
HAL Id: hal-03036733
https://laas.hal.science/hal-03036733v1

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observer Design for Nonlinear Invertible System from
the View of Both Local and Global Levels

Mei Zhang, Qinmu Wu, Xiangping Chen, Boutaib Dahhou, Zetao Li

To cite this version:
Mei Zhang, Qinmu Wu, Xiangping Chen, Boutaib Dahhou, Zetao Li. Observer Design for Nonlinear
Invertible System from the View of Both Local and Global Levels. Applied Sciences, 2020, 10 (22),
pp.7966. �10.3390/app10227966�. �hal-03036733�

https://laas.hal.science/hal-03036733v1
https://hal.archives-ouvertes.fr


applied  
sciences

Article

Observer Design for Nonlinear Invertible System
from the View of Both Local and Global Levels

Mei Zhang 1, Qinmu Wu 1, Xiangping Chen 1 , Boutaïeb Dahhou 2 and Zetao Li 1,*
1 Guizhou Provincial Key Laboratory of Internet Plus Collaborative Intelligent Manufacturing,

Electrical Engineering School, Guizhou University, Guiyang 550025, China; mzhang3@gzu.edu.cn (M.Z.);
qmwu@gzu.edu.cn (Q.W.); ee.xpchen@gzu.edu.cn (X.C.)

2 University de Toulouse, UPS, LAAS, F-31400 Toulouse, France; boutaib.dahhou@laas.fr
* Correspondence: ztli@gzu.edu.cn

Received: 22 September 2020; Accepted: 4 November 2020; Published: 10 November 2020 ����������
�������

Abstract: This paper emphasizes the importance of the influences of local dynamics on the global
dynamics of a control system. By considering an actuator as an individual, nonlinear subsystem
connected with a nonlinear process subsystem in cascade, a structure of interconnected nonlinear
systems is proposed which allows for global and local supervision properties of the interconnected
systems. To achieve this purpose, a kind of interconnected observer design method is investigated,
and the convergence is studied. One major difficulty is that a state observation can only rely on
the global system output at the terminal boundary. This is because the connection point between
the two subsystems is considered unable to be measured, due to physical or economic reasons.
Therefore, the aim of the interconnected observer is to estimate the state vector of each subsystem
and the unmeasurable connection point. Specifically, the output used in the observer of the actuator
subsystem is replaced by the estimation of the process subsystem observer, while the estimation of
this interconnection is treated like an additional state in the observer design of the process subsystem.
Expression for this new state is achieved by calculating the derivatives of the output equation of the
actuator subsystem. Numerical simulations confirm the effectiveness and robustness of the proposed
observer, which highlight the significance of the work compared with state-of-the-art methods.

Keywords: interconnected nonlinear system; states estimation; left invertibility; local dynamics;
process subsystem; actuator subsystem; unknown interconnection

1. Introduction

A modern system often consists of a series of interconnected dynamical units (sensors, actuators and
system components) and, therefore, very complicated dynamics are exhibited [1]. Technological advances
mean that these units themselves are dynamic systems and exhibit complicated dynamics. Therefore,
a modern control system can be viewed as composed of dynamic subsystems connected in a series.
In all situations, the global plant can be analyzed at different levels—down to the component level—
to estimate the reliability of the whole plant.

In recent years, the topic of observer design for separate nonlinear systems has been widely discussed
in the literature, like high-gain observers [2–4], sliding mode observers [5,6], adaptive observers [7–9],
and unknown input observers (UIOs) [10–12]. These methodologies are typically centralized
monitoring systems where intelligence is either at the system level or at the field device level of
the processing plant. For the former, it aims at monitoring plant dynamics from the viewpoint of a
global system, like in [13–15]. In these methods, the dynamics of subcomponents (i.e., actuators) are
often neglected. They are, generally speaking, treated as constants in the input or output coefficient
matrix (function) of the process system model. For the latter, it focuses on the field device level,
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aiming at analyzing the internal dynamics of a specific subcomponent while the influences of local
internal dynamics on the global dynamics are neglected, like in [3,16].

However, centralized observers may not be suitable for modern control systems. On one hand,
a modern control system is in fact an interconnected system, while the centralized observer just enables
an individual component to monitor internal dynamics locally. However, the dynamics of the field
devices can cause significant disturbances to the global process and influence the quality of the final
product [17,18]. On the other hand, due to uneconomical measurement costs or physical environment
factors such as high temperature, it is impossible to measure the state or partial state, such as in [19,20].
To overcome these difficulties, an effective way is to decompose the system into several interconnected
subsystems so that the observer can be decentralized in each subsystem. In this way, it allows the
analysis of less complex subcomponents to study the characteristics of interconnected systems.

The last few decades have also witnessed significant improvements in dynamic networks which
consist of a number of interconnected units, like in [1,21–24]. A typical approach is to design distributed
observers for each subsystem using the internal information of each subsystem, and then all the
observers are aggregated to form the total estimator [25–27]. For instance, in [26], an observer
was designed for the whole system from the separate synthesis of observers for each subsystem,
assuming that for each of these separate designs, the states from the other subsystem were available.
In [27], an observer for each subsystem was proposed, using the state estimation of the previous
subsystem. In addition, a quasi-input-to-state stability and input-to-state dynamical stability (ISS/ISDS)
reduced-order observer for the whole system was designed, considering the interconnections of
quasi-ISS/ISDS reduced-order observers for each subsystem. A major challenge for these methods
is the availability of the measurement of the interconnections between subsystems. Therefore, it is
interesting to consider the problem of whether we can prove that, under some conditions, the effect
in lower subsystems can be distinguished from higher subsystems, thus avoiding full measurements
of the local subsystem. For example, in this work, the interconnection is the output of the actuator,
and it is not economical or realistic to measure its output. Contributions dealing with the state
observation problem for interconnected systems subjected to unknown interconnections have received
less extensive treatment in the literature. In [28], a promising method to solve the state observation
problem of nonlinear systems modeled by ODE-PDE series was proposed. A similar problem was
also studied in [29], where the interconnected system was composed of a nonlinear system and a
linear system.

In this paper, the problem of state estimation for interconnected nonlinear dynamic systems
is studied. An interconnected system consists of two nonlinear dynamic subsystems, and the
interconnection point is unknown. Thus, one major difficulty is that state observation can only rely
on the output of the terminal subsystem, making existing observers useless. Therefore, the problem
considered here is that the output of the nonlinear system cannot be measured directly, while part of
the state measurement of the second nonlinear system can be obtained. Two issues are highlighted
here. Firstly, it is assumed that the measurement value used by the observer of the former subsystem
is unmeasurable, and the solution is to replace it with the estimated value of the observer of the latter
subsystem. Secondly, in the latter subsystem, the estimated interconnection provided for the former
subsystem is regarded as an additional state to form a new, extended subsystem. The expression of the
new state is obtained by calculating the derivative of the output equation of the former subsystem.

The contribution of this paper mainly lies in its emphasis of the importance of the influences of
local internal dynamics (actuator) on the global dynamics of a control system. A method is proposed
to distinguish the influence of low subsystems in higher subsystems, even if the full measurement of
local subsystems cannot be realized. Thus, the goal of the design methodology is to enable or simplify
observer design for systems that are otherwise difficult to handle by allowing the designer to focus on
a smaller, nonlinear subsystem. That is to say, we mainly focus on observing, for example, how the
change of an internal parameter at the local level affects the global output at the global level. As a
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result, both local and global dynamics supervision is achieved, as well as analysis of the influences of
local internal dynamics on the global dynamics.

The rest of the paper is organized as follows. Problem formulation is introduced in Section 2,
where the type of dynamic units of the interconnected system is explained, and the main objective is
introduced. Section 3 contains all the results for the observer design, with respect to the interconnected
systems. Some numerical simulation examples are given to illustrate the effectiveness of the proposed
methods in Section 4. Finally, a conclusion is made in Section 5.

2. Motivations and Problem Formulations

The problem of state observation is investigated for an interconnected nonlinear system,
modeled by two cascaded nonlinear dynamical subsystems: the process and the actuator subsystems.
As shown in Figure 1, an interconnected nonlinear system structure is proposed by considering both
the actuator and the process as individual dynamic subsystems connected in cascade. The aim is to
accurately estimate the state vector of both subsystems, as well as the interconnection. As a result,
both local and global dynamics supervision are realized, and analysis of the influence of local internal
dynamics on global dynamics is achieved.
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Figure 1. Structure of an interconnected system.

A dynamic process subsystem is proposed in an input affine form:

Σp :

{ .
x = f(x) + g(x)ua, x(t0) = x0

y = x
(1)

where x ∈ <n is the state of the process subsystem, y ∈ <p is the output of the global system, which is
also the output of the process subsystem, ua ∈ <m is the input of the process subsystem, which is also
the output of the actuator subsystem, ua is assumed to be inaccessible, and f and g are smooth vector
fields on <n.

The actuator subsystem is described as

Σa :

{ .
xa = fa(xa, u) xa(t0) = xa0

ua = ha(xa, u)
(2)

where xa ∈ <n is the state, u ∈ <l is the input and constant parameter to be monitored, ua ∈ Rm is the
output of the actuator subsystem, which is also the input of the process subsystem, fa is the smooth
vector field on <n, and ha is the smooth vector field on <m.

Considering the interconnected system described by Equations (1) and (2), it is required to monitor
the performance of the interconnected system from the perspective of a single subsystem and the whole
system; that is, it is required to describe the cause and effect relationships between the subsystem
variables and global system output y, thus providing advanced predictive maintenance techniques in
an operating plant. The left invertibility of the interconnected system is then required for ensuring that
the impact of local variables on the global level is distinguishable. The property of distinguishability
of the two inputs or parameters refers to their capacity to generate different output signals for a given
input signal.



Appl. Sci. 2020, 10, 7966 4 of 22

One way to achieve this purpose is to propose observers for each of the subsystems and the
whole network. However, the main difficulty is that the connection point between the two subsystems
cannot be measured. This is because the interconnection point is the output of the actuator subsystem,
and online measurement is difficult to achieve due to physical or uneconomical reasons. In addition,
the measured value could be unreliable, due to its rough operation environment.

Therefore, the state observation in this work can only rely on the global system output
(i.e., the process state at the terminal boundary). As shown in Figure 1, the particular aim of our design
is to accurately estimate the state vectors x and xa of each subsystem online, as well as the unmeasured
interconnection vector ua.

3. Observer Design

The structure of the proposed interconnected observer is shown in Figure 2. It is a two-stage
interconnected observer system, consisting of an actuator and a process state estimator. The actuator
state estimator deals with estimating the states of the actuator subsystem, where the major challenge
is that the output is inaccessible. Aiding the actuator, the process state estimator is a coordinator
that extends the interconnection as an additional state of the process subsystem. This process state
estimator generates an input sequence which is applied to the actuator subsystem. Then, the overall
observer estimates the states and interconnections of the interconnected system by using the estimates
of the two estimators.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 22 

accurately estimate the state vectors x and xୟ of each subsystem online, as well as the unmeasured 
interconnection vector uୟ. 

3. Observer Design 

The structure of the proposed interconnected observer is shown in Figure 2. It is a two-stage 
interconnected observer system, consisting of an actuator and a process state estimator. The actuator 
state estimator deals with estimating the states of the actuator subsystem, where the major challenge 
is that the output is inaccessible. Aiding the actuator, the process state estimator is a coordinator that 
extends the interconnection as an additional state of the process subsystem. This process state 
estimator generates an input sequence which is applied to the actuator subsystem. Then, the overall 
observer estimates the states and interconnections of the interconnected system by using the 
estimates of the two estimators. 

 
Figure 2. Structure of the proposed interconnected observer. 

The main idea of the interconnected observer design is as follows. In the first aspect, the 
unknown interconnection is extended as new states of the process subsystem, where the expression 
can be achieved via derivatives of the output expression of the actuator subsystem, thus forming a 
new process subsystem. Then, for the state estimation of each subsystem of the interconnected 
system, the state estimation of one subsystem is realized by the state estimation of the other 
subsystem, and the global estimator is formed by the set of both observers. Specifically, it is assumed 
that an existing observer is already available for the actuator subsystem ∑ୟ, where the measured 
output is uୟ, while the observer is implemented using an estimate of uୟ, denoted by uୟ. In order to 
obtain this estimate, the state space of the process subsystem ∑୮ is extended to include uୟ as an 
additional state. By calculating the derivatives of the value uୟ  of the actuator subsystem, the 
expression of the time derivatives of uୟ is obtained; it is a function of u, with derivatives of u and xୟ. 
In summation, for the studied interconnected nonlinear systems, an interconnected observer design 
method is proposed by combining both actuator and process subsystem state estimators. 

3.1. Observer Design for the Interconnected System 

3.1.1. Interconnected System Extension 

For the interconnected system described by Equations (1) and (2), in order to facilitate analysis, 
the unknown interconnection uୟ is extended as a new state x୳: 

u uୟ ∑ୟ(u, xୟ) 
y ∑୮(uୟ, x) 

∑  Physical system  

   process state estimator 

   actuator state estimator 

u, uୟ, xොୟ 
u, xොa 

Interconnected Observer 

uୟ(u, x̂a), xො, y  uୟ 

Figure 2. Structure of the proposed interconnected observer.

The main idea of the interconnected observer design is as follows. In the first aspect, the unknown
interconnection is extended as new states of the process subsystem, where the expression can be
achieved via derivatives of the output expression of the actuator subsystem, thus forming a new
process subsystem. Then, for the state estimation of each subsystem of the interconnected system,
the state estimation of one subsystem is realized by the state estimation of the other subsystem,
and the global estimator is formed by the set of both observers. Specifically, it is assumed that an
existing observer is already available for the actuator subsystem ∑a, where the measured output is
ua, while the observer is implemented using an estimate of ua, denoted by ũa. In order to obtain this
estimate, the state space of the process subsystem ∑p is extended to include ua as an additional state.
By calculating the derivatives of the value ua of the actuator subsystem, the expression of the time
derivatives of ua is obtained; it is a function of u, with derivatives of u and xa. In summation, for the
studied interconnected nonlinear systems, an interconnected observer design method is proposed by
combining both actuator and process subsystem state estimators.
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3.1. Observer Design for the Interconnected System

3.1.1. Interconnected System Extension

For the interconnected system described by Equations (1) and (2), in order to facilitate analysis,
the unknown interconnection ua is extended as a new state xu:{

xu :, ua
.
xu :=

.
ua

(3)

To get a function for
.
xu, inspired by the work proposed in [29], let us derivate the output ua in

Equation (2) to get the following function:

.
xu :=

.
ua = ε

(
u,

.
u, xa

)
=

∂ha

∂u
(u, xa)

.
u +

∂ha

∂xa
(u, xa)fa(u, xa) (4)

where the function ε
(
u,

.
u, xa

)
is with respect to the time derivative of the output ua in Equation (2).

We can define Assumption 1 as follows: For any function u ∈ U (t, x̂a) ∈ A.C
(
<+,<

)
, there exists

a real constant satisfied by γ1:

‖ ε
(
u,

.
u, x̂a

)
− ε
(
u,

.
u, xa

)
‖≤ γ1 ‖ xa − x̂a ‖ (5)

Assumption 1. It refers to the global Lipchitz-type condition of function ε, although this condition seems
restrictive, becomes much lower since u and ua are bounded, which is usually the case in physical situations.

Moreover, this boundedness can be found by introducing saturation in the argument of ha.
According to [29], if u and ha belong to a compact set U,Y, then the global Lipchitz-type condition of
function ε can be replaced by local smoothness by using saturations.

Thus, a new interconnected system is constituted of Σ′ := Σp + Σa + xu:

Σ′ :



.
x = f(x) + g(x)xu
.
xu = ε

(
u,

.
u, xa

)
.
xa = fa(xa, u)
y = x
x(t0) = x0; xa(t0) = xa0; xu = ha(xa, u)

(6)

where the input of the system is u, the output is y, and xu is an unmeasured state.
Let ξ1 = [ ξ11 ξ12 ] = [ x xu ], ξ2 = xa. Thus, the above system becomes

Σ′ :



.
ξ1 = f1(ξ1, ξ2, u)
.
ξ2 = f2(ξ2, u)(

y1
y2

)
=

(
h1(ξ11)

h2(ξ2)

) (7)

where f1(ξ1, ξ2, u) :=

(
f(ξ11) + g(ξ11)ξ12

ε
(
u,

.
u, ξ2

) )
, f2(ξ2, u) := fa(ξ2, u), and

(
h1(ξ11)

h2(ξ2)

)
:=

(
ξ11

ha(xa, u)

)
.

The above system can be divided into two subsystems:

ΣOi :

{ .
ξi = fi

(
ξi, ξi, u

)
yi = hi(ξi)

(8)

where i = {1, 2} and i denotes the complementary index of i (i.e.,
{

i, i
}
= {1, 2}).
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3.1.2. State Estimator Design for the New Process Subsystem

The following system can be viewed as a transformed form of the process subsystem described in
Equation (1):

ΣP′ :

{ .
ξ1 = f1(ξ1, ξ2, u)
y1 = ξ11

(9)

where f1(ξ1, ξ2, u) :=

(
f(ξ11) + g(ξ11)ξ12

ε
(
u,

.
u, ξ2

) )
.

The new process subsystem in Equation (9) can be expressed as follows:

ΣP′ :

{ .
ξ1 = G(ξ11)ξ1 + F(ξ11) + ε

(
u,

.
u, ξ2

)
y1 = Cξ1

(10)

where G(ξ11) =

(
0 g(ξ11)

0 0

)
, F(ξ11) =

(
f(ξ11)

0

)
, C
(

In 0
)

, ε
(
u,

.
u, ξ2

)
=
[

0 ε
(
u,

.
u, ξ2

) ]T
, and In

is the n× n identity matrix.
As demonstrated in [30], supposing that the following assumptions related to the boundedness

of the states, signals, and functions are satisfied, an extended, high-gain observer for the system in
Equation (10) can be formed.

Assumption 2. It states that there exist finite real numbers $, τ with 0 < $ ≤ τ, and that $2 In ≤
FT(ξ11)F(ξ11) ≤ τ2 In.

Assumption 3. Is that F(ξ11) is a global Lipchitz, with respect to ξ11, locally and uniformly with respect to u.

Assumption 4. It states that g(ξ11) is a global Lipchitz with respect to ξ11.

Then, an extended, high-gain observer for the system in Equation (10) can be given as

ΣPO′ :

{ .
ξ̂1 = G

(
ξ̂11
)
ξ̂1 + F

(
ξ̂11
)
+ ε
(
u,

.
u, ξ̂2

)
−Λ−1(ξ̂1

)
S−1
θ CT(Cξ̂1 − y1

)
y1 = Cξ̂1

(11)

where H
(
ξ̂1
)

:= Λ−1(ξ̂1
)
S−1
θ CT is the gain function and Λ

(
ξ̂1
)

:=

[
I 0
0 g

(
ξ̂11
) ], Sθ is the unique

symmetric positive definite matrix, satisfying the following algebraic Lyapunov equation:

θSθ + ATSθ + SθA−CTC = 0 (12)

where A =

[
0 I
0 0

]
, θ > 0 is a parameter defined by Equation (12), and the solution is

Sθ =

[
1
θ I − 1

θ2 I
− 1
θ2 I 2

θ3 I

]
(13)

Then, the gain of the estimator can be given by

H
(
ξ̂1
)
= Λ−1(ξ̂1

)
S−1
θ CT =

[
2θI

θ2g−1(ξ̂11
) ] (14)

The state estimation error is expressed as

ep(t) = ξ̂1(t)− ξ1(t) (15)
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Then, by subtracting the corresponding Equations (10) and (11), the following error dynamics can
be obtained:

.
ep = G

(
ξ̂11
)
ξ̂1 + F

(
ξ̂11
)
+ ε
(
u,

.
u, ξ̂2

)
+ H

(
ξ̂1
)(

Cξ̂1 − y
)
−G(ξ11)ξ1 − F(ξ11)− ε

(
u,

.
u, ξ2

)
(16)

Assumption 5. Is that for any u ∈ U
(
t, ep

)
∈ A.C(<+,<) , there exists a continuously differentiable function

Vp, and the positive constants α1, β1, γ11, γ12 satisfy the following:
(a)γ11‖ ep ‖2 ≤ Vp

(
t, ep

)
≤ γ12‖ ep ‖2

(b) ∂Vp
∂t
(
t, ep

)
+

∂Vp
∂ep

(
t, ep

) .
ep ≤ −α1ep

2

(c) ‖ ∂Vp
∂ep

(
t, ep

)
‖≤ β1 ‖ ep ‖

. (17)

Theorem 1. It states that if Assumption 1 and Assumption 5 are satisfied by properly choosing a relatively
high-gain tuner parameter θ such that the following conditions are met: (1) if ‖ ξ2 − ξ̂2 ‖converges to
0, then make θ > η1

α1
, and (2) if ‖ ξ2 − ξ̂2 ‖is bounded by ẽp, then choose a value for θ such that(

θ∗α1 − η1 − η2
θ∗
)
≥ 0.

Then, the system in Equation (11) becomes a converging observer for the system described in
Equation (10), which is a transformed form of the process subsystem described in Equation (1).

The proof is given in Appendix A.

3.1.3. State Estimator Design for the New Actuator Subsystem

Equation (18) can be viewed as a transformed form of the actuator subsystem described in
Equation (2):

Σa′ :

{ .
ξ2 = f2(ξ2, u)
y2 = h2(ξ2, u)

(18)

where f2(ξ2, u) := fa(ξ2, u).
A convergence observer can be designed for the system in Equation (18) as follows:

ΣaO′ :

{ .
ξ̂2 = f2

(
ξ̂2, u

)
+ κ2

(
ℊ2, ξ̂2

)(
h2
(
ξ̂2
)
− y2

)
.
ℊ2 = Θ2

(
ξ̂2, u,ℊ2

) (19)

where κ2 and Θ2 are smooth gain functions, with respect to their arguments, the state variable(
ℊ2, ξ̂2

)
belongs to (<n ×Θ2), and Θ2 is a subset of <n, which is positively invariant by the second

equation of (19).
The state estimation error is defined as

ea := ξ̂2(t)− ξ2(t) (20)

Then, by subtracting the corresponding Equations (18) and (19), we get the following
error dynamics:

.
ea(t, ea) = f2(ξ2, u)− f2

(
ξ̂2, u

)
− κ2

(
ℊ2, ξ̂2

)(
h2
(
ξ̂2
)
− y2

)
(21)

where K2
(
u, ξ̂2, y2

)
:= κ2

(
ℊ2, ξ̂2

)(
h2
(
ξ̂2
)
− y2

)
.

In order to formulate a solution to the convergence of the above observer, we need to follow
Assumption 6, with respect to the error Lyapunov function introduced in [26]. This error Lyapunov
function shows the equivalence of the existence of an error Lyapunov function and the existence of a
converging observer.
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Assumption 6. Is that for any u ∈ U(t, ea) ∈ A.C(<+,<) , there exists a continuously differentiable function
Va and positive constants α2, β2, γ21, γ22 to satisfy

(a)γ21‖ ea ‖2 ≤ Va(t, ea) ≤ γ22‖ ea ‖2

(b) ∂Va
∂t (t, ea) +

∂Va
∂ea

(t, ea)
.
ea ≤ −α2‖ ea ‖2

(c) ‖ ∂Va
∂ea

(t, ea) ‖≤ β2 ‖ ea ‖
. (22)

The observer defined by Equation (19) is a converging observer if Assumption 6 is satisfied.
However, the observer in Equation (19) can only be realized when the output y2 is measurable,
which is not the case. Due to this, y2 in our design represents the output of the actuator subsystem.
It is assumed to be unmeasured and, therefore, y2 must be replaced by an estimate ỹ2 using the
available measurements.

Fortunately, that estimation of ỹ2 is available in the process subsystem observer in Equation (11).
By substituting ua for ỹ2, we can now implement the observer in Equation (19) for an actuator
subsystem as

ΣaO′′ :

{ .
ξ̂2 = f2

(
ξ̂2, u

)
+ κ2

(
ℊ2, ξ̂2

)(
h2
(
ξ̂2
)
− ỹ2

)
.
ℊa = Θ2

(
ξ̂2, u,ℊ2

) (23)

where K2
(
u, ξ̂2, ỹ2

)
:= κ2

(
ℊ2, ξ̂2

)(
h2
(
ξ̂2
)
− ỹ2

)
.

The estimation error is produced again by subtracting the corresponding equation in
Equations (18) and (23), and the new error dynamics are achieved as follows:

.
ẽa(t, ẽa) = f2(ξ2, u)− f2

(
ξ̂2, u

)
−K2

(
u, ξ̂2, ỹ2

)
= f2(ξ2, u)− f2

(
ξ̂2, u

)
−K2

(
u, ξ̂2, y2

)
+ K2

(
u, ξ̂2, y2

)
−K2

(
u, ξ̂2, ỹ2

)
=

.
ea(t, ea) + K2

(
u, ξ̂2, y2

)
−K2

(
u, ξ̂2, ỹ2

) (24)

In order to ensure the stability of the error dynamics in Equation (24), an assumption is required
with respect to the sensitivity of K2

(
u, ξ̂2, y2

)
, with changes of y2.

Assumption 7. It provides a sufficient condition for achieving this purpose, stating that for any
u ∈ U,

(
t, ξ̂2, ỹ2

)
∈ A.C(<+,<) , there exists a real constant γ2 to satisfy

‖ K2
(
u, ξ̂2, ỹ2

)
−K2

(
u, ξ̂2, y2

)
‖≤ γ2 ‖ y2 − ỹ2 ‖ . (25)

Similar to Assumption 1, Assumption 7 implies a global Lipchitz-type condition on function
K2 such that, in a physical problem, u, y2 are bounded. Therefore, it can also be replaced by a local
smoothness condition.

In addition to asking that the state estimation error ea converge to 0 in the absence of disturbances,
we want it to still converge to 0 if a disturbance is present, but converge to 0 and remain bounded if
the disturbance is bounded. Therefore, Assumption 7 implies that the definition of

.
ẽa(t, ẽa) in (24) is

not affected.
In particular, since output ỹ2, used in the observer in Equation (23), is in fact a virtual measurement

which is estimated by the output of the process subsystem, an estimation error becomes unavoidable.
This estimation error can be viewed as a bounded disturbance to the real output of the actuator
subsystem y2. Therefore, the basic problem addressed in this work is the design of nonlinear observers
that possesses robustness to the disturbance affecting the real output.

Theorem 2. It says that if Assumptions 6 and 7 are satisfied, then the observer described in Equation (23) is a
converging observer for the actuator subsystem described in Equation (18).

The proof is given in Appendix B.
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3.1.4. Interconnected Observer

The interconnected observer for the studied interconnected system by the system in
Equations (11) and (23) is constituted as follows:

Σ′O :


.
ξ̂1 = G

(
ξ̂11
)
ξ̂1 + F

(
ξ̂11
)
+ ε
(
u,

.
u, ξ̂2

)
−Λ−1(ξ̂1

)
S−1
θ CT(Cξ̂1 − y1

)
.
ξ̂2 = f2

(
ξ̂2, u

)
+ κ2

(
ℊ2, ξ̂2

)(
h2
(
ξ̂2
)
− ξ̂12

) (26)

where the virtual measurement ỹ2 in Equation (23) is replaced by the estimation ξ̂12. The observer
estimation errors satisfy the following equation:

ep(t) = ξ̂1(t)− ξ1(t), ẽa(t) = ξ̂2(t)− ξ2(t) (27)

3.2. Interconnected Observer Analysis

The observer in Equation (26) has been designed so that the dynamics of the corresponding error
system in Equation (27) are governed as follows:{ .

ep
(
t, ep

)
= G

(
ξ̂11
)
ξ̂1 + F

(
ξ̂11
)
+ ε
(
u,

.
u, ξ̂2

)
+ H

(
ξ̂1
)(

Cξ̂1 − y
)
−G(ξ11)ξ1 − F(ξ11)− ε

(
u,

.
u, ξ2

)
.
ẽa(t, ẽa) =

.
ea(t, ea) + K2

(
u, ξ̂2, h2

(
ξ̂2
))
−K2

(
u, ξ̂2, ξ̂12

) (28)

To analyze the system in Equation (28), our purpose is to study the stability of the error dynamics.

Theorem 3. If Assumptions 1–7 are satisfied, then a relatively high value of θ can be chosen such that
1− 1

2
√

α2(θ−η1)

(
η3 +

η2
θ

)
, and the error dynamics governed in Equation (28) are convergent.

Proof. The objective is to analyze the stability of the error dynamics. To achieve this purpose, by using
Va and Vp, defined in the proof of Theorems 1 and 2, the following Lyapunov function candidate is
constructed:

V
(
t, ẽp, ẽa

)
= Vp

(
t, ẽp

)
+ Va(t, ẽa) (29)

Then, the time derivation of V
(
t, ẽp, ẽa

)
yields

.
V
(

t, ẽp, ẽa
)
= ∂Vp

∂t
(
t, ẽp

)
+

∂Vp

∂ep

(
t, ẽp

) .
ẽp
(
t, ẽp

)
︸ ︷︷ ︸

term1

+ ∂Va

∂t
(t, ẽa) +

∂Va

∂ea
(t, ea)

.
ea(t, ea) +

∂Va

∂ea
(t, ea)

(
K
(
u, ξ̂2, y2

)
−K

(
u, ξ̂2, ξ̂12

))
︸ ︷︷ ︸

term2

(30)

Let us analyze the different terms on the right side of Equation (30), starting with term 1 and
using results in the proof of Theorem 1:

.
Vp
(
t, ẽp

)
=

∂Vp
∂t

(
t, ẽp

)
+

∂Vp
∂ep

(
t, ẽp

) .
ẽp
(
t, ẽp

)
≤ (−θ+ η1)Vp + η2

θ

√
Vp ‖ ξ2 − ξ̂2 ‖

(31)

In turn, by using results in the proof of Theorem 2, then term 2 on the right side of Equation (30)
develops as follows:

.
Va(ẽa) =

∂Va
∂t (t, ẽa) +

∂Va
∂ea

(t, ea)
.
ea(t, ea) +

∂Va
∂ea

(t, ea)
(
K2
(
u, ξ̂2, y2

)
−K2

(
u, ξ̂2, ξ̂12

))
≤ −α2Va + η3

√
Va ‖ ξ12 − ξ̂12 ‖

(32)

Then, the overall inequality yields

.
V
(
t, ẽp, ẽa

)
≤ −α2Va + η3

√
Vp
√

Va + (−θ+ η1)Vp +
η2
θ

√
Vp
√

Va (33)

Now, set V∗a = α2Va, V∗p = (θ− η1)Vp, and V∗ = V∗a + V∗p.
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Let us assume that
ς = min{α2, (θ− η1)}

In this case,
V∗ ≤ 2ςV (34)

It should also be noted that

V∗p + V∗a ≥ 2
√

V∗p
√

V∗a
= 2

√
α2(θ− η1)

√
Vp
√

Va
(35)

Thus, √
Vp
√

Va ≤
1

2
√
α2(θ− η1)

V∗ (36)

It is easy to get that inequality in Equation (33) to yield the following:

.
V
(
ẽp, ẽa

)
≤ −V∗ + 1

2
√
α2(θ−η1)

(
η3 +

η2
θ

)
V∗

≤ −
(

1− 1
2
√
α2(θ−η1)

(
η3 +

η2
θ

))
V∗

≤ −2ς

(
1− 1

2
√
α2(θ−η1)

(
η3 +

η2
θ

))
V

(37)

Now, it suffices to choose a value of θ such that
(

1− 1
2
√
α2(θ−η1)

(
η3 +

η2
θ

))
≥ 0.

This ends the proof. �

4. Simulations

Numerical simulations were performed to validate that the interconnected observer given by
Equation (26) can be implemented for monitoring the performance of an interconnected system. A case
study was developed on an intensified heat exchanger (IHEX). The pilot consisted of three process
plates sandwiched between five utility plates. Two pneumatic control valves were used to control
the utility and process fluid. More relative information could be found in [17]. Moreover, the outlet
fluid flow rates of the control valves were assumed to be unmeasured to ensure a realistic simulation.
Therefore, during the course of the simulation work, the proposed observers were designed for
estimating unmeasured inlet fluid flows and monitoring the performance of the IHEX.

4.1. System Modelling

4.1.1. Actuator Subsystem Modelling

The pneumatic control valve is used to act as an actuator in this system. By applying Bernoulli’s
continuous flow law of incompressible fluids, we have

F = Cvf(X)

√
∆P
sg

(38)

where F is the flow rate (m3s−1), ∆P is the fluid pressure drop across the valve (Pa), sg is the specific
gravity of the fluid and equals 1 for pure water, X is the valve opening percentage, Cv is the valve
coefficient, and f(X) is the flow characteristic which is defined as the relationship between the valve
capacity and fluid traveling through the valve. In [3], a pneumatic control valve had a dynamic model
as follows:

m
d2X
dt

+ µ
dX
dt

+ kX = pcAa (39)
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dpc
dt

=
(
pc + pa

)(
CVP− Aa

V0 + AaX
dX
dt

)
(40)

where Aa is the diaphragm area on which the pneumatic pressure acts, pc is the pneumatic pressure,
m is the mass of the control valve stem, µ is the friction of the valve stem, k is the spring compliance,
X is the stem displacement or percentage opening of the valve, CVP is the command pressure, and pa
is the air pressure. The following definitions also apply:

xa
T =

[
xa1 xa2 xa3 xa4xa5 xa6

]
=
[

X1
dX1
dt pc1 X2

dX2
dt pc2

]
uT =

[
u1 u2

]
=
[

CVP1 CVP2

]
, ua

T =
[

F1 F2

]
=
[

Cv

√
∆P1
sg X1 Cv

√
∆P2
sg X2

]
C =

[
c1 c2 c3 c4c5 c6

]
=
[

Cv

√
∆P1
sg 0 0 Cv

√
∆P2
sg 0 0

]
where pc1, pc2, X1, X2, CVP1, CVP2, ∆P1, and ∆P2 correspond to pc, X, CVP, and ∆P in Equations (36)–(38),
respectively, and subscripts one and two represent two different control valves. The actuator subsystem
is then described as 

.
xa1 = xa2
.
xa2 = − k1

m xa1 − µ1
m xa2 +

Aa
m xa3

.
xa3 = xa3u1 − Aa

V0+Aaxa1
xa3xa2 + pau1 −

Aapa
V0+Aaxa1

xa2
.
xa4 = xa5
.
xa5 = − k2

m xa4 − µ2
m xa5 +

Aa
m xa6

.
xa6 = xa6u2 − Aa

V0+Aaxa4
xa5xa6 + pau2 −

Aapa
V0+Aaxa4

xa5

y = Cxa

(41)

4.1.2. Process Subsystem Modelling

The IHEX can be modeled based on the mass and energy balances, which describe the evolution
of characteristic values such as temperature, mass, composition, and pressure. Considering the heat
exchanger system taken from [17], the dynamic equation governing the heat balance of the fluids is
given by

.
Tp =

UA
ρpcppVp

(
Tu − Tp

)
+

1
Vp

(
Tpi − Tp

)
Fp (42)

.
Tu =

UA
ρucpuVu

(
Tp − Tu

)
+

1
Vu

(Tui − Tu)Fu (43)

where ρp, ρu are the densities of the fluids (in kg·m−3), Vp, Vu are the volumes of the fluids (in m3),
cpp, cpu are the specific heats of the fluids (in J·kg−1·K−1), U is the overall heat transfer coefficient
(in J·m−2·K−1·s−1), A is the reaction area (in m2), Fp, Fu are the mass flow rates of the fluids (in kg·s−1),
and Tpi, Tui are the inlet temperatures of the fluids.

If the state vector is defined as xT = [x1, x2]
T =

[
Tp, Tu

]T, the control input as ua
T = [ua1, ua2]

T =
[
Fp, Fu

]T,
and the output vector as yT = [y1, y2]

T =
[
Tp, Tu

]T, then the above two equations can be rewritten as
.
x = f(x) +

2
∑

i=1
gi(x)ua

y = h(x, ua)
(44)

where f(x) =

(
f1(x)
f2(x)

)
=

 hpA
ρpCpp Vp

(
Tp − Tu

)
huA

ρuCpu Vu

(
Tu − Tp

)
, g(x) = (g1, g2) =

 (Tpi−Tp)
Vp

0

0 (Tui−Tu)
Vu

,

and y1 = x1, y2 = x2.
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By using Equation (34), a function for the derivatives for ua is obtained:

.
ua = ε

(
u,

.
u, xa

)
= ∂ha

∂u (u, xa)
.
u + ∂ha

∂xa
(u, xa)fa(u, xa)

=
(

Cv

√
∆P1
sg 0 Cv

√
∆P2
sg 0

)
xa +

(
Aa
m Cv

√
∆P1
sg

Aa
m Cv

√
∆P2
sg

)
u

(45)

If the state vector is defined as x1
T = [x11, x12]

T =
[
Tp, Tu

]T, the unmeasured state as

x2
T = [x21, x22]

T = [ua1, ua2]
T =

[
Fp, Fu

]T, and the output vector as yT = [y1, y2]
T =

[
Tp, Tu

]T,
then Equations (44) and (45) can be rewritten as

.
x1 = G1(x1)x2 + g1(x1, u)
.
x2 = ε

(
u,

.
u, xa

)
y = x1

(46)

where G1(x1) =

 (Tpi−x11)
Vp

0

0 (Tui−x12)
Vu

 and f1(x) =

 hpA
ρpCpp Vp

(x11 − x12)

huA
ρuCpu Vu

(x12 − x11)

.

4.2. Observer Design

4.2.1. Observer 1 for the Actuator Subsystem

In this model, outputs were considered as unmeasured and were substituted by its estimation
proposed in Observer 2, then an extended high-gain observer of the form in Equation (26) for the
system in Equation (41) is given by

.
x̂a1 = x̂a2 − k1

(
Cv

√
∆P1
sg x̂a1 − x̂21

)
.
x̂a2 = − k1

m x̂a1 − µ1
m x̂a2 +

Aa
m x̂a3 − k2

(
Cv

√
∆P1
sg x̂a1 − x̂21

)
.
x̂a3 = x̂a3u1 − Aa

V0+Aax̂a1
x̂a3x̂a2 + pau1 −

Aapa
V0+Aax̂a1

x̂a2 − k3

(
Cv

√
∆P1
sg x̂a1 − x̂21

)
.
x̂a4 = x̂a5 − k4

(
Cv

√
∆P1
sg x̂a4 − x̂22

)
.
x̂a5 = − k2

m x̂a4 − µ2
m x̂a5 +

Aa
m x̂a6 − k5

(
Cv

√
∆P1
sg x̂a4 − x̂22

)
.
x̂a6 = x̂a6u2 − Aa

V0+Aax̂a4
x̂a5x̂a6 + pau2 −

Aapa
V0+Aax̂a4

x̂a5 − k6

(
Cv

√
∆P1
sg x̂a4 − x̂22

)
(47)

4.2.2. Observer 2 for the Process Subsystem

It should be noted that the original system in Equation (45) has been augmented with the
differential equation

.
ua = ε

(
u,

.
u, xa

)
; that is to say, the unknown inputs are treated like an unmeasured

state. Then, it is possible to design an observer of the form in Equation (26) for the system in
Equation (46) as follows:

.
x̂1 =


(

Tpi−x̂11
)

Vp
0

0 (Tui−x̂12)
Vu

x̂2 +

 hpA
ρpCpp Vp

(x̂11 − x̂12)

huA
ρuCpu Vu

(x̂12 − x̂11)

−( 2θ
2θ

)
(ŷ− y)

.
x̂2 =

(
Cv

√
∆P1
sg 0 Cv

√
∆P2
sg 0

)
x̂a +

(
Aa
m Cv

√
∆P1
sg

Aa
m Cv

√
∆P2
sg

)
u−

 θ2 hpA
ρpCpp Vp

(x̂11 − x̂12)

θ2 huA
ρuCpu Vu

(x̂12 − x̂11)

(ŷ− y)

ŷ = x̂1

(48)

4.3. Numerical Simulations

In order to test the performance of the proposed observers, two numerical simulations were
carried out. Considering the actuator and process models given by Equations (44) and (46), Observer 1
in Equation (47) and Observer 2 in Equation (48) were designed for estimating unmeasured inlet flows
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Fp, Fu and monitoring the performance of the final products Tp, Tu. Available measurements involve
the inlet–outlet temperatures of the hex reactor and the pneumatic pressure pc1, pc2 of the actuators.

Two cases were considered. In Case 1, constant inlet flows Fp, Fu were considered in
both fluids. By contrast, in Case 2, Fp, Fu were considered to be time varying. Observers 1
and 2 were simulated with respect to the actuator and process subsystems, using the values
corresponding to an IHEX system from [17]. The parameters in the process subsystem were as follows:
hA = 214.8 W·K−1, Vp = 2.685× 10−5 m3, Vu = 1.141× 10−4 m3, and the inlet temperatures Tpi

and Tui were 76 ◦C and 15 ◦C, respectively. The parameters in the actuator subsystem were as follows:
m = 2 kg, Aa = 0.029 m2, µ = 1500 Ns/m, k = 6089 Ns/m, Pc for the utility fluid was 1 MPa (1.2 Mpa
for the process fluid), and the pressure drop ∆P in the utility fluid was 0.6 MPa (60 KPa in the process
fluid).

In order to illustrate the robustness, external disturbances and measurement noise were
considered. Suppose the output measurement is corrupted by a colored noise. In addition to noise,
no error is assumed in measuring Tp and Tu. Moreover, to compare the effectiveness of the proposed
method with other existing ones, we employed a typical unknown input observer (UIO) in [31] to
show the differences.

4.3.1. Case 1: Both Fluid Flow Rates Fp, Fu Are Constant

The objective of this simulation was to prove the convergence of the observers in a common
situation where both fluid flow rates remained constant over a long time. The computed inlet flow
rate of the utility fluid Fu was 4.22× 10−5 m3s−1, and the inlet flow rate of the process fluid Fp was
a constant 4.17× 10−6 m3s−1. The computed value meant the expected true values of the actuators.
The initial conditions of the process model were T0

p = 80 ◦C and T0
u = 20 ◦C, respectively, and for

the observers they were T̂0
p = T̂0

u = 30. The discrepancies between the initial conditions of the
process and those of the observers were reasonable and realistic, considering that the temperature
was a process variable that could be easily measured. In order to evaluate the observer performance
against uncertainties of the knowledge of the fluid flow rate, the initial value of the estimates were
F̂0

p = F̂0
u = 0 in both observers. This assumption represented a relatively rough situation in the

practical engineering world. However, simulation results showed encouraging results. The tuning
parameters were k1 = k3 = 100, k2 = k4 = 0.15 (for Observer 1) and θ = 80 (for Observer 2).

The results are reported in Figures 3 and 4. In Figure 3, the dashed curves correspond to the
estimates using Observer 1, and the solid lines are the measured temperatures. It can be seen that,
whether noise-free or noise-corrupted, the convergence of the estimated T̂pandT̂u values proved to be
fast (in several seconds). It is not surprising because, actually, TpandTu were the measured outputs of
the overall system.
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Figure 4. Output of the utility fluid temperature Tu. The solid line is the measured value,
and the dashed line is estimated by Observer 1. (a) represents Noise-free case while (b) represents
Noise-corrupted case.

The main contribution of the proposed method is the capacity that, besides states, it can estimate
the unknown connection of an interconnected system by the final measured outputs, where the
unknown connection represents the inlet fluid flow rate Fp, Fu in the IHEX system. Figures 5 and 6 give
the encouraging results. Figure 5 shows the computation and estimation of the process fluid flow rate
Fp, using a UIO and Observer 2. Figure 6 is the results for the utility fluid flow rate Fu. As expected,
F̂pandF̂u follow different trajectories before they converge toward the true value (computed value)
in a relatively short transient period, whether or not noise exists. However, the convergence speed
of the proposed method is obviously faster than that of the UIO. In addition, the proposed observer
was more robust with noise. For Fp, as shown in Figure 5, if no noise was present, after less than 5 s,
the three curves overlapped. Compared with the curve of the UIO on the dashed, dotted line, the curve
of the proposed Observer 2 in dashed, dotted line only needed less than 1 s to track the simulated
curve of the solid line. Moreover, from Figure 5, we can see that the curve of the UIO in the dashed line
was significantly more affected by noise than that of Observer 2 in the dashed, dotted line. The similar
results are shown in Figure 6 with respect to Fu. According to Figure 6, it took about 1.5 s for the three
curves to be overlapped, while for the curve of Observer 2 on the dashed line, less than 0.5 s was taken.
The impact of noise is relatively obvious on the curve of the UIO, while for the curve of Observer 2,
the influence was less significant.
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Figure 5. The computation and estimation of the process fluid flow rate Fp. The solid line is
the computed value; the dashed line is estimated by the unknown input observer (UIO); and the
dashed, dotted line is estimated by Observer 2. (a) represents Noise-free case while (b) represents
Noise-corrupted case.
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In both fluids, these differences were caused by their varied initial values. However, it is proven
that if adequate values of the tuning parameters k and θ are selected, no matter the degree of deviation
of the initial value of F̂0

p and F̂0
u from the simulated values in the system model, convergences are

guaranteed. Larger values of these tuning parameters ensure a smaller convergence time, while smaller
values have the opposite effect. However, large tuning values should be avoided, since the observer
may become too sensitive to measurement noise in real-time applications. According to the above
analysis, we can readily conclude that the proposed interconnected observer works effectively and
robustly for the designed purposes with proper tuning parameters.

4.3.2. Case 2: The Fluid Flow Rates Vary Due to Parameter Changes

The present computations were executed to get an accurate screening of the variation of the
observer estimate by corroborating if they were in agreement with the simulated fluid flow rates which
underwent either an abrupt change or a gradual variation due to, for example, aging or erosion.

The parameter effects were taken into account in the following way. Initial values of
Fu = 4.22× 10−5 m3s−1 and Fp = 4.17× 10−6 m3s−1 are considered, followed by an abrupt change
of Fu at 80 s. The reason for this change is the variation of parameter ∆P, with the value changing
from 0.6 MPa to 0.4 Mpa. Several factors can be attributed to this kind of variation, such as valve
clogging or an unexpected pressure drop across the control valves. After that, at t = 150 s, Fp began
to deteriorate due to an increase of the spring compliance k2 in the process fluid actuator. One main
reason contributing to this change is erosion. Because of erosion, the gland packing of the valve may
loosen, which leads to stem vibration. In the simulation, a value of 1000 nm−1 was added to the
spring compliance k2. This simulation was carried out using the same constants used in the previous
simulation and the same values of Tpi and Tui, as well as T0

p and T0
u, were used. The initial conditions of

both observers, as well as the observer parameters (k1, k2, k3, k4, and θ) were the same as the previous
ones. These variations are illustrated in Figures 7–10.
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Figure 10. The computation and estimation of the utility fluid flow rate Fu. The solid line is the
computed value; the dashed line is estimated by the UIO; and the dashed, dotted line is estimated by
Observer 2. (a) represents Noise-free case while (b) represents Noise-corrupted case.

As shown in Figures 7 and 8, whether in a noise-free or noise-corrupted situation, the estimated
outlet fluid temperatures T̂p and T̂u on the dashed line can better track the curve of the measurements
Tp and Tu on the solid line after a short transient time. At 80 s, both curves decreased unexpectedly
and finally stabilized at a new level. A drop of 0.2 ◦C was observed. Shortly after, at t = 150 s,
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another drop happened, and a new stable level was expected with a 0.9 ◦C reduction. These decreases
imply the influences of parameter changes in the fluid actuators, and no further variations illustrate
the occurrence of additional changes. A similar result was obtained in the estimated T̂u of the utility
fluid in Figure 8. It is shown that, due to changes of ∆P1 and k2, the measured Tu dropped 0.2 ◦C
and 0.5 ◦C at 80 s and 150 s, respectively. The estimated T̂u on the dashed line tracks Tu after the
observer converges.

The simulation curves indicate that the proposed observer was effective at tracking system
performance. However, it is shown that, because of noise, the drops caused by local parameter changes
at 80 s could not be visually observed on the global output directly. In order to analyze the influence
of these changes, we have to detect it through the local dynamics supervision. Therefore, it is very
meaningful to monitor both the local and global dynamics of a control system.

It can be seen from Figure 9 that, in a noise-free situation, two estimate curves on the dashed line
and the dashed, dotted line converge to the simulated value Fp of the solid line quickly after a transient
response. The dashed line is the estimated process fluid flow rate F̂p produced by the UIO, and the
dashed, dotted line was generated by Observer 2. Later, at 150 s, there was an unexpected drop by the
simulated Fp on the solid line. Fortunately, both estimate curves responded quickly to this variation,
and the curve of the UIO took 1.5 s to track Fp again, while the curve of Observer 2 converged more
quickly than that of the UIO. The decrease implies parameter changes in the process fluid actuator,
which satisfy the assumption that k2 changes at t = 150 s. When it comes to the noise-corrupted
situation, the curve of the UIO was significantly affected by the noise, although a drop at 150 s can still
be observed. Luckily, the curve of Observer 2 was relatively robust to the noise, as it converged to the
simulated value of the solid line with a minor difference compared with the noise-free situation.

Figure 10 demonstrates the results for the utility fluid. The same results were obtained in a
noise-free situation at a time of 80 s. As expected, the simulated Fu of the solid line jumped due to the
change of ∆P1. The estimated value of F̂u of the dashed line by the UIO and the dashed, dotted line by
Observer 2 track well with the value of Fu on the solid line. Just as with the process fluid situation,
the convergence speed of Observer 2 was faster than that of the UIO. If measurements were corrupted
by noise, the curve of Observer 2 was not obviously influenced. Conversely, the curve of the UIO was
greatly impacted.

To sum up, obviously, the proposed interconnected observer is effective, even when the unknown
connection is varying in time simultaneously. Therefore, the proposed observer proves its ability to
monitor the performance of interconnected systems and to estimate unknown interconnections.

5. Conclusions

The goal of the design methodology presented in this paper was to enable or simplify observer
design for systems that are otherwise difficult to handle by allowing the designer to focus on a smaller,
nonlinear subsystem. That is to say, we mainly focused on observing, for example, how the change of
an internal parameter at the local level affects the global output at the global level.

An interconnected observer is designed to estimate both the state and unmeasured interconnection
at the local and global levels. As a result, both local and global dynamics can be observed, as well as
the influence of local dynamics on global dynamics. In particular, the interconnection is not supposed
to be accessible to measurement. In order to achieve this purpose, firstly, an existing observer is
extended to estimate the states of the actuator subsystem. Particularly, the information of the actuator
subsystem output is substituted by their estimates, achieved by the observer of the process subsystem.
Secondly, a kind of extended, high-gain observer is produced to estimate the states of the process
subsystem, which is subjected to a precise unknown input. The unknown input is considered a new
state of the process subsystem, and it is expressed as a function of the inputs, derivatives of the inputs,
and the states of the actuator subsystem. Thus, an interconnected observer is proposed by using
the estimates of the states and the unmeasured interconnection, and the convergence is investigated.
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Finally, satisfactory simulation results are obtained to confirm the effectiveness and robustness of the
proposed method.

In this paper, it is clear that the physical motivation for the decomposition of a control system
into the actuator and the process parts is physically motivated. In this respect, for control analysis
purposes, the condition for decomposition of an independent control system may be the target of
future investigations, like the inverted pendulum on a cart. Another open question worth addressing
is the demonstration of stability and sensitivity of the estimation error, like the use of ISS to investigate
the stability of the estimation error in [32].
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Appendix A

Proof of Theorem 1. Before preceding the convergence proof of the observer, one introduces the
following notations:

Sθ =
1
θ

∆θS1∆θ

where

S1 = Sθ|θ=1 and ∆θ =

[
In 0
0 1

θ In

]
To proof Theorem 1, the estimation error is introduced as ep(t) = ξ̂1(t)− ξ1(t).
Then, subtracting corresponding Equations (10) and (11), one gets the following error dynamics:
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By setting ẽp = ∆θΛ
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ep, one can then get
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To analyze the dynamics of the error system, the following positive Lyapunov function candidate
is considered:

Vp
(
t, ẽp

)
= ẽT

pS1ẽp
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Convergence of the observer is described by the time derivation of Vp
(
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)
. Then, we obtain
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ẽp + 2ẽT
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as proposed in Assumption 1, and τ is a finite real number with 0 < ρ ≤ τ, such that ρ2In ≤ FT(ξ11)F(ξ11) ≤ τ2In,
as given in Assumptions 2–4.
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where σ denotes the Lipchitz constants of f(ξ11).
Similarly, we have

‖ ∆θΛ
(
ξ̂11
)((

G
(
ξ̂11
)
−G(ξ11)

)
ξ1
)
‖=‖

((
g
(
ξ̂11
)
− g(ξ11)

)
ξ12
)
‖≤ ε ‖ ẽp ‖

where the positive constant ε denotes the boundary of ξ12.
Thus, we get the following:

.
Vp
(
t, ẽp

)
≤ −θVp + η1Vp +

η2
θ

√
Vp ‖ ξ2 − ξ̂2 ‖

≤ (−θ+ η1)Vp +
η2
θ

√
Vp ‖ ξ2 − ξ̂2 ‖

where η1 = (2µ+ 2ρσ+ 2ε)ξ(S1) and ξ(S1) =
√
λmax(S1)/λmin(S1),η2 = 2τγ1

√
λmax(S1). λmax(S1)

(resp. λmax(S1)) is the largest (resp. the smallest) eigenvalue of λmax(S1).
Thus, the following hold true:

1. if ‖ ξ2− ξ̂2 ‖ converges to 0, it results in
.

Vp
(
t, ẽp

)
≤ (−θ+ η1)Vp. Then, by taking θ > θ∗ = η1, the negative

of the right side of the above inequality is obtained;

2. if ‖ ξ2 − ξ̂2 ‖ is bounded by ẽp, it results in
.

Vp
(
t, ẽp

)
≤
(
−θ+ η1 +

η2
θ

)
)Vp. Then, by choosing θ > θ∗ such

that
(
θ∗ − η1 −

η2
θ∗
)
≥ 0, the negative of the right side of the above inequality is obtained.

That ends the proof. �

Appendix B

Proof of Theorem 2. In order to show that the system described in Equation (23) represents a converging observer
for the system in Equation (18), we need to make its corresponding error dynamics in Equation (24) coincide with
Assumption 6, which has been proven to be a condition for the existence of a converging observer.

.
ẽa(t, ẽa) = f2(ξ2, u)− f2

(
ξ̂2, u

)
−K2

(
u, ξ̂2, ỹ2

)
= f2(ξ2, u)− f2

(
ξ̂2, u

)
−K2

(
u, ξ̂2, y2

)
+ K2

(
u, ξ̂2, y2

)
−K2

(
u, ξ̂2, ỹ2

)
=

.
ea(t, ea) + K2

(
u, ξ̂2, y2

)
−K2

(
u, ξ̂2, ỹ2

)
Therefore, by computing the time derivation of Va with respect to the trajectory ẽa in Equation (24),

using Assumptions 6 and 7, it follows that

.
Va(t, ẽa) =

∂Va

∂t
(t, ea) +

∂Va

∂ea
(t, ea)

.
ea(t, ea) +

∂Va

∂ea
(t, ea)

(
K2
(
u, ξ̂2, y2

)
−K2

(
u, ξ̂2, ỹ2

))
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≤ −α2‖ ea ‖2 + β2γ2 ‖ ea ‖‖ y2 − ỹ2 ‖

≤ −α2‖ ea ‖2 + η3 ‖ ea ‖‖ y2 − ỹ2 ‖

where η3 = β2γ2. Since the output ỹ2 used in the observer in Equation (23) is in fact a virtual measurement which
is estimated by the output of the process subsystem, it is in fact ξ12, ξ̂12.

.
Va(t, ẽa) ≤ −α2‖ ea ‖2 + η3 ‖ ea ‖‖ ξ12 − ξ̂12 ‖

Thus, the right side of this inequality is negative if the following conditions are met:

1. α2 ≥ β2γ2 and ‖ ξ12 − ξ̂12 ‖ is bounded by ea, resulting in
.

Va(t, ẽa) ≤ −(α2 − η3)‖ ea ‖2;

2. ‖ ξ12 − ξ̂12 ‖ converges to 0, resulting in
.

Va(t, ẽa) ≤ −α2‖ ea ‖2.

This ends the proof. �
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input observers for interconnected nonlinear systems. In Proceedings of the 2016 American Control
Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 101–106.

26. Besançon, G.; Hammouri, H. On observer design for interconnected systems. J. Math. Syst. Estim. Control
1998, 8, 1–26.

27. Dashkovskiy, S.; Naujok, L. Quasi-ISS/ISDS observers for interconnected systems and applications.
Syst. Control. Lett. 2015, 77, 11–21. [CrossRef]

28. Ahmed-Ali, T.; Giri, F.; Krstic, M.; Lamnabhi-Lagarrigue, F. Observer design for a class of nonlinear
ODE–PDE cascade systems. Syst. Control. Lett. 2015, 83, 19–27. [CrossRef]

29. Grip, H.F.; Saberi, A.; Johansen, T.A. Observers for interconnected nonlinear and linear systems. Automatica
2012, 48, 1339–1346. [CrossRef]

30. Farza, M.; Busawon, K.; Hammouri, H. Simple nonlinear observers for on-line estimation of kinetic rates in
bioreactors. Automatica 1998, 34, 301–318. [CrossRef]

31. Zhang, M.; Li, Z.-T.; Cabassud, M.; Dahhou, B. Unknown input reconstruction: A comparison of system
inversion and sliding mode observer based techniques. In Proceedings of the CCC2017 (2017 Chinese
Control Conference), Daian, China, 26–27 July 2017; pp. 7172–7177.

32. Alessandri, A.; Bagnerini, P.; Cianci, R. State observation for Lipchitz nonlinear dynamical systems basen on
Lyapunov functions and functionals. Mathematics 2020, 8, 1424. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cep.2014.04.005
http://dx.doi.org/10.1504/IJMIC.2017.084723
http://dx.doi.org/10.1016/j.isatra.2017.12.022
http://dx.doi.org/10.1016/j.compchemeng.2008.12.012
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.automatica.2015.01.042
http://dx.doi.org/10.1109/TCNS.2015.2428351
http://dx.doi.org/10.1016/j.sysconle.2014.12.003
http://dx.doi.org/10.1016/j.sysconle.2015.06.003
http://dx.doi.org/10.1016/j.automatica.2012.04.008
http://dx.doi.org/10.1016/S0005-1098(97)00166-0
http://dx.doi.org/10.3390/math8091424
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Motivations and Problem Formulations 
	Observer Design 
	Observer Design for the Interconnected System 
	Interconnected System Extension 
	State Estimator Design for the New Process Subsystem 
	State Estimator Design for the New Actuator Subsystem 
	Interconnected Observer 

	Interconnected Observer Analysis 

	Simulations 
	System Modelling 
	Actuator Subsystem Modelling 
	Process Subsystem Modelling 

	Observer Design 
	Observer 1 for the Actuator Subsystem 
	Observer 2 for the Process Subsystem 

	Numerical Simulations 
	Case 1: Both Fluid Flow Rates Fp,Fu  Are Constant 
	Case 2: The Fluid Flow Rates Vary Due to Parameter Changes 


	Conclusions 
	
	
	References

