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Abstract

The concept of explainability is envisioned to satisfy so-
ciety’s demands for transparency on machine learning
decisions. The concept is simple: like humans, algo-
rithms should explain the rationale behind their deci-
sions so that their fairness can be assessed.

While this approach is promising in a local context
(e.g., the model creator explains it during debugging at
training time), we argue that this reasoning cannot sim-
ply be transposed in a remote context, where a trained
model by a service provider is only accessible to a user
through a network and its API. This is problematic
as it constitutes precisely the target use-case requiring
transparency from a societal perspective.

Through an analogy with a club bouncer (which may
provide untruthful explanations upon customer reject),
we show that providing explanations cannot prevent a
remote service from lying about the true reasons leading
to its decisions. More precisely, we prove the impossi-
bility of remote explainability for single explanations,
by constructing an attack on explanations that hides
discriminatory features to the querying user.

We provide an example implementation of this at-
tack. We then show that the probability that an ob-
server spots the attack, using several explanations for
attempting to find incoherences, is low in practical set-
tings. This undermines the very concept of remote ex-
plainability in general.

1 Introduction

Modern decision-making driven by black-box systems
now impacts a significant share of our lives [14, 38].
These systems build on user data, and range from rec-
ommenders [29] (e.g., for personalized ranking of in-
formation on websites) to predictive algorithms (e.g.,
credit default) [38]. This widespread deployment, along
with the opaque decision process provided by these sys-
tems raises concerns about transparency for the general
public or for policy makers [17]. This translated in some
jurisdictions (e.g., United States of America and Eu-
rope) into a so called right to explanation [17,34], that
states that the output decisions of an algorithm must
be motivated.

Explainability of in-house models An already
large body of work is interested in the explainability of
implicit machine learning models (such as neural net-
work models) [2, 18, 28]. Indeed, these models show
state-of-art performance when it comes to a task ac-
curacy, but they are not designed to provide explana-
tions –or at least intelligible decision processes– when
one wants to obtain more than the output decision of
the model. In the context of recommendation, the ex-
pression “post hoc explanation” has been coined [42].
In general, current techniques for explainability of im-
plicit models take trained in-house models and aim at
shedding light on some input features causing salient
decisions in their output space. LIME [33] for instance
builds a surrogate model of a given black-box system
that approximates its predictions around a region of
interest. The surrogate is created from a new crafted
dataset, obtained from the permutation of the original
dataset values around the interesting zone (and the ob-
servation of the decisions made for this dataset). This
surrogate is an explainable model by construction (such
as a decision tree), so that it can explain some deci-
sion facing some input data. The amount of queries to
the black-box model is assumed to be unbounded by
LIME and others [16, 23], permitting virtually exhaus-
tive queries to it. This reduces their applicability to the
inspection of in-house models by their designers.

The temptation to explain decisions to users.
As suggested by Andreou et al. [5], some institutions
may apply the same reasoning in order to explain some
decisions to their users. Indeed, this would support
the will for a more transparent and trusted web by
the public. Facebook for instance attempted to offer
a form of transparency for the ad mechanism targeting
its users, by introducing a “Why I am seeing this” but-
ton on received ads. For a user, the decision-making
system (here, responsible of selecting relevant ads) is
then remote, and can be queried only using inputs (its
profile data) and the observation of system decisions.
Yet, from a security standpoint, we consider a security
model where the remote server (executing the service)
is untrusted to the users, in the classic remote execu-
tion setup [6]. Andreou et al. [5] recently empirically
observed in the case of Facebook that these explana-
tions are “incomplete and can be misleading”, conjec-
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turing that malicious service providers can use this in-
completeness to hide the true reasons behind their de-
cisions.

In this paper, we question the possibility of such an
explanation setup, from a corporate and private model
in destination to users: we go one step furtherby demon-
strating that remote explainability simply cannot be a
reliable guarantee of the lack of discrimination in the
decision-making process. In a remote black-box setup
such as the one of Facebook, we show that a simple
attack, we coin the Public Relations (PR) attack, un-
dermines remote explainability.

The bouncer problem as a parallel for hard-
ness For the sake of the demonstration, we introduce
the bouncer problem as an illustration of the difficulty
for users to spot malicious explanations. The analogy
works as follows: let us picture a bouncer at the door of
a club, deciding whoever might enter the club. When
he issues a negative decision –refusing the entrance to a
given person–, he also provides an explanation for this
rejection. However, his explanation might be malicious,
in the sense that his explanation does not present the
true reasons of this person’s rejection. Consider for in-
stance a bouncer discriminating people based on the
color of their skin. Of course he will not tell people he
refuses the entrance based on that characteristic, since
this is a legal offence. He will instead invent a biased
explanation that the rejected person is likely to accept.

The classic way to assess a discrimination by the
bouncer is for associations to run tests (following the
principle of statistical causality [31] for instance): sev-
eral persons attempt to enter, while they only vary in
their attitude or appearance on the possibly discrimi-
nating feature (e.g., the color of their skin). Conflicting
decisions by the bouncer is then the indication of a pos-
sible discrimination and is amenable to the building of
a case for prosecution.

We make the parallel with bouncer decisions in this
paper by demonstrating that a user cannot trust a
single (one-shot) explanation provided by a remote
model.Moreover, we show that creating such malicious
explanations necessarily creates inconsistent answers
for some inputs, and that the only solution to spot those
inconsistencies is to issue multiple requests to the ser-
vice. Unfortunately, we also demonstrate the problem
to be hard, in the sense that spotting an inconsistency
in such a way is intrinsically not more efficient than
for a model creator to exhaustively search on her local
model to identify a problem, which is often considered
as an intractable process.

Rationale and organization of the paper We
build a general setup for remote explainability in the
next section, that has the purpose of representing ac-
tions by a service provider and by users, facing models
decisions and explanations. The fundamental blocks for
the impossibility proof of a reliable remote explainabil-
ity, or its hardness for multiple queries are presented in
Section 2. We present the bouncer problem in Section

3, that users have to solve in order to detect malicious
explanations by the remote service provider. We then il-
lustrate the PR attack, that the malicious provider may
execute to remove discriminative explanations to users,
on decision trees (Section 4.1). We then practically ad-
dress the bouncer problem by modeling a user trying
to find inconsistencies from a provider decisions based
on the German Credit Dataset and a neural network
classifier, in Section 4.2. We discuss open problems in
Section 5, before reviewing related works in Section 6
and concluding in Section 7. Since we show that re-
mote explainability in its current form is undermined,
this work thus aims to be a motivation for researchers to
explore the direction of provable explainability, by de-
signing new protocols such as for instance one implying
cryptographic means (e.g., such as in proof of owner-
ship for remote storage), or to build collaborative ob-
servation systems to spot inconsistencies and malicious
explanation systems.

2 Explainability of remote deci-
sions

In this work, we study classifier models, that will issue
decisions given user data. We first introduce the setup
we operate in: it is intended to be as general as possible,
so that the results drawn from it can apply widely.

2.1 General Setup

We consider a classifier C : X 7→ Y that assigns in-
puts x of the feature space X to a class C(x) = y ∈ Y.
Without loss of generality and to simplify the presen-
tation, we will assume the case of a binary classifier:
Y = {0, 1}; the decision is thus the output label re-
turned by the classifier.

Discriminative features and classifiers To pro-
duce a decision, classifiers rely on features (variables)
as an input. These are for instance the variables as-
sociated to a user profile on a given service platform
(e.g., basic demographics, political affiliation, purchase
behavior, residential profile [5]). In our model, we con-
sider that the feature space contains two types of fea-
tures: discriminatory and legitimate features. The use
of discriminatory features allows for exhibiting the pos-
sibility of a malicious service provider issuing decisions
and biased explanations. This problematic is also re-
ferred to as rationalization in a paper by Aı̈vodji et
al [3].

Concretely, we consider discriminatory features to be
an arbitrary subset of the input features, such that we
can define these as ”any feature set the malicious service
provider does not want to explain”. Two main reasons
come to mind:

• Legal: the jurisdiction’s law forbids decisions based
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Figure 1: Illustration of our model: we consider bi-
nary classifiers, that map the input domain X to labels
Y = {0, 1}. Some dimensions of the input space are dis-
criminative Xd, which induces a partition on the classi-
fier space. Legitimate classifiers Cl that do not rely on
discriminative features to issue a label (in green), while
others (that is, Cd) can rely on any feature (in red).

on a list of criteria1 which are easily found in clas-
sifiers input spaces. A service provider risks pros-
ecution upon admitting the use of these.

For instance, features such as age, sex, employ-
ment, or the status of foreigner are considered as
discriminatory in the work by Hajian et al. [20],
that looks into the German Credit Dataset, that
links bank customer features to the accordance or
not of a credit.

• Strategical: the service provider wants to hide the
use of some features on which its decisions are
based. This could be to hide some business se-
cret from competitors (because of the accuracy-
fairness trade-off [24] for instance), or to avoid ”re-
ward hacking” from users biasing this feature, or
to avoid bad press.

Conversely, any feature that is not discriminatory is
coined legit.

Formally, we partition the classifier input space X
along these two types of features: legitimate features
Xl that the model can legitimately exploit to issue a
decision, and discriminative features Xd (please refer
to Figure 1). In other words X = (Xl, Xd), and any
input x ∈ X can be decomposed as a pair of legitimate
and discriminatory features x = (xl, xd). We stress
that the introduction of such a split in the features is
required to build our proof and studies, yet it does not
constitute a novel proposal in any way. We assume the
input contains at least one legitimate feature: Xl 6= ∅.

We also partition the classifier space accordingly: let
Cl ⊂ C the space of legitimate classifiers (among all
classifiers C), which do not rely on any feature of Xd

to issue a decision. More precisely, we consider that a
classifier is legitimate if and only if arbitrarily changing
any discriminative input feature does never change its
decision:

C ∈ Cl ⇔ ∀xl ∈ Xl,∀xd, x′d ∈ X 2
d , C((xl, xd)) = C((xl, x

′
d)).

1For instance in the U.K.: https://www.gov.uk/

discrimination-your-rights.

Observe that therefore, any legitimate classifier Cl

could simply be defined over input subspace Xl ⊂ X .
As a slight notation abuse to stress that the value of
discriminative features does not matter in this legit-
imate context, we write C((xl, ∅)), or C(x ∈ Xl) as
the decision produced regardless of any discriminative
feature. It follows that the space of discriminative clas-
sifiers complements the space of legitimate classifiers:
Cd = C \ Cl.

We can now reframe the main research question we
address: Given a set of discriminative features Xd, and
a classifier C, can we decide if C ∈ Cd, in the remote
black-box interaction model ?

The remote black-box interaction model We
question the remote black-box interaction model (see
e.g., paper [36]), where the classifier is exposed to users
through a remote API. In other words users can only
query the classifier model with an input and obtain a
label as an answer (e.g., 0 or 1). In this remote setup,
users then cannot collect any specific information about
the internals of the classifier model, such as its architec-
ture, its weights, or its training data. This corresponds
to a security threat model where two parties are inter-
acting with each other (the user and the remote ser-
vice), and where the remote model is implemented on
a server, belonging to the service operator, that is un-
trusted by the user.

2.2 Requirements for Remote Explain-
ability

Explainability is often presented as a solution to in-
crease the acceptance of AI [2], and to potentially pre-
vent discriminative AI behaviour. Let us expose the
logic behind this connection.

Explanations using conditional reasoning First,
we need to define what is an explanation, to go beyond
Miller’s definition as an “answer to a why-question”
[25]. Since the topic of explainability is becoming a hot
research field with (to the best of our knowledge) no
consensus on a more technical definition of an explana-
tion, we will propose for the sake of our demonstration
that an explanation is causally coherent, with respect
to the modus ponens rule from deductive reasoning (it
stands for “if A is implying B, and A being true, B
is true as well”) [12]. For instance, if explanation a
explains decision b, it means that in context a, the de-
cision produced will necessarily be b. In this light, we
first directly observe the beneficial effect of such expla-
nations on our parallel to club bouncing: while refusing
someone, the bouncer may provide him with the rea-
sons of that rejection; the person can then correct their
behaviour in order to be accepted on next attempt.

Second, this modus ponens explanation form is also
sufficient to prove non-discrimination. For instance, if
a does not involve discriminating arguments (which can
be checked by the user as a is a sentence), and a ⇒ b,
then decision b is not discriminative in case a. On the
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contrary, if a does involve discriminating arguments,
then decision b is taken on a discriminative basis, and
is therefore a discriminative decision. In other words,
this property of an explanation is enough to reveal dis-
crimination.

To sum up, any explanation framework that behaves
“logically” (i.e., fits the modus ponens [12]) –which is in
our view a rather mild assumption– is enough to estab-
lish the discriminative basis of a decision. We believe
this is the rationale of the statement ”transparency can
improve users trust in AI systems”. In fact, this logical
behaviour is not only sufficient to establish discrimina-
tion, it is also necessary: assume a framework providing
explanation a for decision b such that we do not have
a ⇒ b. Since a and b are not connected anymore, a
does not bring any information about b.

While this logical behaviour is desirable for users,
unfortunately in a remote context they cannot check
whether a⇒ b is in general true because they are only
provided with a particular explanation a leading to a
particular decision b. They cannot check that a being
true leads in all contexts to b being true.

Requirements on the user side for checking ex-
planations In a nutshell, a user in a remote interac-
tion can verify that in her context a is true, and b is true,
which is compatible with the a⇒ b relation of an expla-
nation fitting the modus ponens. Let us formalise what
can a user check regarding the explanation she collects.
A user that queries a classifier C with an input x gets
two elements: the decision (inferred class) y = C(x)
and an explanation a such that a explains y. Formally,
upon request x, a user collects y and a = expC(y, x).

We assume that such a user can check that a is apro-
pos (i.e., appropriate): a corresponds to her input x.
Formally, we write a ∈ A(x). This allows us to formally
write a non-discriminatory explanation as a ∈ A(xl).
This forbids lying by explaining an input that is differ-
ent than x.

We also assume that the user can check the explana-
tion is consequent : user can check that a is compatible
with y. This forbids crafting explanations that are in-
coherent w.r.t. the decision (like a bouncer that would
explain why you can enter in while leaving the door
locked).

To produce such explanations, we assume the exis-
tence of an explanation framework expC producing ex-
planations for classifier C (this could for instance by
the LIME framework [33]). The explanation a explain-
ing decision y in context x by classifier C is written
a = expC(y, x).

Having defined the considered model for exposing our
results, we stress that this model aims at constrain-
ing the provider as much as possible (e.g., explanations
must be as complete as possible, are always provided,
must always be coherent with decision, etc.). The in-
tuition being that if we prove the possibility of mali-
cious explanations in this constrained case, then the
implementation in all less constrained cases, such as for

incomplete explanation [5], or example-based explana-
tions will only be easier.

To sum up on the explanation model: explanations
fitting the modus ponens allow users to detect discrimi-
nation. Unfortunately in a remote context, users cannot
check whether explanations do fit the modus ponens.
However they can check the veracity of the explanation
and the decision in their particular experience. This is
the space we exploit for our attack, by generating mali-
cious explanations that appear correct to the user (yet
that do not fit the modus ponens).

2.3 Limits of Remote Explainability:
The PR (Public Relations) Attack

We articulate our demonstration of the limits of ex-
plainability in a remote setup by showing that a mali-
cious service provider can hide the use of discriminating
features for issuing its decisions, while conforming to
the mild explainability framework we described in the
previous subSection.

Such a malicious provider thus wants to i) produce
decisions based on discriminative features and to ii)
produce non-discriminatory explanations to avoid pros-
ecution.

A first approach could be to manipulate the expla-
nation directly. It might however be difficult to do so
while keeping the explanation convincing and true in
an automated way. In this paper, we follow another
strategy that instead consists in inventing a legitimate
classifier that will then be explained.

A Generic Attack Against Remote Explainabil-
ity We coin this attack the Public Relations attack
(noted PR). The idea is rather simple: upon recep-
tion of an input x, first compute discriminative deci-
sion C(x). Then train a surrogate model C ′ that is
non-discriminative, and such that C ′(x) = y. Explain
C ′(x), and return this explanation along with C(x).

Figure 2 illustrates a decision based solely on legit-
imate features (A.), a provider giving an explanation
that includes discriminatory features (B.), and the at-
tack by a malicious provider (C.). In all three scenar-
ios, a user is querying a remote service with inputs x,
and obtaining decisions y each along with an explana-
tion. In case B., the explanation expC reveals the use
of discriminative features Xd; this provider is prone to
complaints. To avoid these, the malicious provider (C.)
leverages the PR attack, by first computing C(x) us-
ing its discriminative classifier C. Then, based on the
legitimate features xl of the input, and its final (dis-
criminative) decision y, it derives a classifier C ′ for the
explanation.

Core to the attack is the ability to derive such clas-
sifier C ′:

Definition 1 (PR attack). Given an arbitrary classi-
fier C ∈ Cd, a PR attack is a function that finds for an
arbitrary input x a classifier C ′:

PR(C, x,C(x))→ C ′, (1)
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x = (xl, ∅)
C→ y

Remote

x y, expC(y, (xl, ∅))

User

A.

x = (xl, xd)
C→ y

Remote

x y, expC(y, (xl, xd))

Discriminated User

B.

(xl, xd)
C→ y

PR(C, (xl, xd), y) → C′

s.t. C ′(xl) = y

x y, expC′(y, (xl, ∅))

Discriminated
& Fooled User

C.

Figure 2: (A.) A provider using a model that does not leverage discriminatory features. (B.) A discriminative model
divulges its use of a discriminating feature. (C.) The PR attack principle, undermining remote explainability: the
black-box builds a surrogate model C ′ for each new request x, that decides y based on xl features only. It explains
y using C ′.

such that C ′ satisfies two properties:

• coherence: C ′(xl) = y.

• legitimacy: C ′ ∈ Cl.

Informally, coherence ensures that the explanation
(derived from C ′) appears consequent to the user ob-
serving decision y, while legitimacy ensures the expla-
nation will appear to the user as originating from the
”modus ponens” explanation of a non-discriminating
classifier.

Effectiveness of the attack: Let us consider the
perspective of a user whom upon request x collects a
y answer along with an explanation a. Observe that
a = expC′(y, x) is apropos since it directly involves
x : a ∈ A(x). Since we have C ′(x) = y it is also
consequent. Finally, observe that since C ′ ∈ Cl, then
a ∈ A(xl): a is non-discriminatory. So from the user
perspective, she collects an apropos and consequent ex-
planation that could originate from the logical explana-
tion of a legitimate classifier.

Existence of the attack: We note that crafting a
classifier C ′ satisfying the first property is trivial since it
only involves a single data point x. An example solution
is the Dirac delta function of the form:

C ′(x′) = C ′((x′l, x
′
d)) =

{
δx′

l,xl
if y = 1

1− δx′
l,xl

if y = 0
,

where δ is the Dirac delta function. Informally, this so-
lution corresponds to defining the classifier that would
only answer ”bounce” to this specific input x, and an-
swer ”enter” to any other input.

While a corresponding intuitive explanation could be
”because it is specifically you”, explaining this very spe-
cific function might not fit any explainability frame-
work. To alleviate this concern, we provide an example
implementation of a PR attack that produces legitimate
decision trees from discriminating ones in section 4.1.

Dirac here only constitutes an example proving the
existence of PR attack functions. It is important to

realise that many such C ′ PR attack functions exists:
any function Xl 7→ Y that satisfies one easy condition:
C ′(x) = y.

Proposition 1. Let Cl : Xl 7→ Y = {0, 1} the set of all
possible legit classifiers. Let PR ⊂ Cl be the set of pos-
sible PR attack functions. We have |PR| = |Cl|/2: half
of all possible legit classifiers are PR attack functions.

Proof. Pick xl ∈ Xl and y = C(x) the decision with
which our PR attack function must be coherent. Since
Cl is a set of functions defined over Xl, any particular
function C in Cl is defined at xl. Let us partition the
function space Cl according to the value these functions
take at xl: let A : {C ∈ Cl s.t. C(xl) = y} and B : {C ∈
Cl s.t. C(xl) = ȳ}. We have Cl = A ∪ B.

Let not : A 7→ B be a ”negation function” that asso-
ciate for each function C ∈ A its negation not(C) ∈ B
s.t. not(C)(x) = 1−C(x). Observe that not◦not = Id:
not defines a bijection between A and B (any function
in A has exactly one unique corresponding function in
B and vice versa). Since not is a bijection, we deduce
|A| = |B| = |Cl|/2.

Since A contains all possible legitimate functions
(A ⊂ Cl) that are coherent with C(xl) = y, A = PR.
Thus |PR| = |Cl|/2

In other words, PR attack functions are easy to
find: if one could sample Cl uniformly at random, since
C ′(x) = y is equally likely than C ′(x) = ȳ, each sample
would yield a PR attack function with probability 1/2.

We have presented the framework and an attack nec-
essary to question the possibility of remote explainabil-
ity. We next discuss the possibility for a user to spot
that an explanation is malicious and obtained by a PR
attack. We stress that if a user cannot, then the very
concept of remote explainability is at stake.
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3 The bouncer problem: spot-
ting PR attacks

We presented in the previous section a general setup for
remote explainability. We now formalise our research
question regarding the possibility of a user to spot an
attack in that setup.

Definition 2 (The bouncer problem (BP )). Using ε
requests that each returns a decision yi = C(xi) and an
explanation expC(yi, x), we denote by BP (ε), decide if
C ∈ Cd.

3.1 An Impossibility Result for One-
Shot Explanations

We already know that using a single input point is in-
sufficient:

Observation 1. BP (1) has no solution.

Proof. The Dirac construction above always exists.

Indeed, constructions like the introduced Dirac func-
tion, or the tree pruning construct a PR attack that
produces explainable decisions. Given a single expla-
nation on model C ′ (i.e., ε = 1) the user cannot dis-
tinguish between the use of a model (C in case A.), or
the one of a crafted model by a PR attack (C ′ in case
C.), since it is consequent. This means that such a user
cannot spot the use of hidden discriminatory features
due to the PR attack by the malicious provider.

We observed that a user cannot spot a PR attack,
with BP (1). This is already problematic, as it gives a
formal proof on why Facebook ad explanation system
cannot be trusted [5].

3.2 The Hardness of Multiple Queries
for Explanation

To address the case BP (ε > 1), we observe that a PR
attack generates a new model C ′ for each request; in
consequence, an approach to detect that attack is to
detect the impossibility (using multiples queries) of a
single model C ′ to produce coherent explanations for a
set of observed decisions. We here study this approach.

Interestingly, classifiers and bouncers share this prop-
erty that their outputs are all mutually exclusive (each
input is mapped to exactly one class). Thus we have
Enter ⇒ Bounce (with Enter and Bounce the posi-
tive or negative decision to for instance enter a place).
In which case it is impossible to have a ⇒ Enter and
a ⇒ Bounce. Note that this relation assumes a ”log-
ical” explainer. On a non logical explainer, since we
cannot say a ⇒ Enter given a and Enter, we cannot
detect such attack. Note also that non-mutually exclu-
sive outputs (e.g. in the case of recommenders where
recommending item a does not imply not recommend-
ing item b) are not bound by this rule.

A potential problem for the PR attack is a decision
conflict, in which a could explain both b and b̄ its op-
posite. For instance, imagine a bouncer refusing you

the entrance of a club because, say, you have white
shoes. Then, if the bouncer is coherent, he should refuse
the entrance to anyone wearing white shoes, and if you
witness someone entering with white shoes, you could
argue against the lack of coherence of the bouncer de-
cisions. We build on those incoherences to spot PR
attacks.

In order to examine the case BP (ε), where ε > 1, we
first define the notion of an incoherent pair :

Definition 3 (Incoherent Pair – IP). Let x1 =
(x1l , x

1
d), x2 = (x2l , x

2
d) ∈ X = Xl × Xd be a two input

points in the feature space. x1 and x2 form an inco-
herent pair for classifier C iff they both have the same
legit feature values in Xl and yet end up being classified
differently:
x1l = x2l ∧ C(x1) 6= C(x2). For convenience we write

(x1, x2) ∈ IPC .

Finding such an IP is a powerful proof of PR attack
on the model by the provider. Intuitively, this is a for-
malization of an intuitive reasoning: ”if you let others
enter with white shoes then this was not the true reason
for my rejection”:

Proposition 2. Only decisions resulting from a model
crafted by a PR attack (1) can exhibit incoherent pairs:
IPC 6= ∅ ⇒ C ∈ Cd.

Proof. We prove the contra-positive form C 6∈ Cd ⇒
IPC = ∅. Let C 6∈ Cd. Therefore C ∈ Cl, and by defini-
tion: ∀xl ∈ Xl,∀xd, x′d ∈ X 2

d , C((xl, xd)) = C((xl, x
′
d)).

By contradiction assume IPC 6= ∅. Let (x1, x2) ∈ IPC :
x1l = x2l ∧ C(x1) 6= C(x2). This directly contradicts
C ∈ Cl. Thus IPC = ∅.

We can show that there is always a pair of inputs
allowing to detect a discriminative classifier C ∈ Cd.

Proposition 3. A classifier C ′, resulting from a PR
attack, always has at least one incoherent pair: C ′ ∈
Cd ⇒ IPC 6= ∅.

Proof. We prove the contrapositive form IPC = ∅ ⇒
C 6∈ Cd. Informally, the strategy here is to prove that
if no such pair exists, this means that decisions are not
based on discriminative features in Xd, and thus the
provider had no interest in conducting a PR attack on
the model; the considered classifier is not discriminat-
ing.

Assume that IPC = ∅. Let x∅ ∈ Xd, and let Cl :
Xl 7→ Y be a legitimate classifier such that Cl(xl) =
C((xl, x∅)).

Since IPC = ∅, this means that ∀x1, x2 ∈ X , x1l =
x2l ⇒ C(x1) = C(x2). In particular ∀x ∈ X , C(x =
(xl, xd)) = Cl(xl, x∅). Thus C = Cl; by the definition
of a PR attack being only applied to a model that uses
discriminatory features, this leads to C ∈ C \ Cd, i.e.,
C 6∈ Cd.

Which directly applies to our problem:

Proposition 4 (Detectability lower bound). BP (|X |)
is solvable.
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Proof. Straightforward: C ′ ∈ Cd ⇒ IPC 6= ∅, and since
IP ⊆ X × X testing the whole input space will neces-
sarily exhibit such an incoherent pair.

This last result is rather weakly positive: even though
any PR attack is eventually detectable, in practice it
is impossible to exhaustively explore the input space
of modern classifiers due to their dimension. This re-
mark also further questions the opportunity of remote
explainability.

Moreover, it is important to observe that while find-
ing an IP proves the presence of a PR attack, it is not
an efficient technique to prove the absence of a PR at-
tack, which is probably the use case interesting users
the most. Section 4.2 details this approach on a con-
crete dataset.

This concludes the theoretical perspective of this pa-
per. To sum up, an explainer that could allow to spot
classifier discrimination should behave logically, this is
what is expected by the users. However, they can only
check the properties of the provided explanation with
regards to input x, which leaves room for malicious
providers. One such provider can just ”invent” a le-
git explainer whose decision matches the discriminative
one for input x. Fortunately, this technique can be de-
tected. This detection is however difficult in practice,
as we will illustrate next.

4 Illustration and Experiments

In this section, we instantiate concretely some of the
points raised by our theoretical perspective. We first
illustrate the ease of finding PR attack functions on bi-
nary decision trees by presenting an algorithm that im-
plements a PR attack. We then focus on detection, and
evaluate in practice the hardness of finding incoherent
pairs on the German Credit dataset.

4.1 Illustration using Decision Trees

In this section, we embody the previous observations
and approaches on the concrete case of decision tree
classifiers. The choice of decision trees is motivated
first because of its recognised importance (e.g., C4.5

ranked number one of the top ten data mining algo-
rithms [39]). Second, there is a wide consensus on their
explainability, that is straightforward [28]: a path in
the tree ”naturally” lists the attributes considered by
the algorithm to establish a classification. Finally, the
simplicity of crafting PR attacks on those make them
good candidates for an illustration and argues for the
practical implementability of such an attack.

We denote T as the set of tree-based classifiers. We
do not need any assumption on how the tree is built
(e.g., C4.5 [32]). Regarding explainability, we here
only need to assume that decision trees are explainable:
∀C ∈ T , expC exists.

Let C ∈ T ∩ Cd be a discriminatory binary tree clas-
sifier. Each internal node n ∈ V (C) tests incoming ex-
amples based on a feature n.label. Each internal node

is connected to exactly two sons in the tree, named n.r
and n.l for right and left. Depending on the (binary)
result of this test, the example will continue on either of
these paths. We denote the father of an internal node
by n.father (the root node r is the only node such that
r.father = ∅).

Algorithm 1 presents a PR attack on binary decision
trees. To ease its presentation, we assume that given
an input x, n.r (right) will by convention always be the
branch taken after evaluating x on n. The algorithm
starts by initializing the target decision tree C ′ as a
copy of C. Then, it selectively removes all nodes in-
volving discriminative features, and replaces them with
the subtree the target example x would take.

Algorithm 1: PR attack on a discriminative decision

binary tree C

Input: C, x = (xl, xd)
1 y = C(x) ; // Find discriminative decision

2 Let {n0, . . . nl} be breadth first ordering of the nodes
of C;

3 Let C′ = C ; // Initialise surrogate

4 for node i = 0 to l do
5 if ni.label ∈ Xd then
6 C′.ni.father.r = ni.r ; // Reconnect ni

father to right son

7 C′ = C′ \ {ni} ; // Remove discriminating

node

8 C′ = C′ \ {ni.l subtree} ; // Remove left

subtree

9 else
10 C′.ni.l = ȳ ; // Keep legit node, add dummy

terminal node

11 end

12 end
13 return y, expC′(y, (xl, ∅))

To do so, Algorithm 1 removes each discriminative
node ni by connecting ni−1 and ni+1. While this ap-
proach would be problematic in the general case (we
would loose the ni.l subtree), in the context of x we
know the explored branch is ni.r, so we simply re-
connect this branch, and replace the left subtree by a
dummy output.

An example is presented in Figure 3: the dis-
criminative classifier C is queried for the explanation
expC(C(x), x) of input x. To produce an answer for a
discriminative feature such as the age, it first applies
Algorithm 1 on C, given the query x. If x < 60 (upper
right in Figure 3), the explanation expC′ has simply
became a node with the age limit, leading to an “En-
ter” decision. In case x ≥ 60, the explanation node is
a legit one (“Disguised”), leading to the “Bounce” de-
cision. Both explanation then do not exhibit the fact
that the provider relied on a discriminative feature in
C. This exhibits that BP (1) does not have a solution.

Comparing both versions of C ′ easily yields solutions
for BP (2), for instance (Disguised, withsocks,Age =
49) and (Disguised, withsocks,Age = 62).

Proposition 5. Algorithm 1 implements a PR attack.
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Disguised ?
C(x) :

Age < 60 Wears pink
socks ?

Enter Bounce
Enter Bounce

Y N

Y N
Y N

Disguised ?
C ′(xl)|xd < 60 :

Wears pink
socks ?

Enter

Enter Bounce

NY

Y N

Disguised ?
C ′(xl)|xd ≥ 60 :

Wears pink
socks ?Bounce

Enter Bounce

NY

Y N

Figure 3: Illustration of a possible implementation (Algorithm 1) of the PR attack: instead of having to explain the
use of a discriminative feature (age in this case) in the classifier C, two non-discriminative classifiers (C ′, on the
right) are derived. Depending on the age feature in the request, a C ′ is then selected to produce legit explanations.
The two dashed circles represent an Incoherent Pair, that users might seek to detect a malicious explanation.

Proof. To prove the statement, we need to prove that:

• C ′ is legitimate

• C ′ is coherent: C ′(xl) = y

• C ′ is explainable

First, observe that any nodes of C ′ containing dis-
criminative features is removed line 7. Thus, C ′ only
takes decisions based on features in Xl: C

′ is legitimate.
Second, observe that by construction since x =

(xl, xd), and since any discriminative node n is replaced
by this right (n.r) outcome which is the one that cor-
responds to xd. In other words, ∀x′l ∈ Xl, C

′(x′l) =
C((x′l, xd)): C ′ behaves like C where discriminative fea-
tures are evaluated at xd. This is true in particular for
xl : C ′(xl) = C((xl, xd)) = C(x) = y.

Finally, observe that C ′ is a valid decision tree.
Therefore, according to our explainability framework,
C ′ is explainable.

Interestingly, the presented attack can be efficient as
it only involves pruning part of the target tree. In the
worst case, this one has Ω(2d) elements, but in practice
decision trees are rarely that big.

4.2 Finding IPs on a Neural Model: the
German Credit Dataset

We now take a closer look at the detectability of the
attack, namely: how difficult is it to spot an IP ? We
illustrate this by experimenting on the German Credit
Dataset.

Experimental setup We leverage Keras over Ten-
sorFlow to learn a neural network-based model for the
German Credit Dataset [1]. While we could have used

any relevant type of classifier for our experiments, gen-
eral current focus is on neural networks regarding ex-
plainability. The bank dataset classifies client profiles
(1, 000 of them), described by a set of attributes, as
good or bad credit risks. Multiple techniques have been
employed to model the credit risks on that dataset,
which range from 76.59% accuracy for a SVM to 78.90%
for a hybrid between genetic algorithm and a neural
network [30].

The dataset is composed of 24 features (some cate-
gorical ones, such as sex, of status, were set to numer-
ical). This thus constitutes a low dimensional dataset
as compared to current applications (observations in [5]
reported up to 893 features for the sole application of
ad placement on user feeds on Facebook). Further-
more, modern classifiers are currently dealing with up
to 512×512×3 dimensions [10], which permit a signifi-
cant increase in data processing and thus the capability
to expand the amount of features taken into account for
decision-making.

The neural network we built2 is inspired by the one
proposed [22] in 2010, and that reached 73.17% accu-
racy. It is a simple multi-layer perceptron, with a single
hidden layer of 23 neurons (with sigmoid activations),
and a single output neuron for the binary classification
of the input profile to “risky” or not. In this experi-
ment we use the Adam optimizer and a learning rate of
0.1 (leading to much faster convergence than in [22]),
with a validation split of 25%. We create 30 models,
with an average accuracy of 76.97%@100 epochs on the
validation set (with a standard deviation of 0.92%).

In order to generate input profiles, we consider two
scenarios. In A) we consider a scenario where a user
sets a random value in a discriminative feature to try
to find an IP. This yields rather artificial user profiles

2Code is made available at: https://github.com/

erwanlemerrer/bouncer_problem.
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Figure 4: Percentage of label changes when swapping
the discriminative features in the test set data for sce-
nario B). Bars indicate standard deviations. Those in-
dicate the low probability to spot a PR attack on the
provider model).

(that may be detected as such by the remote service
provider). To have an aggregated view of this scenario,
we proceed as follows. For each of the 30 models, we
randomly select 50 users as a test set (not used for train-
ing the previous models). We then repeat 500 times the
following: we select a random user among the 50 and
select a random discriminative feature among the four,
to set a random (uniform) value in it (belonging to the
domain of each selected feature, e.g., from 18 to 100
in the age feature). This creates a set of 15, 000 fake
profiles as inputs.

In B), in order to have a more realistic scenario where
profiles are created from real data from the dataset, we
now proceed as follows. We also select 50 profiles from
the dataset as a test set, so we can perform our core
experiment: the four discriminatory features of each of
those profiles are sequentially replaced by the ones of
the 49 remaining profiles; each resulting test profile is
fed to the model for prediction. (This permits to test
the model with realistic values in those features. This
process creates 2450 profiles to search of an IP). We
count the number of times the output risk label has
switched, as compared to the original untouched profile
fed to the model. We repeat this operation on the 30
models to observe deviations.

The low probability of findings IPs at random
In the case of scenario A), we compare the original label
with the one obtained from each crafted input. We
obtain 8.09% of IPs (standard deviation of 4.08).

Figure 4 depicts for scenario B) the proportion of
label changes over the total number of test queries; re-
call that a label change while considering two inputs
constitutes an IP. We observe that if we just change
one of the four features, we obtain on average 1.86%,
0.27%, 1.40%, 2.27% labels changes (for the employ-
ment, sex/status, age, foreigner features, respectively),
while 4.25% if the four features are simultaneously
changed. (Standard deviations are of 1.48%, 0, 51%,
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Figure 5: Confidence level as a function of the num-
ber of tested input pairs, based on the German Credit
detection probability in Figure 4. The dashed line rep-
resents a 99% confidence level.

1, 65%, 2, 17% and 3, 13%, respectively).
This probability of 4.25% is higher than our deter-

ministic lower bound BP (|X |) (Proposition 4), hinting
that this discriminating classifier is easier to spot that
the worst-case one. Moreover, since not finding an IP
after some requests does not guarantee the absence of a
discriminating behaviour, we now look at the user-side
perspective: testing the absence of discrimination of a
remote service. It turns out that we can compute an
expectation of the number of queries for such a user to
find an IP.

Users can query the service with inputs, until they
are confident enough that such pair does not exist. As-
suming one seeks a 99% confidence level –that is, less
than one percent of chances to falsely detect a discrim-
inating classifier as non-discriminating–, and using the
detection probabilities of Figure 4, we can compute the
associated p-values. A user testing a remote service
based on those hypotheses would need to craft respec-
tively 490, 2555, 368, 301 and 160 (for the employment,
sex/status, age, foreigner, and all four respectively)
pairs in the hope to decide on the existence or not of an
IP, as presented in Figure 5 (please note the log-scale
on the y-axis).

Those experiments highlight the hardness to experi-
mentally check for PR attacks.

5 Discussion

We now list in this section several consequences of the
findings in this paper, and some open questions.

5.1 Findings and Applicability

We have shown that a malicious provider can always
craft a fake explanation to hide its use of discriminatory
features, by creating a surrogate model for providing
an explanation to a given user. An impossibility result
follows, for a user to detect such an attack while using
a single explanation. The detection by a user, or a
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group of users, is possible only in the case of multiple
and deliberate queries (BP (ε > 1)); this process may
require an exhaustive search of the input space.

However, we see that our practical experiment on the
German Credit Dataset is far from this bound. Intu-
itively the probability of finding an IP is proportional to
the ”discrimination level” of a classifier. While quanti-
fying such level is a difficult task, we explore a possible
connection in the next paragraph.

We note that the malicious providers have another
advantage for covering PR attacks. Since multiple
queries must be issued to spot inconsistencies via IP
pairs, basic rate limiting mechanisms for queries may
block and ban the incriminated users. Defenses of this
kind, for preventing attacks on online machine services
exposing APIs, are being proposed [21]. This adds an-
other layer of complexity for the observation of misbe-
haviour.

5.2 Connection with Disparate Impact

We now briefly relate our problem to disparate impact :
a recent article [15] proposes to adopt ”a generaliza-
tion of the 80 percent rule advocated by the US Equal
Employment Opportunity Commission (EEOC)” as a
criteria for disparate impact. This notion of disparate
impact proposes to capture discrimination through the
variation of outcomes of an algorithm under scrutiny
when applied to different population groups.

More precisely, let α be the disparity ratio. The au-
thors propose the following formula, here adapted to
our notations [15]:

α =
P(y|xd = 0)

P(y|xd = 1)
,

where Xd = {0, 1} is the discriminative space reduced
to a binary discriminatory variable. Their approach is
to consider that if α < 0.8 then the tested algorithm
could be qualified as discriminative.

To connect disparate impact to our framework, we
can conduct the following strategy. Consider a classifier
C having a disparate impact α, and producing a binary
decision C(x) ∈ {0 = “bounce”, 1 = “enter”}. We
search for Incoherent Pairs as follows: first, pick x ∈ Xl

a set of legit features. Then take a = (x, xd = 0),
representing the discriminated group, and b = (x, xd =
1) representing the undiscriminated group. Then test
C on both a and b: if C(a) 6= C(b) then (a, b) is an IP.
The probability P of finding an IP in this approach can
be written as P(IP ). Let A (resp. B) be the event “a
enters” (resp. “b enters”).

We can develop:

P(IP ) = P(C(a) 6= C(b))

= P(A ∩B) + P(A ∩B)

= P(A)− P(A ∩B) + P(B)− P(A ∩B)

= P(B)(1 + α)− 2P(A ∩B), since α = P(A)/P(B).

Using conditional probabilities, we have P(A ∩ B) =
P(B|A).P(A). Thus P(IP ) = P(B)(1+α−2α.P(B|A)).

Since the conditional probability P(B|A) is difficult to
assess without further hypotheses on C, let us investi-
gate two extreme scenarios:

• Independence: A and B are completely indepen-
dent events, even though a and b share their legit
features in Xl. This scenario, which is not very re-
alistic, could model purely random decisions with
respect to attributes from Xd. In this scenario
P(B|A) = P(B).

• Dependence: A ⇒ B: if A is selected despite
its membership to the discriminated group (a =
(x, 0)), then necessarily b must be selected, as it
can only be “better” from C’s perspective. In this
scenario P(B|A) = 1.
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Figure 6: Probability to find an Incoherent Pair (IP), as
a function of P(B) the probability of success for a non-
discriminated group. α represents the disparity ratio.

Figure 6 represents the numerical evaluation of our
two scenarios. First, it shows that the probability of
finding an IP strongly depends on the probability of
a success for the non-discriminated group P(B). In-
deed, since the discriminated group has an even lower
probability of success, a low success probability for the
non-discriminated group implies frequent cases where
both a and b are failures, which does not constitutes an
IP.

In the absence of disparate impact (α = 1), both sce-
narios provide very different results: the independence
scenario easily identifies IPs –which is coherent with
the ”random” nature of the independence assumption–.
This underlines the unrealistic nature of the indepen-
dence scenario in this context. With a high disparate
impact however (e.g., α = 0.1), the discriminated group
has a high probability of failure. Therefore the proba-
bility of finding an IP is very close to the simple prob-
ability of the non-discriminated group having a success
P(B), regardless of the considered scenario.

The dependence scenario nicely illustrates a natural
connection: the higher the disparate impact, the higher
the probability to find an IP. While this only constitutes
a thought experiment, we believe this highlights possi-
ble connections with standard discrimination measures
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and conveys the intuition that in practice, the proba-
bility of finding IPs exposing a PR attack strongly de-
pends on the intensity of the discrimination hidden by
that PR attack.

5.3 Open Problems for Remote Ex-
plainability

On the test efficiency It is common for fairness as-
sessment tools to leverage testing. As the features that
are considered discriminating are often precise [16, 20],
the test queries for fairness assessment can be targeted
and some notions of efficiency in terms of the amount
of requests can be derived. This may be done by sam-
pling the feature space under question for instance (as
in work by Galhotra et al. [16]).

Yet, it appears that with current applications such as
social networks [5], users spend a considerable amount
of time online, producing more and more data that turn
into features, and also are the basis to the generation
of other meta-features. In that context, the full scope
of features, discriminating or not, may not be clear to a
user. This makes exhaustive testing even theoretically
unreachable, due to the very likely non-complete pic-
ture of what providers are using to issue decisions. This
is is another challenge on the way to remote explainabil-
ity, if providers are not willing to release a complete and
precise list of all attributes leveraged in their system.

Towards a provable explainability? Some other
computing applications, such as data storage or inten-
sive processing also have questioned the possibility of
malicious service providers in the past. Motivated by
the plethora of offers in the cloud computing domain
and the question of quality of service, protocols such
as proof of data possession [6], or proof-based verifi-
able computation [9], assume that the service provider
might be malicious. A solution to still have services exe-
cuted remotely in this context is then to rely on crypto-
graphic protocols to formally verify the work performed
remotely. To the best of our knowledge, no such prov-
able process logic has been adapted to explainability.
That is certainly an interesting development to come.

6 Related Work

Explaining in-house models As a consequence of
the major impact of machine learning models in many
areas of our daily life, the notion of explainability has
been pushed by policy makers and regulators. Many
works address explainability of inspected model deci-
sions on a local setup (please refer to surveys [13,18,28])
–some specifically for neural network models [40]–,
where the number of requests to the model is un-
bounded. Regarding the question of fairness, a recent
work specifically targets the fairness and discrimina-
tion of in-house softwares, by developing a testing-based
method [16].

Dealing with remote models The case of models
available through a remote black-box interaction setup
is particular, as external observers are bound to scarce
data (labels corresponding to inputs, while being lim-
ited in the number of queries to the black-box [37]).
Adapting the explainability reasoning to models avail-
able in a black box setup is of a major societal inter-
est: Andreou et al. [5] shown that Facebook’s expla-
nations for their ad platform are incomplete and some-
times misleading. They also conjecture that malicious
service providers can “hide” sensitive features used, by
explaining decisions with very common ones. In that
sense, our paper is exposing the hardness of explainabil-
ity in that setup, confirming that malicious attacks are
possible. Milli et al. [26] provide a theoretical ground
for reconstructing a remote model (a two-layer ReLu
neural network) from its explanations and input gra-
dients; if further research proves the approach practi-
cal for current applications, this technique may help to
infer the use of discriminatory features in use by the
service provider.

Operating without trust: the domain of security
In the domain of security and cryptography, some sim-
ilar setups have found a large body of work to solve
the trust problem in remote interacting systems. In
proof of data possession protocols [6], a client executes
a cryptographic protocol to verify the presence of her
data on a remote server; the challenge that the stor-
age provider responds to assesses the possession or not
of some particular piece of data. Protocols can give
certain or probabilistic guarantees. In proof-based ver-
ifiable computation [9], the provider returns the results
of a queried computation, along with a proof for that
computation. The client can then check that the com-
putation indeed took place. These schemes, along with
this paper exhibiting attacks on remote explainability,
motivate the need for the design of secure protocols.

Discrimination and bias detection approaches
Our work is complementary to classic discrimination
detection in automated systems. In contrast to works
on fairness [7] that attempt to identify and measure
discrimination from systems, our work does not aim at
spotting discrimination, as we have shown it can be
hidden by the remote malicious provider. We instead
are targeting the occurrence of incoherent explanations
produced by such a provider in the will to cover its be-
havior, which is a a completely different nature than
fairness based test suites. Galhotra et al. [16], inspired
by statistical causality [31], for instance propose to cre-
ate input datasets for observing discrimination on some
specific features by the system under test.

While there are numerous comments and proposals
for good practices when releasing models that may in-
clude forms of bias [27], the automatic detection of bias
on the user side is also of interest for the community.
For instance, researchers seek to detect the Simpson’s
Paradox [8] in the data [4]. Another work makes use
of causal graphs to detect [41] a potential discrimina-
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tion in the data, while authors propose in [19] to purge
the data so that direct and/or indirect discriminatory
decision rules are converted to legitimate classification
rules. Some works are specific to some applications,
such as financial ones [43]. Note that those approaches
by definition require an access to the training data,
which is a too restrictive assumption in the context of
our target contribution.

The work in [35] proposes to leverage transfer learn-
ing (or distillation) to mimic the behaviour of a black
box model, here a credit scoring model. A collection
campaign is assumed to provide a labeled dataset with
the risk scores, as produced by the model and the
ground-truth outcome. From this dataset is trained
a model aiming at mimicking the black box as close
as possible. Both models are then compared on their
outcome, and a method to estimate the confidence in-
terval for the variance of results is presented. The
trained model can then be queried to assess potential
bias. This approach proves solid guarantees when one
assumes that the dataset is extracted from a black box
that does not aim to bias its outputs to prevent audits
of that form.

The rationalization of explanations More closely
related to our work is the recent paper by Aivodji et
al. [3], that introduces the concept of rationalization,
in which a black-box algorithm is approximated by a
surrogate model that is ”fairer” that the original black-
box. In our terminology, they craft C ′ models that opti-
mise arbitrary fairness objectives. To achieve this, they
explore decision tree models trained using the black-box
decisions on a predefined set of inputs. This produces
another argument against black-box explainability in
a remote context. The main technical difference with
our tree algorithm section 4.1 is that their surrogates
C ′ optimises an exterior metric (fairness) at the cost of
some coherence (fidelity in the authors’ terminology).
In contrast, our illustration section 4.1 produces surro-
gates with perfect coherence that do not optimise any
exterior metric such as fairness. In our model, spotting
an incoherence (i.e., the explained model produces a y
while the black-box produces a ȳ) would directly pro-
vide a proof of manipulation and reveal the trickery.
Interestingly, the incoherent pair approach fully applies
in the context of their model surrogates, as it arises
as soon as more than one surrogate is used (regardless
of the explanation). Our paper focuses on the user-
side observation of explanations, and users ability to
discover such attacks. We rigorously prove that single
queries are not sufficient to determine a manipulation,
and that the problem is hard even in the presence of
multiple queries and observations.

7 Conclusion

In this paper, we studied explainability in a remote con-
text, which is sometimes presented as a way to satisfy
society’s demand for transparency facing automated de-

cisions. We prove it is unwise to blindly trust those
explanations: like humans, algorithms can easily hide
the true motivations of a decision when asked for ex-
planation. To that end, we presented an attack that
generates explanations to hide the use of an arbitrary
set of features by a classifier. While this construction
applies to any classifier queried in a remote context, we
also presented a concrete implementation of that at-
tack on decision trees. On the defensive side, we have
shown that such a manipulation cannot be spotted by
one-shot requests, which is unfortunately the nominal
use-case. However, the proof of such trickery (pairs of
classifications that are not coherent) necessarily exists.
We further evaluated in a practical scenario the proba-
bility of finding such pairs, which is low. The attack is
thus arguably impractical to detect for an isolated user.

We conclude that this must consequently question the
whole concept of the explainability of a remote model
operated by a third party provider, at the very least.
A research direction is to develop secure schemes in
which the involved parties can trust the exchanged in-
formation about decisions and their explainability, as
enforced by new protocols. A second line of research
may be the collaboration of users observations for spot-
ting the attack in an automated way. Indeed, as done
by Chen et al. [11] for understanding the impact of Uber
surge pricing on passengers and drivers (by deploying
43 Uber accounts that act as clients), data can be put
in common to retrieve information more reliably. The
anonymization of users data if a pool of measurements
is made public is for sure a crucial point to ensure scal-
able observation of black box decision-making systems.
We believe this is an interesting development to come,
in relation with the promises of AI and automated de-
cisions processes.
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