× ... ∆tI-1[rn − p∗]×


(6c)

where ∆t is the integration time between the nodes, I6 the
identity matrix of size 6 and [. . . ]× a 3x3 skew-symmetric
matrix representing the cross products as matrix multiplica-
tions.

B. Cost function

The cost function are three cost terms. The first one is a
quadratic cost which penalizes the state vector with regards
to the desired state. The second quadratic cost penalizes the
relative command vector. We use the relative reference force
f refz = fz − mg

nc
, where fz is the normal ground reaction

force, since it brings the forces to equilibrium and also leads
to a faster convergence. Finally, we use a penalty cost to
implement the friction cone inequality constraints. The solver
used works by penalization and inequalities constraints can
not be formulated as such. Thus, to keep the force inside the



friction cone, constraints are translated in a penalisation term
using a discrete 4-facet cone approximation and for each foot
:

`cone,i(f) =
1

2
||(fx − µfz)+||2 +

1

2
||(−fx − µfz)+||2

+
1

2
||(fy − µfz)+||2 +

1

2
||(−fy − µfz)+||2 +

1

2
||(fz)+||2

(7)

where y+ = max (y, 0). The cost is thus activated and
strongly penalized only if u does not respect the inequality
constraints. However, this penalisation formulation does not
guarantee that the constraints will be respected. Some margin
for the coefficient friction is needed. We experimentally show
that this approximation works very well.

IV. KEEPING THE BILINEAR DYNAMICS

A. Non Linear model

In this second OCP, the assumption on the lever arm (5),
is withdrawn. We no longer use the desired CoM position p∗

but the predicted CoM p in the cross product. The B matrix
(6c) therefore varies with the state. As a result, the coupling
between state and control is re-introduced. Moreover, the
derivatives of the dynamics with respect to state Fx are not
invariant anymore :

Fx =
∂ft
∂xt

= A+ ut
∂B

∂xt
(8)

B. Kinematic constraint

In the previous controller, no precaution are taken to
ensure that x is admissible (i.e. x ∈ Xs). In particular we
cannot guarantee that the CoM or orientation move too far
away from the contact. As we now accept to have a non-
linear formulation, we take it as an opportunity to add a
term to enforce it. This kinematic limit is approximated by
penalizing the distance between the shoulder and the contact
point when it reaches 80% of the leg limit. The position of
the shoulder in R0 can be formulated such as : xsh = x+ px − pyψ

ysh = y + py + pxψ
zsh = z + pyφ− pxθ

(9)

where
(
px py 0

)T
is the position of the shoulder in

Rl and
(
x y z

)T
the position of the CoM in R0. The

shoulder-to-cost penalization is thus the following :

`sh(xt) = ||((xsh−xc)2+(ysh−yc)2+(zsh−zc)2−d2
lim)+||2

where xc =
(
xc, yc, zc

)T
is the contact placement in R0.

V. SIMULTANEOUS FOOTHOLD OPTIMIZATION

The third controller additionally optimizes the foot place-
ments. The contact placements are therefore a decision
variable and the contact phase S only depends on the contact
timing. The new OCP can be rewritten :

min
{x},{u},{r}

∑
s∈phases

Ts∑
t=0

`(xt, ut|rs) + `T (xT ) (10a)

s.t. x0 = x̂ (10b)
∀t, s xt+1 = f(xt, ut|rs) (10c)

In addition to the four cost terms described earlier in Sec-
tions III and IV, namely the state regularization, the relative
force regularization, the friction cone violation penalty and
the kinematic limit penalty, three other quadratic costs are
proposed to reduce the search space : i) The distance of the
footstep is penalized. ii) The contact placement is penalised
to keep the position of the foot around a certain heuristic.
The same heuristic terms given to the previous OCP model
as contact point serve here to lead the optimization. iii) A last
cost term is proposed which allows to stop the optimization
of the contact placement when the foot is approaching the
ground. It avoids destabilisation at the end of the flying phase
by preventing lateral velocities. This last cost term nicely
disappear in the next controller.

VI. OCP WITH PERIOD OPTIMIZATION

This last OCP formulation includes contact timing as a
decision variable in addition to the decision variables of (10).
Thus, we evaluate the behaviour of the OCP while optimizing
the gait period, the footholds position, the trajectory of the
CoM and the reaction forces at the same time :

min
{x},{u},{r},{T}

∑
s∈phases

Ts∑
t=0

`(xt, ut|rs) + `T (xT )

s.t. x0 = x̂ (11a)
∀t, s xt+1 = f(xt, ut|rs) (11b)

Looking only at the cendroidal dynamics, the solver will
always take advantage of reducing the duration of the contact
phase. Yet, short duration of the phase implies high velocity
of the flying feet, in particular if the solver decides to
also takes large step. We, then, have to add a cost term to
carry this information. The trajectory of the flying feet are
represented by polynomial functions of degree 5 chosen to
nullify the speed and acceleration at the impact point and to
take into account the current speed and acceleration of the
feet which are already flying. Only the lateral velocities are
penalized since they are higher than the speed along the Z
axis during the movement. The maximum speed along this
trajectory is only a function of the start and the end location,
and of the current velocity of the foot if any. For predicted
phases that are not started, maximum speed is reached at the
middle of the polynomials and then easily evaluated. The
maximum of a 4 degree polynomial function with non null
initial conditions cannot be computed in a reasonable time.
Thus, the velocity of the foot for the first phase is evaluated
and discretized at α∆T , in a much simpler manner :

Vx(α∆T ) = V0b0(α) + ∆Tacc0b2(α) +
∆x

∆T
b3(α) (12)



where Vx is the speed of the foot along the X axis, ∆x the
distance done during the phase along the X axis, vlim the
speed limit, b constant coefficients depending on α, V0 the
current speed of the foot and acc0 the current acceleration.
For one foot, the penalization is thus :

`speed(∆T,∆x,∆y) =
∑
α

[(∆Tb1 + ∆T 2b2 + ∆xb3)2

+(∆Tb1 + ∆T 2b2 + ∆yb3)2 −∆TV 2
lim]+

(13)

For the next phases, it is the same expression with α = 1
2

holds.

VII. DIFFERENTIAL DYNAMIC PROGRAMMING SOLVER

To solve the OCP formulations described above, the
differential dynamic algorithm programming (DDP) is used
from the library Crocoddyl [24]. The discrete dynamic model
is inserted into a multiple shooting problem. For the two
first OCP, the implementation is quite straightforward since
the state and the control vector does not change along the
temporal horizon. OCP proposed in (10) and (11) are actually
parameterized OCP and to handle them with DDP the state
variables are augmented with the new decision variables.

A. OCP with foothold optimization

For the foothold OCP, with rt the position of the foot in
R0 : yt+1 = (xt, rt). A first shooting node is introduced
to handle the dynamics (1a), (1b) with the forces as control
vector. The second one is used to determine the next position
of the feet and as the contact timing is predefined, this node
is inserted before the modification of the contact point.

∀t ˙yt+1 =

(
ft(xt, ut, pt)
gt(pt, ut)

)
(14)

where f corresponds to the discretized dynamic model, and
g is function which allocates the new position of the feet
when the contact switch occurs.

For the model representing the dynamic, f is the same as
the non linear OCP. The position of the feet is constant :

gt(pt, ut) = pt (15)

Here is the model inserted between the dynamic models.
The control corresponds to the distance between the previous
and the new contact point and the size of the control thus
depends of the number of foot placement modified. In this
node, the state xt is constant f(xt, ut, pt) = xt and here is
the variation of the foot position :

gt(pt, ut) = pt + ut (16)

B. OCP with period optimization

The same method is used and the state is augmented with
the integration time between the nodes : ∆ts = Ts

Ns
where Ns

is the number of nodes in the phase s. A third type of node,
where the control is size one and equal to the integration
time, is inserted before each flying phase and stance phase
and by modifying the integration time between the nodes,

Fig. 2. Architecture of the controller. x is the state vector, q the joint
configuration, τ the torque from the PD controller and τff the feed-forward
torques, f the contact forces.

the period of the phase is thus modified. The cost proposed
on the state vector is no longer quadratic and depends on the
integration time :

`state(xt|s) =
∆ts

2
(xt − x∗)TWs(xt − x∗) (17)

where Ws the weight vector, xt the state and x∗ the desired
state. Thus to minimize the cost, the optimization leads to
minimize the period of the phase by reducing the integration
time if no additional constraints are formulated. This phe-
nomena is highly sought since first it avoid the fall in local
optimum for any understandable reasons. Then it allows to
lead the optimizing toward a faster solution. To finish, we
assume that the behaviour of the robot is more stable with
a small gait period since the step between the foot is lower
and the quadrupedal support are more frequent. A minimal
integration time is required.

VIII. IMPLEMENTATION DETAILS

The four OCP formulations described above are tested,
evaluated and compared in simulation as a model predictive
controller. The Solo12 robot is tested in simulation. They are
integrated inside a state of the art architecture of quadrupedal
robots for cyclic locomotion. It is closed to the hybrid
architecture described in [1]. The MPC bloc, running at
50Hz, is coupled with a whole body controller at 1kHz. The
environment and the simulated feedback of the sensors are
generated using pyBullet simulator [25]. We have chosen
to run our test in simulation as each controller will be
extensively tested until it reaches its limit, which we could
not afford to do on the real robot.

A. Model predictive controller

The OCP formulations are used as MPC and receive the
estimated state, the desired state coming from the reference
velocity target and the position of the foot in local frame
given by the footstep generator. The heuristic to choose



Fig. 3. Viable Operating Region. Comparison of linear and non linear
MPC with the shoulder-to-contact point penalization on the right (ii). On
the left (i), the non-linear solver tends to elevate the body, that the WBC
then fails to track, although both solves behave quite similar. The benefits
of completely modeling the lever arm dynamics is highlight by the larger
area on the right.

the footstep location is the same than described in the [1].
The MPC generates a predictive state trajectory and ground
reaction forces to apply. One period of gait is chosen for
the temporal horizon, around 0.5s. The number of nodes is
chosen depending on the integration time between them. 15
to 30 nodes are usually taken. To warm-start the MPC, the
predicted state and forces computed at the previous control
cycle and slipped of one iteration in the timeline is used for
the new control cycle. For the last node, the values at the
equilibrium point are chosen.

B. Whole body controller (WBC)

The foot in swing phase follow a polynomial trajectory of
degree 5 in X,Y and Z axis to ensure negative acceleration
and velocity at the impact point. The trajectory is updated
each iteration with current acceleration/velocities of the foot
and the new contact point. To avoid lateral velocities at the
impact, the contact point is locked when 90% of the flying
phase is done.

To generate the inverse dynamic control, we use a task
space inverse dynamics (TSID) [26]. Using the estimated
state, contact forces from the MPC and position of the
feet, the WBC computes the torques, position and velocities
of joints. The computed torques are then tracked using a
proportional derivative controller with feed-forward. In order
to highlight the behavior of the MPC rather than the WBC,
we voluntarily choose a high frequency for it at 1Khz.

IX. RESULTS

This section concerns the results obtained in simulation.
The objective is to compare the different MPC to understand
the impact of proposed augmentations done. To do so, a
statistical approach to determine its viable operating region
has been set up. The results obtained are also shown in the
video1.

1https://peertube.laas.fr/videos/watch/
d6d90690-3262-4e61-9d03-08a2623726e3

A. Checking the force-cone penalization

To first validate the DDP solver, the first linear controller
has been compared to the QP formulation proposed in
[13], solved with the OSQP solver [27]. We checked by
an empirical validation that 3 iterations of DDP solver
are enough to solve the problem in every situations. We
have chosen 16 nodes and a time horizon of 0.32s. On a
forward velocity V ∗ = 0.3m.s-1, the root means square
error (RMSE) between the forces computed by [13] and
the forces computed by DDP solver using the force cone
penalization is only ∆f = 0.3N . The next results concerning
the computation time are obtained with 5000 trials for one
iteration of the DDP algorithm.

TABLE I
BENCHMARK OF THE DDP FOR OCPS

OCP Mean [ms] Min - Max [ms]
Linear [ms] 0.327 0.302 - 0.882
Non Linear [ms] 0.351 0.305 - 0.938
Footstep [ms] 0.676 0.618 - 1.271
Dt Optim [ms] 0.769 0.725 - 1.511

B. Influence of the lever arm assumption

In the remaining, we compare the formulation by running
a complete MPC simulation with a given reference basis
velocity. The simulation is validated if the robot reaches
steady cycle with the commanded velocity, and invalidated if
the robot falls or does not reach it. We then plot the viable
operating region Vx − Vy and Vx − ω. We first compare
the linear OCP in section III with the non-linear OCP of
section IV. In Fig. 3 on the right, we compare the two MPC
with the cost term introduced in section IV that penalizes the
distance between the shoulder and the contact point. Without
the kinematic constraint, convex and non-linear MPC are
quite equivalent. The area are almost similar in Fig. 3-
left. The non-linear MPC slightly improves the behaviour
for forward velocities whereas it is less efficient for lateral
velocities. Indeed, it takes advantage of the cross-product
relative to the lever arm (1b) by elevating the robot body for
such lateral velocities. It results in movements not achievable
by the robot with the CoM too high.

The shoulder-to-contact penalty cost allows the OCP to
handle better this issue. On the opposite, this term degrades
the behaviour of the linear MPC for lateral velocities as high-
lighted by the Fig.3-right although we do not get an intuition
of this effect. In total the non-linear OCP performs much
better it particular at high speed. This non-linear problem
does not need a complex warm-started to converge toward
an acceptable solution. The number of iteration needed to
converge or the computation time are equals.

C. Optimization of the footsteps

Fig. 4 summarizes the performances of the three first OCP
with shoulder-to-contact penalty. The non linear model with
optimization of the footholds improves first the behaviour of
the walk of the robot by producing more stable locomotion.

https://peertube.laas.fr/videos/watch/d6d90690-3262-4e61-9d03-08a2623726e3
https://peertube.laas.fr/videos/watch/d6d90690-3262-4e61-9d03-08a2623726e3


Fig. 4. Comparing the 3 OCP : (i) linear OCP, (ii) non-linear OCP with fixed footholds, (iii) non-linear OCP with foothold as decision variable. In the
three cases, the shoulder-to-cost penalty is activated. Optimally deciding the footholds greatly helps to stabilize the system.

However, the computation time is higher : one iteration of
the DDP solver, takes approximately 0.6ms. It also requires
more iterations, up to 5 with a proper warm-start.

D. Optimization of the gait period

In nominal situation, the MPC tends to minimize the
period as explained in VII-B. In nominal walk, even at high
speed, the timings are marginally changed by the solver and
the viable operating region is not modified. Optimizing the
gait period during the walk is mostly interesting to handle
a perturbation. When a perturbation occurs, the controller
is able to modify the duration of the flying phase and the
duration of the stance phase. We have tried to quantify
this augmented robustness, yet in simulation, all controllers
resists to unrealistic perturbations (up to ∆V = 1m.s-1).
As an example, the system is perturbed by a linear velocity
during a double support phase in Fig. 5. The stance phase is
then elongated as shown in Fig. 6 to allow a better rejection
of the perturbation on the roll, pitch and yaw angles since it
is more stable during quadrupedal support.

X. CONCLUSION AND PERSPECTIVE

We have proposed several formulations of locomotion
MPC and evaluated statistically and qualitatively the impact
of their formulation on the control.

Our first observation is that linearity of the dynamics or
of the cost is not a mandatory feature for computational
efficiency. Actually, we would be more interested by strict
convexity, for which linearity is only a proxy [28].

We empirically demonstrate the importance to consider
in the MPC the exact dynamics of the lever arm, the
kinematic limit, the position and timing of the contacts.
We showed that these non-linear features only marginally
increase the computational burden. On the other hand, some
approximations of the dynamics, or some constraints that are
discarded from the problem because of their non-linearity,
might have a strong impact on the quality of the controller.
We believed the same comparative methodology should be
continued, and will integrate next the other missing terms.

Fig. 5. Angular position and linear velocities of the robot in the world
frame. Perturbation of the lateral velocity of 0.7 m.s−1 during a double
contact phase.

Fig. 6. Stance phase in dark for the left hind and front foot, depending
on which controller is used (optimization of the period or not). The gait,
predefined, is symmetric for the right feet.



We are also looking at a way to extend the systematic
validation on the real hardware without damaging the robot.
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