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 This paper presents a study about power profiles of microgrids with highly 

intermittent sources and their impacts on energy storage system. We propose an 

original method to consider the storage system lifetime in the microgrid design 

process. We present some criteria to quantify the batteries stresses generated by 

microgrids working operations. The first step of this work is to calculate the power 

exchanged with the storage system. Thus, we explain a new optimal sizing algorithm 

using a power/energy model based on datasheets parameters. In a second step, we 

focus our analysis on the potential damages on valves regulated lead acid batteries 

because it is the most used storage system in case of stationary applications for urban 

microgrids. The damages reviewed allow us to put forward five indexes calculated 

thanks to the power profiles. With this point of view, we optimize the batteries uses 

without lifetime model in both contexts:  microgrid design and energy management. 

We observe the evolution of these indexes to different size configurations determined 

with our sizing method applied to the photovoltaic production and the lighting 

network consumption of the building laboratory. We choose to compare four 

configurations that all ensure autonomy: two determined with Pareto optimization 

method and two critical cases corresponding to the minimal and the maximal values 

of the size of the energy storage system into the entire possible configuration tested.  
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1. INTRODUCTION 

 

The climate change, the fossil resources depletion and the 

recent environmental considerations for the planet 

preservation motivate scientists to found a cleaner and more 

efficient way to produce and distribute the electrical energy. 

With this challenge, research interests in microgrids (MG) 

dedicated to supply building have gained a wide international 

attention during the last few years [1] [2] [3]. These new MG 

integrate distributed electrical sources, such as renewable 

energy sources (RES), associated with energy storage systems 

(ESS). They can be connected to the main distribution grid or 

operate in isolated mode. To be competitive they have to be 

efficient, functional and sustainable [4]. The main technical 

difficulties to design these MG is to deal with RES 

intermittencies, which depend on climate conditions, while we 

optimize the use of the ESS in term of economical and 

environment costs.  

In this context, enhance the ESS lifetime represents a high 

technical challenge [5]. This lifetime depends on the energy 

flow during operations and so on the energy/power 

management systems (EMS/PMS) [6] [7] and on the ESS 

sizing (quantity of energy, capacity, power range, topology 

and technological choices), which are themselves related [8] 

[9]. Thus, to define the optimal MG configuration it is 

important to take into account the ESS stress mechanisms 

involving potentials degradations and prematurely ESS 

lifetime decrease. In the state of the art, numerous 

methodologies propose to find the optimal ESS sizing and 

their EMS associated [8]. These methods integrate the ageing 

estimation thanks to lifetime models often complex and 

resulting of long and specific ageing experiments [5]. 

Furthermore, these models depend on the ESS technologies 

and it appears premature to consider such detailed model. In 

fact, the optimization criteria become difficult to define and to 

integrate in the design optimization process. Our proposal is to 

focus on the ESS degradations and then to establish links 

between power exchanges and ESS damages. Authors in [10] 

and [11] proposed to analyze the ESS operating conditions, as 

the current variations, in order to identify operations that 

provoked premature failure on ESS.  Analysis presented in 

[11] proposes a classification of different existing MG 

according to their uses until the ESS achieve their end of life. 

The authors correlate the ESS damages with the power profile 

variations and thus propose some indicators to qualify the MG. 

The advantage of this analysis is that the indicators reflects one 

or few degradations and are independent of any kind of ageing 

model. We can assume that optimizing these indexes during 

the MG design ensure a longer ESS lifetime. Thereby, our 

approach consists in estimating a set of indicators deduced 

from the power profiles fluctuations. This approach is 

independent of any specific model of ESS, only based on 
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information issued from technical datasheets. With this 

method, we optimize the uses and we do not need ageing 

model. This algorithm permits to generate the power profile 

and help to size the ESS and the RES. We define a set of 

relevant criteria quantifying the benefits and the drawbacks of 

ESS uses according to the degradations reviewed in the 

literature. Finally, we calculate these criteria on the power 

profiles generated for different sizes of ESS and RES in order 

to qualify the operating conditions and the sizing. We apply 

this methodology in the case of a self-sufficient application 

and the criteria proposed in this paper correspond to the stress 

mechanisms of valve regulated lead acid batteries (VRLAB) 

or sealed lead acid batteries. One of the advantages of our 

sizing algorithm consists on using only datasheet to generate 

the power profiles thus allowing an easy comparison of several 

types of ESS technologies.  

In the following section, we present the algorithm enabling 

the optimal ESS design. In section 3, we review the main 

VRLAB behaviors and the potential damages able to occur in 

order to give the optimal working conditions that improve the 

battery lifetime. In section 4, we detail the results of our sizing 

methodology applied to the lighting network of the laboratory 

building integrated photovoltaics (BiPV).  Then, to validate 

our approach we compare four different configurations 

according to criteria given in section 3. Finally, in section 5, 

we give some perspectives of this work. 

 

2. POWER PROFILES AND ESS SIZE 
 

2.1 General sizing methodology 
 

Figure 1 presents the flowchart of the proposed algorithm 

able to size the ESS and the production sources, in our case 

photovoltaic generators (PV), as explain in the next 

subsection. First, we define 𝑃𝐵𝐴𝐿(𝑡) with equation (1) as the 

difference between the production power, 𝑃𝑃𝑅𝑂𝐷(𝑡), and the 

consumption power, 𝑃𝐿𝑂𝐴𝐷(𝑡),  considered positive and 

negative respectively. Then, we calculate the 𝐸𝐵𝐴𝐿(𝑡) energy 

profile by integrating 𝑃𝐵𝐴𝐿(𝑡) as described by equation (2).  

 

𝑃𝐵𝐴𝐿(𝑡) = 𝑃𝑃𝑅𝑂𝐷(𝑡) + 𝑃𝐿𝑂𝐴𝐷(𝑡) (1) 

𝐸𝐵𝐴𝐿(𝑡) = 𝐸𝐵𝐴𝐿(𝑡 − ∆𝑡) + 𝑃𝐵𝐴𝐿(𝑡 − ∆𝑡) ∗ ∆𝑡 (2) 

We verify that 𝐸𝐵𝐴𝐿(𝑡) at 𝑡𝐿𝐼𝑀 is superior or at least equal to 

the energy at the beginning 𝑡0, of the time horizon T. This 

condition ensures that production is sufficient to charge the 

ESS until time 𝑡𝐿𝐼𝑀. If 𝐸𝐵𝐴𝐿(𝑡𝐿𝐼𝑀) is inferior to 𝐸𝐵𝐴𝐿(𝑡0) we 

have to increase the size of the PV plants or/and authorizing 

the access to the main grid. If 𝐸𝐵𝐴𝐿(𝑡𝐿𝐼𝑀)  is higher 

than  𝐸𝐵𝐴𝐿(𝑡0) , we determine the largest decrease on the 

energy profile 𝐸𝐵𝐴𝐿(𝑡) in the time horizon T, called ∆𝐸.  ∆𝐸 

represents the minimum ESS size to ensure the autonomy, 

considering the ESS with a 100% efficiency with no losses and 

no limit on power rate. At the first iteration in the algorithm, 

∆𝐸𝐸𝑆𝑆 is set to the value of the calculated ∆𝐸. After this step, 

the validation block allows to calculate the power profile 

exchanged with the ESS, noted 𝑃𝐸𝑆𝑆(𝑡). These values highly 

depends on the ESS model and the power limitations 

introduced in the algorithm and corresponds to the part of the 

𝑃𝐵𝐴𝐿(𝑡)  profile exchanged through the ESS having the 

size ∆𝐸𝐸𝑆𝑆 . Thanks to the systems of equations (3) and (4) 

described below, we determine in cases of charge and 

discharge the variables 𝑃𝐸𝑆𝑆(𝑡) , 𝑃𝐷𝐸𝐹(𝑡)  and 𝑃𝐸𝑋(𝑡) , with 

𝑃𝐷𝐸𝐹(𝑡) the deficit power and 𝑃𝐸𝑋(𝑡) the power in excess. In 

these equations, the power limitations in charge and discharge 

are constant. These parameters 𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑐  and 𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑑  

are maxima C-rates respectively in charge and in discharge 

and can be easily obtained from the datasheet. With 

𝑃𝐸𝑆𝑆(𝑡) we deduce a new 𝐸𝐸𝑆𝑆(𝑡) with the equation (5) in 

charging mode and (6) in discharging mode. In equation (5), 

𝜂𝐸 is the ESS energy efficiency given in the datasheet. 

 

𝑐ℎ𝑎𝑟𝑔𝑒

{
 
 

 
 

𝑃𝐷𝐸𝐹(𝑡) = 0;

𝑖𝑓𝑃𝐵𝐴𝐿(𝑡) ≤ 𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑐 ∗ 𝛥𝐸𝐸𝑆𝑆
𝑃𝐸𝑆𝑆(𝑡) = 𝑃𝐵𝐴𝐿(𝑡), 𝑃𝐸𝑋(𝑡) = 0;

𝑒𝑙𝑠𝑒 {
𝑃𝐸𝑆𝑆(𝑡) = 𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑐 ∗ 𝛥𝐸𝐸𝑆𝑆
𝑃𝐸𝑋(𝑡) = 𝑃𝐵𝐴𝐿(𝑡) − 𝑃𝐸𝑆𝑆(𝑡)

 (3) 

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

{
 
 

 
 

𝑃𝐸𝑋(𝑡) = 0;

𝑖𝑓𝑃𝐵𝐴𝐿(𝑡) ≥ −𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑑 ∗ 𝛥𝐸𝐸𝑆𝑆
𝑃𝐸𝑆𝑆(𝑡) = 𝑃𝐵𝐴𝐿(𝑡), 𝑃𝐷𝐸𝐹(𝑡) = 0;

𝑒𝑙𝑠𝑒 {
𝑃𝐸𝑆𝑆(𝑡) = −𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑑 ∗ 𝛥𝐸𝐸𝑆𝑆
𝑃𝐷𝐸𝐹(𝑡) = 𝑃𝐵𝐴𝐿(𝑡) − 𝑃𝐸𝑆𝑆(𝑡)

 (4) 

𝐸𝐸𝑆𝑆(𝑡) = 𝐸𝐸𝑆𝑆(𝑡 − 𝛥𝑡) + 𝜂𝐸 ∗ 𝑃𝐸𝑆𝑆(𝑡 − 𝛥𝑡) ∗ ∆𝑡 (5) 

𝐸𝐸𝑆𝑆(𝑡) = 𝐸𝐸𝑆𝑆(𝑡 − 𝛥𝑡) + 𝑃𝐸𝑆𝑆(𝑡 − 𝛥𝑡) ∗ ∆𝑡 (6) 

When 𝑃𝐷𝐸𝐹(𝑡)  is empty at all the time steps of the 

considered time horizon, a configuration solution is 

established. This condition ensures the autonomy. We might 

have to do some iterations to achieve the right value of ∆𝐸𝐸𝑆𝑆 

because of the power limitations and the ESS efficiency 

introduced in the validation block. In this case, we iterate the 

process and we calculate a new ∆𝐸 thanks to a new 

𝑃𝐵𝐴𝐿(𝑡) profile from the power 𝑃𝐸𝑋(𝑡) and 𝑃𝐷𝐸𝐹(𝑡) as shown 

in equation (7).  

 

𝑃𝐵𝐴𝐿(𝑡) = 𝑃𝐸𝑋(𝑡) + 𝑃𝐷𝐸𝐹(𝑡) 
 

(7) 

Next, we sum the ∆𝐸 value found in the new iteration to the 

∆𝐸𝐸𝑆𝑆  value calculated in the previous iteration. An arrow 

represents this loop, from the validation bloc to the 𝐸𝐵𝐴𝐿(𝑡) 
definition bloc, in figure 1.  

The calculated configurations give us the size of the potential 

PV array and the storage ∆𝐸𝐸𝑆𝑆 we have to install in order to 

ensure self-sufficiency. We save each solution, indexed by i, 

corresponding to a couple 𝑘𝑃𝑉𝑖  and ∆𝐸𝐸𝑆𝑆𝑖.  
After validation, the different solutions are compared in the 

solution assessment block (figure 1), according to different 

criteria defined by the user. To find the optimal solution, we 

propose to use the Pareto multi-objective optimization 

method. Thus, as explained in [12] and [13], we can define the 

optimal compromise between multiple criteria as the point in 

the Pareto front which have the minimal Euclidian distance to 

the utopia configuration. The utopia configuration 

corresponds to the configuration impossible to achieve at the 

minimum value of the two (or more) criteria. The selected 

configuration among all the i validated configurations is then 

the optimal size for self-sufficient and off-grid applications or, 

in future works, the minimal configuration that we can use in 

algorithms dedicated to connected MG design. Indeed, it 

would also be possible to start with this configuration and add 

a more complex EMS that would allow reducing the ESS and 

RES sizes by purchasing power from the main grid.  

 



 

 
Figure 1. Flow chart diagram of the proposed sizing algorithm and methodology

At the end of the flowchart, we obtain the energy flow into 

the ESS, 𝐸𝐸𝑆𝑆  (𝑡), and we can determine the state of charge 

(SoC) in terms of energy noted 𝑆𝑜𝐸(𝑡)  with equation (8). 

 

𝑆𝑜𝐸(𝑡) =
𝐸𝐸𝑆𝑆(𝑡)

∆𝐸𝐸𝑆𝑆
 

(8) 

 

2.2 Power profiles inputs from the ADREAM BiPV 

database 

 

The optimized energy BiPV in our laboratory, called 

ADREAM building is presented in figure 2. 

 

 
Figure 2. ADREAM BiPV installations, experimental rooms 

and sensors and monitoring systems 

 

It was built in 2012 at LAAS-CNRS, FRANCE. It has a 100 

kWp of PV platform and more than 6500 sensors recording 

every minute [14]. Nowadays an experimental low voltage DC 

MG (LVDC MG) is deployed into the building to supply some 

servers and few low power DC equipment [15]. One of the 

project in this platform is to supply the DC loads of the entire 

ADREAM BiPV, such as electrical lighting network. In first 

approach, we apply our methodology in order to size the PV 

array and the ESS needed to supply the lighting network of the 

second floor of the building. 

The inputs data of the sizing problem are: 

- 𝑃𝑃𝑉(𝑡): the power production of 1 kWp localized in the 

rooftop of the ADREAM building.  

- 𝑃𝐿𝑂𝐴𝐷(𝑡): the power consumed by the lighting network 

second floor.  

Therefore, in our case, 𝑃𝑃𝑅𝑂𝐷(𝑡)  use in equation (1) is 

calculate by equation (9) described below, where 𝑘𝑃𝑉𝑖  is a 

scale factor that allows to change the PV source size between 

each configuration i. 

 

𝑃𝑃𝑅𝑂𝐷(𝑡) = 𝑘𝑃𝑉𝑖 ∗ 𝑃𝑃𝑉(𝑡) (9) 

 

The power data selected to validate our approach correspond 

to two years (2016 and 2017) at one minute time step, ∆𝑡. This 

compromise between a relative small time step and the number 

of years allow us to consider intermittency due to cloudy days 

and seasonal changes while we keep a reasonable quantity of 

data.  

The figure 3a shows the 2 years data set for an example of 𝑘𝑃𝑉𝑖 
equal 2.25 corresponding to 2.25 kWp of PV. 

 

 
Figure 3. Consumption, production and balance power 

profiles of the ADREAM BiPV 

 

We can see on the figure 3a the reduced PV production 

during the winter with an increase of the lighting network 



 

consumption. The figure 3b shows a zoom on eight days and 

the 𝑃𝐵𝐴𝐿(𝑡) profile associated to 𝑃𝑃𝑅𝑂𝐷(𝑡) and 𝑃𝐿𝑂𝐴𝐷(𝑡). We 

can see the production and consumption time shift during one 

day, with over production at the middle of the day and power 

deficit at the beginning and at the end of the day. We also see 

the high PV intermittencies during the day, due to clouds, 

relative high speed of wind or infrastructure shadows. 

 

3. VRLAB BEHAVIOUR AND DEGRADATIONS 
 

In order to qualify the operating conditions and to compare 

the different configurations according to the potential damages 

on ESS, we have to understand each degradation and why they 

occur. In this section, we present a review of the different 

degradations able to occur in VRLAB with short explanations 

of their consequences. We select such type of batteries because 

it is the technologies of ESS commonly used in MG stationary 

applications dedicated to buildings because of the low need of 

maintenance, low cost, high maturity implying a simple 

installation and its excellent rate of recyclability [16] [17] [18] 

[19] [20].  

However, the main drawback of VRLAB technology is its 

short lifetime in case of RES operating conditions in particular 

with high and numerous intermittencies implying frequent 

incomplete cycles at partial state of charge (pSoC). It exits two 

approaches to improve the VRLAB lifetime. The first one 

consists in adding new materials or changing battery plate 

geometries and the other one consists in managing the power 

flow through the batteries. This paper contributes in the 

second approach. We focus on the damages due to operating 

conditions affecting the battery efficiency and the cyclic 

lifetime and we deduce five indicators. We do not consider the 

calendar lifetime [17], either the potential manufacturing 

damages. 
 

3.1 Working principle of lead-acid battery 

 

The main chemical processes occurring in lead acid batteries 

during their charge and discharge can be sum up as below: 

• In discharge, crystals of lead sulfate are created 

respectively by lead dioxide reduction at the positive 

plate and lead oxidation on the negative plate [21]. This 

reaction, called sulphation, implies that crystals of lead 

sulfate gradually cover the electrodes surfaces and the 

battery capacity available progressively reduce until 

there is not enough active mass (AM). During the 

discharge, the electro-chemical reactions produce water, 

inducing a decrease of the acid concentration in the 

electrolyte. 

• In charge, reversible electro-chemical  reactions occur, 

thus the crystals of lead sulfate are reduced in lead at the 

negative plate and oxidized in lead dioxide at the positive 

plate [22]. During the charge, the reaction progressively 

consume water involving the increase of acid 

concentration in the electrolyte. Figure 4 represents the 

current and voltage evolutions during a battery charge at 

a constant current rate (C-rate) called CC phase. The 

voltage starts to grow exponentially when the water 

electrolysis becomes predominant [23]. At this stage, the 

battery produces a certain quantity of oxygen and 

hydrogen respectively at the positive and the negative 

plates by water decomposition. To ensure a complete 

charge limiting the water losses, the degassing effect and 

a thermal increase, it is recommended to follow the CC 

charge by a constant voltage (CV) phase (CC-CV charge 

protocol) [21] (figure 4). The battery is fully charged 

when the current value reaches to the floating current 

value. It is assumed that for a complete charge following 

a complete discharge, the CV phase starts at 80% of the 

battery capacity [24]. However other authors  consider 

that this limit depends on the charge current and the SoC 

[25]. We can also notice that during CV phase, the 

battery efficiency changes and can be drastically reduced 

[24]. The main advantage of sealed VRLAB compared to 

classical vented/flooded lead acid batteries is the 

treatment of the water electrolysis by using the oxygen 

cycle and gasses recombination [26]. This technique 

reduces the rate of oxygen and hydrogen production and 

the water depletion, and reduces significantly the 

maintenance. However, this internal oxygen cycle is not 

a perfectly full reaction and the valve makes escape a 

small portion of hydrogen. This little loss of water is 

unavoidable in VRLAB. The gasses recombination 

process is also a high source of heat inducing an increase 

of the battery temperature and a potential thermal 

runaway [27]. 

 

 
Figure 4. Typical voltage/current VRLAB characteristics 

during CC-CV charge 

 

3.2 VRLAB stress factors and failure mechanisms 

 

According to the principles presented above, we can bring 

out five main degradation processes affecting the VRLAB by 

increasing the internal resistance, involving capacity fade and 

potential short circuits. The following section presents each 

degradation mechanisms with their stress factors and the ways 

to minimize them. Figure 5 summarizes the main links. 

• The corrosion affects the metallic part of the battery 

electrodes/plates, called grids or current collectors [28]. 

This damage appears mainly during overcharge, floating 

mode and CV charge [29] and it is due to the parasitic 

reaction. It is irreversible but it can be limited if the battery 

always works outside of these conditions. 

• Hard or irreversible sulphation [30] is a significant 

worsening of the reversible sulphation reaction produced 

during discharge. If the crystals of lead sulfate are not 

destroyed with complete recharge, they gradually cover the 

AM surface and decrease the capacity of the battery by 

reducing the exchanging surface [10] [11]. They become 

more and more persistent if the complete recharge process 

is rarely achieved [31]. Thus, it is important to apply a 

regular complete charge to delete the entire lead surface. 

• AM shedding, loosening or sludging correspond to an AM 

degradation, with loss of conductivity and loss of 

adherence to the grid [11]. It results of an excessive 



 

changing in the AM morphology mainly caused by 

frequent incomplete cycle at partial SoC (pSoC), low C-

rate at the beginning of the charging or battery 

overcharging [32]. 

• Electrolyte stratification is a non-homogeneous repartition 

of the electrolyte according to the vertical distribution 

inside the battery. This is due to the different density of the 

species, operating temperature and the natural gravity [33]. 

As explained previously, during the charge, the reaction 

consume water and the density of the electrolyte changes 

in a non-homogeneous way and gets denser near to the 

plates. The stratification process cannot be avoided but it 

is highly depending on the C-rate and can be enhanced by 

doing incomplete cycles, mainly at low pSoC [21] [33]. 

However it can be reversible if a complete charge with CV 

phase is done thanks to the water electrolysis and the 

degassing which helps to homogenize the electrolyte [34]. 

• Water losses are due to high external or internal 

temperatures and can cause damages to the battery and a 

potential thermal runaway [26]. An incomplete oxygen 

cycle with bad gasses recombination can be at the origin of 

an increase of internal temperature [27]. It can also be 

caused by electrolyte stratification and irreversible 

sulphation which blocks the gases flow [29]. 

 

The figure 5 synthesizes the VRLAB damages analysis 
with their causes and consequences. We can see that one 

cause can have multiple consequences. Moreover, as cited 

previously, all the consequences can affect others causes and 

all the damages are highly dependent and can increase other 

degradations. For this reason, it is very difficult to do a clear a 

hierarchy between damages. However, we propose to identify 

the main phenomena reducing prematurely the battery cyclic 

lifetime and how with some good practices we can reduce their 

causes. For example, we can notice that operating at pSoC 

with incomplete cycles increases the degradation of the AM, 

the sulphation and the stratification. Nevertheless, regular and 

complete CC-CV charges reduce these phenomena. Indeed 

doing a full charge with CV allows recovering some capacity 

and avoid hard sulphation and stratification. A patent made in 

1998  [35] based on [36] applies this technique to improve the 

battery lifetime on hybrid pack of flooded lead acid batteries, 

charged with RES and dedicated to ancillary services into the 

main distribution grid. However, floating state and long 

periods at full charge increase the corrosion effect and water 

losses. The deep discharge and the use at high C-rate affect the 

battery capacity and increase the internal resistance.  

 

We propose to consider a set of indicators or stress indexes 

calculate thanks to 𝑃𝐸𝑆𝑆(𝑡) and 𝑆𝑜𝐸(𝑡) able to quantify the 

uses that cause the cycle lifetime reduction: 

- The number and repartition of incomplete cycles 

around pSoC with the level of the cycle amplitude, 

- The time and the energy exchanged between two full 

charges, 

- The time at full charge (considered SoE equal to 

100%), 

- The time at deep discharge,  

- The C-rate in charging and discharging mode, 

 

 

Figure 5. Potential damages with causes and consequences associated on VRLAB 

 

 



4. RESULTS AND DISCUSSIONS 

 

In this section, we compare four of the configurations 

obtained with the methodology presented in section 2 

according to the five stress indexes present in section 3. 

For the algorithm simulation, we set the time 𝑡𝐿𝐼𝑀  on one 

year over the time horizon T equal to two years. We run the 

algorithm for the worst-case scenario by setting the initial 

value at t0 to the next local minimum value in the 

𝐸𝐵𝐴𝐿(𝑡) profile. By doing this, we ensure to have the ESS 

at least one time empty all along the time horizon of the 
study. The variables used for the Pareto optimization are 𝑘𝑃𝑉𝑖 
and 𝛥𝐸𝐸𝑆𝑆𝑖 . We choose to use directly these two variables, 

knowing that all criteria as cost or sustainability criteria 

depend on these variables. The 𝑘𝑃𝑉𝑖 variable vary from 1 to 35 

(corresponding to 1kWp to 35kWp), with a step equal to 0.25, 

which corresponds to a step of 250 Wp. Thus, we have 137 

configurations, indexed by 𝑖,  ensuring the lighting network 

self-sufficient operations. We limit the C-rate in charging and 

discharging respectively at 0.25C and 3C, and the ESS energy 

efficiency, 𝜂𝐸, is set at 0.85 according to [37] [18] and [38].  

 

4.1 Pareto optimization sizing results 

 

Thanks to the Pareto method, we optimize both the PV size 

according to 𝑘𝑃𝑉𝑖 and the ESS size with ∆𝐸𝐸𝑆𝑆𝑖 . As explained 

in section 2, the Pareto optimization allows to find the optimal 

configuration based on the minimum Euclidian distance to the 

utopia point. However, this optimal configuration can be 

different according to the normalization made on the 

parameters. In figure 6, we show the Pareto front and the 

optimal configuration obtained in case of two different types 

of normalization. The utopia point is spotted in red circle in 

figure 6. This figure shows two possible representations of the 

Pareto front. In figure 6a the Pareto curve is plot with the real 

values of 𝑘𝑃𝑉𝑖 and∆𝐸𝐸𝑆𝑆𝑖  and in figure 6b we plot the same set 

of configuration but when 𝑘𝑃𝑉𝑖  and ∆𝐸𝐸𝑆𝑆𝑖  are normalized, 

respectively between 0 to 1 and 0 to 3. 

 

 
Figure 6. Pareto optimization and configurations results 

without and with normalization on 𝑘𝑃𝑉𝑖 and ∆𝐸𝐸𝑆𝑆𝑖  
 

Typically, it corresponds to a ratio of 3 between the kWp of 

PV and the kWh of ESS. We define this ratio as a weight 

between 𝑘𝑃𝑉𝑖 and 𝛥𝐸𝐸𝑆𝑆𝑖  and it is equal to the limit value of 

the 𝛥𝐸𝐸𝑆𝑆𝑖  normalization. We choose it according to the ratio 

between the cost of a kWp of PV and a kWh of VRLAB. In 

our study, if we use directly the 𝑘𝑃𝑉𝑖 and the ∆𝐸𝐸𝑆𝑆𝑖  values, the 

optimal configuration is 8.25 kWp of PV plants and 16.62 

kWh of batteries (for i 30). If we normalize the values of 

∆𝐸𝐸𝑆𝑆𝑖  and 𝑘𝑃𝑉𝑖 we obtain another optimal configuration. The 

figure 7 shows the optimal configuration obtained with 

different normalizations on ∆𝐸𝐸𝑆𝑆𝑖  and 𝑘𝑃𝑉𝑖. For each Pareto 

analysis, we normalize 𝑘𝑃𝑉𝑖 from 0 to 1, and ∆𝐸𝐸𝑆𝑆𝑖  from 0 to 

the ∆𝐸𝐸𝑆𝑆  weight. 

 

 
Figure 7. Sensibility of the optimal configuration results 

(𝑘𝑃𝑉; ∆𝐸𝐸𝑆𝑆)  for different normalizations on ∆𝐸𝐸𝑆𝑆 

 

The optimal configuration found with Pareto method results 

to converge to 10kWp of PV panels and 14 kWh of ESS. The 

optimal configuration without weight and normalization 

(black circle on figure 7) corresponds to a ratio around 9.5 

between the kWp of PV and the kWh of ESS. This study shows 

the impact of the weight factors on the optimization results. 

We can see that the quantity of PV needed for autonomy 

increases and ∆𝐸𝐸𝑆𝑆𝑖  decreases when the weight factor on 

∆𝐸𝐸𝑆𝑆𝑖  increases. Indeed, when the weight on the storage 

system increase the optimal configuration correspond to an 

oversize PV source in order to minimize the size of  ∆𝐸𝐸𝑆𝑆𝑖 . 
We validate our approach with four possible cases 

summarized in table 1.  

 

Table 1. Configurations saved to comparative study 
configuration 

number 

 

𝑖 
𝑘𝑃𝑉𝑖   

∝[kWp] 

𝛥𝐸𝐸𝑆𝑆𝑖 
[kWh] 

configuration 

description 

1 1 1 332,87 

minimum 𝑘𝑃𝑉𝑖  and 

maximum 𝛥𝐸𝐸𝑆𝑆𝑖 
ensuring autonomy 

2 30 8.25 16.62 

optimal 

configuration 

ensuring autonomy, 

without 

normalization 

3 21 6 19.19 

optimal 

configuration 

ensuring autonomy 

with normalization 

between 0 to 3 for 

𝛥𝐸𝐸𝑆𝑆𝑖 

4 137 35 9.94 

maximum 𝑘𝑃𝑉𝑖  and 

minimum 𝛥𝐸𝐸𝑆𝑆𝑖 
ensuring autonomy 

 

Figures 8 and 10 show the power exchanged with the ESS 

and the balance power profile (subplot b) for the two optimal 

configurations corresponding to the cases 2 and 3 with and 

without normalization. The figure 9 shows a zoom on 8 days 

of the power and SoE profiles for the configuration 2. On the 

figures 8 and 10, the cyan curve in the subplot (a) is the 𝑆𝑜𝐸(t) 

profile. We see in figures 8b and 9 that during charging, the 

𝑃𝐸𝐸𝑆(𝑡) profile is more often limited at 𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑐  than in 

configuration 3. Consequently, the 𝑃𝐸𝑋(𝑡) values are greater, 



 

even more during the summer periods. This is due to a 

higher size of the PV source in the configuration 2 
because of a greater ratio between the PV kWp and the ESS 

kWh calculated without normalization and so equal to 9.5. 
 

 
Figure 8. 2 years of power balance, ESS power and 

𝑆𝑜𝐸(𝑡) profiles for the optimal configuration n° 2 

 

 
Figure 9. Zoom on 8 days of power balance, ESS power and 

𝑆𝑜𝐸(𝑡) profiles for the optimal configuration n° 2 

 

 
Figure 10. 2 years of power balance, ESS power and 𝑆𝑜𝐸(𝑡) 

profiles for the optimal configuration n° 3 

 

In first approach, we fix the power limitations at a constant 

power rate in charging and discharging modes, 𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑐 
and𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑑 , but this is true only if we consider the 

voltage of the ESS is constant. In reality, due to the voltage 

evolution during CC charging and discharging and the current 

decrease during CV charging, the power limits vary during 

these operating modes.  

Thanks to the configurations presented in table 1 and the 

resulting ESS power and SoE profiles, we are able to identify 

and evaluate the stress factors implied by the working 

conditions on ESS, and more specifically on VRLAB. 

 

4.2 Profiles analysis according to the VRLAB stress 

factors 

 

4.2.1 C-rate impacts 

 

The figure 11 shows the distribution of the C-rate in charging 

and discharging mode, respectively C 𝑟𝑎𝑡𝑒𝑐  and 𝐶𝑟𝑎𝑡𝑒𝑑 , 

during 2 years. In discharge (figure 11b) and for all the 

configurations, the C-rate is still inferior to the maximum C-

rate limit,  𝐶𝑟𝑎𝑡𝑒𝑑𝑀𝐴𝑋  . Indeed, as we choose a strategy 

dedicated to improve autonomy, the ESS size have to satisfy 

the autonomy of the installation so its capacity is large 
enough to be far from the power limitations in discharging 

mode. 

 

 
Figure 11. Distribution of the C-rate for the 4 different 

configurations in charging and discharging mode and for 2 

years data set 

 

The distribution of the C-rate in charge for the two optimal 

configurations is mainly at low C-rate, under 0.05C. It is an 

advantage to limit the VRLAB degradations because high C-

rate damage the batteries, although it is specified that too low 

C-rate at the beginning of the charge can promote the AM 

shedding and hard sulphation. In case of configuration 1 and 

4, the C-rate distribution in charge can become an issue 



 

because the results mainly show very low C-rate in 

configuration 1 or very high C-rate in configuration 4. 
 

4.2.2 SoC variations 

 

In this subsection, we present the main results on the SoE 

fluctuations during 2 years. We are particularly interested by 

the time at full charge and at low SoE. We can see in figure 12 

the ratio of time in the two years data set that the ESS stays at 

𝑆𝑜𝐸(𝑡) equal to 100% (green points) or less than 30% (red 

points). 

 

 
Figure 12. Cumulative time at 𝑆𝑜𝐸(𝑡) equal to 100% or less 

than 30% during two years, for all the configurations 

 

The blue curve (right axis of the figure 12) reports the ESS 

size for all the validated configurations. We see in this figure 

that the duration when 𝑆𝑜𝐸(𝑡) is lower than 30% decreases 

with ∆𝐸𝐸𝑆𝑆𝑖  and 𝑘𝑃𝑉𝑖  increases. At the contrary, the 

consecutive time at 𝑆𝑜𝐸(𝑡)   equal to 100% increases with 

𝑘𝑃𝑉𝑖 and ∆𝐸𝐸𝑆𝑆𝑖  decreases. The first conclusion of this 

analysis is that the damages implied by low SoE (depth 

discharges) are not significant (lower than 5% for 

configuration with more than 5 kWp). This observation is 

confirmed by the 𝑆𝑜𝐸(𝑡) profile shown in figure 8 and 10. We 

observe that these low rates of discharge occur mainly during 

the winter. Concerning the charge, we see that the ESS is at 

𝑆𝑜𝐸  equal to 100% more than 25% of the time in case of 

configurations with 𝑘𝑃𝑉𝑖 superior to 5 kWp and we see that full 

SoC mainly occur during summer. According to these 

observations and the mechanisms listed in section 3, it seems 

important to define clearly, what an 𝑆𝑜𝐸(𝑡) equal to 100% 

really means. Indeed, according to the model we used it is 

difficult to affirm that the battery is fully charged when 

𝑆𝑜𝐸(𝑡)  reaches 100% with a complete CC-CV charge. 

Moreover, we do not know how long the VRLAB stays at 𝑆𝑜𝐸 

equal to 100% between two discharges. If we assume that the 

full charge is reached when 𝑆𝑜𝐸(𝑡) is equal to 100%, it means 

that the battery operates often in floating operation mode 

during the two years, and this situation promotes corrosion and 

water losses. To avoid it, the VRLAB SoE could be limited 

at 80% but this implies to oversize the ESS and to not use the 

benefit of a complete charge, which mitigates the capacity loss 

due to sulphation and stratification.  

Figure 13 represents the distribution of the time at 𝑆𝑜𝐸(𝑡) 
equal to 100% between 2 consecutive discharges, for the 

4 configurations. For all the configurations, the maximum 

probability corresponds to a time at full SoE less than 0.1h. So, 

if the VRLAB is full when 𝑆𝑜𝐸(𝑡) reaches the value of 100%, 

the battery does not stay a long time in floating operation and 

consequently the impact of corrosion and water losses can be 

avoided. In the meantime, if the charge process is not fully 

achieved when the 𝑆𝑜𝐸(𝑡) reaches 100%, this duration does 

not ensure that the battery charge is complete before a new 

discharge. 

 

 
Figure 13.  Distribution of the number of consecutive hours 

the ESS stays at SoE 100% for the 4 different configurations 

 

The figure 14 shows the Watthours throughput discharged, 

according to the total ESS size, between two times at 𝑆𝑜𝐸(𝑡) 
equal to 100%. The Watthours throughput between two full 

charges appears to be less than 10% of the total ESS capacity 

in most of the cases. Thus, it is difficult to conclude on the 

impact on sulphation and stratification. 

 

 
Figure 14. Distribution of the Watthours exchanged between 

two time at SoE 100% for the 4 different configurations 

 

The figure 15 shows the distribution of the amplitude of each 

cycle around an average SoC in terms of energy, so noted 

pSoE. 

We see that for the configuration 1 the cycle amplitudes are 

less than 10% in all the ranges of pSoE. Using the VRLAB in 

such conditions causes high risk of hard sulphation and 

stratification. Most of the incomplete cycles for the three other 

configurations (2, 3 and 4) occur above pSoE equal to 50%, 

which is coherent with the results presented in figure 12. The 

figure 15 allows concluding that working at incomplete cycle 

is typical of self-sufficient application. In our case, most of the  



 

 
Figure 15. pSoE vs amplitude cycle histogram for each cycle 

of the 𝑆𝑂𝐶𝐸(𝑡) profile for 4 different configurations 

pSoE are around 80% to 100% (more than 60% of the time 

between 90% and 100% of battery SoE).If we limit the SoE at 

80%, the results will be a pSoE repartition mostly between 

60%-80% range. Both operating conditions lead to 

degradations of the VRLAB, on one hand with corrosion 

and on the other hand with risking hard sulphation. Moreover, 

by using the VRLAB between 80% and 100% of SoE, we 

mostly solicit the battery when the efficiency is lower than in 

the CC charge phase. A solution would be to operate at SoE 

less than 80% but to ensure full CC-CV recharge on a regular 

basis in order to recover capacity because of the stratification 

and hard sulphation mechanisms. Nevertheless, this also 

highlights that we need a more accurate charge model in order 

to define the power limitations and the limit between CC and 

CV phases, according to the VRLAB SoE. 

 

5. CONCLUSIONS AND PERSPECTIVES 

 

This paper proposes an algorithm to size ESS and RES for 

self-sufficient operation in BiPV MG. This algorithm allows 

studying the typical power variations without taking into 

account a complex ESS model. We compare our results 

according to our stress indexes based on literature review, of 

the batteries ageing mechanisms. Four configurations are 

tested. We show that in the cases of optimal sizing, the ESS 

SoE mainly stays over 60%. However, in the range 60%-100% 

of SoE the batteries do many incompletes cycles (with 

amplitude cycle less than 20% of the ESS size). The C-rate 

during discharge and charge and the frequency of deep 

discharges do not have significant impacts on ESS. 

According to these observations and the potential 

degradations of VRLAB listed in section 3, we can conclude 

that the stratification, the AM shedding and the sulphation 

mechanisms have a high influence on the VRLAB 

performances and in particular in the reduction of their 

capacities. In addition, the risk of premature corrosion and 

water losses resulting of frequent operations at high SoC have 

to be estimated. Moreover, as the VRLAB efficiency 

decreases in CV phase, as well as the potential power admitted 

by the battery, we recommend limiting the working operations 

during CV charging phase. Nevertheless, CV charging 

operations have positive impacts by avoiding hard sulphation 

and stratification, if the full charge is completely achieved.  

To improve our actual approach, we propose to develop an 

accurate model of the maximum power during charge and the 

transition between CC and CV phases. Such a model will be 

very useful to manage the VRLAB charge in order to minimize 

the corrosion and avoid overcharges while we ensure the 

benefit of a complete charge. Moreover, this model will 

improve our sizing algorithm by considering power limitations 

and different efficiencies during CC and CV phases. However, 

we have to keep in mind that the power limitations model 

should be simple in terms of parameters identification and 

execution.  

A solution to manage the duration at full charge and optimize 

the VRLAB uses would be to split the ESS into several ESS. 

This ESS could mainly work at pSoE around 50% to avoid 

corrosion and water losses and sometimes fully recharged 

to avoid stratification. The strategy could switch between 

the different elements of the hybrid ESS to ensure CV phases. 

This search leads to find the optimal compromise between full 

charge benefits, as avoid hard sulphation and stratification and 

to limit corrosion and water losses phenomena in over charge. 



 

Finally, the same approach could be possible with lithium-

ion batteries or other types of ESS technologies and will be 

consider in the future. 
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NOMENCLATURE  

 

Abbreviations  

AM Active Materials/Mass (in lead-acid battery) 

BiPV Building integrated PhotoVoltaic 

CC Constant Current 

C-rate Current rate 

CV Constant Voltage 

DC Direct Current 

EMS Energy Management System 

ESS Energy Storage System 

LVDC Low Voltage Direct Current 

MG Micro Grid 

PMS Power Management System 

pSoC partial State of Charge 

RES Renewable Energy Sources 

SoC State of Charge 

VRLAB Valve Regulated Lead Acid Battery 

 

Variables 

𝐶𝑟𝑎𝑡𝑒𝑐  C-rate during ESS charging mode, C 

𝐶𝑟𝑎𝑡𝑒𝑑  C-rate during ESS discharging mode, C 

𝐸𝐵𝐴𝐿(𝑡)   Energy balance, kWh 

𝐸𝐸𝑆𝑆(𝑡)  Energy flow through the ESS, kWh 

𝑘𝑃𝑉𝑖 Coefficient to scale the PV plants installed in 

configuration i 

𝑃𝐵𝐴𝐿(𝑡)  Power balance, kW 

𝑃𝐷𝐸𝐹(𝑡)  Deficit power, kW 

𝑃𝐸𝑆𝑆(𝑡)  ESS power, kW 

𝑃𝐸𝑋(𝑡)  PV power in excess, kW 

𝑃𝐿𝑂𝐴𝐷(𝑡) Load power, kW 

𝑃𝑃𝑅𝑂𝐷(𝑡)  Production power, kW 

𝑆𝑜𝐶(𝑡)  ESS state of charge 

𝑆𝑜𝐸(𝑡)  ESS state of energy 

𝐷𝑜𝐷𝐸(𝑡) ESS depth of discharge in terms of energy 

∆E  Energy decrease calculated on E(t) profile, kWh 

∆𝐸𝐸𝑆𝑆𝑖   Energy needed in storage for configuration i, kWh 

 

Parameters 

𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑐   ESS maximum current rate in charging mode 

𝐶𝑟𝑎𝑡𝑒𝑀𝐴𝑋𝑑  ESS maximum current rate in discharging mode 

tLIM  Limit of time to verify the condition on energy profile, h 

𝑡0 Initial time 

T Time horizon 

𝛥𝑡  Time step, h 

𝜂𝐸 ESS energy efficiency 

 

Indices  

𝑡 Time 

𝑖 Configurations indices 

 


