
HAL Id: hal-03048997
https://laas.hal.science/hal-03048997v1

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grafting Arborescences for Extra Resilience of Fast
Rerouting Schemes

Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan
Schmid, Gilles Trédan

To cite this version:
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, Gilles Trédan.
Grafting Arborescences for Extra Resilience of Fast Rerouting Schemes. Infocom 2021, May 2021,
Virtual, France. �hal-03048997�

https://laas.hal.science/hal-03048997v1
https://hal.archives-ouvertes.fr

Grafting Arborescences for Extra Resilience
of Fast Rerouting Schemes

Klaus-Tycho Foerster∗ Andrzej Kamisiński∗∗ Yvonne-Anne Pignolet‡ Stefan Schmid∗ Gilles Tredan�
∗Faculty of Computer Science, University of Vienna, Austria ∗∗AGH University of Science and Technology, Poland

‡DFINITY, Switzerland �LAAS-CNRS, France

Abstract—To provide a high availability and to be able to
quickly react to link failures, most communication networks fea-
ture fast rerouting (FRR) mechanisms in the data plane. However,
configuring these mechanisms to provide a high resilience against
multiple failures is algorithmically challenging, as rerouting rules
can only depend on local failure information and need to be pre-
defined. This paper is motivated by the observation that the
common approach to design fast rerouting algorithms, based on
spanning trees and covering arborescences, comes at a cost of
reduced resilience as it does not fully exploit the available links in
heterogeneous topologies. We present several novel fast rerouting
algorithms which are not limited by spanning trees, but rather
extend and combine (“graft”) multiple spanning arborescences
to improve resilience. We compare our algorithms analytically
and empirically, and show that they can significantly improve
not only the resilience, but also accelerate the preprocessing to
generate the local fast failover rules.

I. INTRODUCTION

Communication networks have become a critical backbone
of our digital society, as highlighted during the ongoing
COVID-19 pandemic. As link failures become more likely with
increasing network scale [1] and as even short disruptions of
connectivity can cause severe degradation in service quality [2]–
[4], it is important that networks detect such events quickly
and reroute flows accordingly. This is hard to achieve using
control plane mechanisms: reaction times in the control plane
are known to be high [1]–[5], not only due to global state
advertisements and re-computations performed by widely de-
ployed distributed control plane schemes such as OSPF [6] and
IS-IS [7], but also in emerging centralized schemes [8]–[10].

To meet their stringent availability requirements, most
modern communication networks hence feature local fast
rerouting algorithms in the data plane which typically operates
at timescales several orders of magnitude shorter than the
control plane [11], [12]: since rerouting decisions are local,
failure recovery can in principle occur at the speed of
packet forwarding. At the heart of such fast-reroute (FRR)
mechanisms [13] lies the idea of pre-computing alternative
paths at any node towards any destination. When a node locally
detects a failed link or port, it can autonomously remove the
corresponding entries from the forwarding table and continue
using the remaining next hops for forwarding packets: a fast
local reaction [14]. In FRR, the control plane is hence just
responsible for pre-computing the failover paths; when a failure
occurs, the data plane utilizes this additional state to forward
packets. For example, many data centers use ECMP [15] (a data
plane algorithm that provides automatic failover to another
shortest path), WAN networks leverage IP Fast Reroute [16]–

[18] or MPLS Fast Reroute [19] to deal with failures on the data
plane, SDNs provide FRR functionality in terms of OpenFlow
fast-failover groups [20], and BGP relies on BGP-PIC [21] for
quickly rerouting flows, to just name a few.

However, while the local decision used by FRR enables
fast reactions, it also introduces an algorithmic challenge: the
failover behavior needs to be pre-defined, before the actual
failures are known. Configuring FRR is hence particularly
challenging under multiple and correlated failures [22]–[26]
since rerouting decisions need to be taken without knowledge
of the failures downstream. Indeed, and while there has been
much research on the topic over the last years [13], some of
the most basic algorithmic problems are still open [27].

This paper revisits the design of fast rerouting algorithms,
aiming to provide a high resilience while using minimal
assumptions on the required network functionality. In particular,
we are interested in algorithms which do not require packet
header rewriting during failover. Our work is specifically
motivated by the observation that state-of-the-art solutions
relying on spanning trees and arborescences, may result
in a suboptimal resilience: in general, tree-based network
decompositions can fail to exploit certain links which are vital
for connectivity. We hence present several novel fast rerouting
algorithms which are not limited by spanning trees, but rather
extend and combine trees to improve resilience, a technique
called grafting in botany.1 We compare these algorithms
analytically and empirically. In particular, we show that our
approaches can significantly improve the resilience under
different failure scenarios in comparison to the state of the art.
Contributions. We present three new fast-failover routing
schemes that retain worst-case guarantees but also leverage
network heterogeneity for non-adversarial failure scenarios:
• §III: DAG-FRR utilizes the insight that disjoint routing

trees can be extended to multiple directed acyclic graphs,
greedily selecting the next hop closest to the destination.

• §IV: Cluster-FRR is motivated by the observation that
routing trees need not be rooted at the destination, but can
also be formed in dense clusters, handing the packets over
via exchange points (local roots) positioned at sparse cuts.

• §V: Augment-FRR benefits from the fact that disjoint
routing trees work well on homogeneous topologies
(e.g., regular topologies), in turn augmenting the net-
work in this direction with virtual links. When routing,
Augment-FRR treats these virtual links like link failures.

1 Grafting is a technique to join two trees (and plants in general) into one.
For example, many fruit trees today are grafted onto rootstock.

Our extensive evaluations in §VI showcase the resilience
gains over prior work, for various failure models (see §VI-A).
In this context, to guarantee reproducibility and to allow
other researchers to build upon our work, we have made the
source code of our implementation of the algorithms publicly
available at https://gitlab.cs.univie.ac.at/ct-papers/fast-failover.
Additionally, it is worth noting that our algorithms also perform
well while dealing with a small number of failed links.

Moreover, we prove in §II that some state-of-the-art schemes
already fail for a single link failure, even though the network
remains highly connected, see §VII for further related work.

Model. We will use the following terminology and model.

Network structure. We model the communication network as
a graph G = (V,E), connecting |V | = n nodes (routers,
switches, hosts) with E links. While bidirected (respectively
full-duplex symmetric) links are common in networks, our
algorithms also extend to strongly connected directed graphs.
In the latter case, we might also use the term arc to emphasize
the directed nature of a link. In this paper, we often distinguish
between homogeneous and heterogeneous networks: the terms
refer to the connectivity, that is, whether the connectivity
between every node pair is the same or whether it can differ.

Routing and failover. We consider the common scenario
where the static forwarding rules have to be precomputed and
deployed at the nodes before the (unknown) link failures occur.
In particular, we do not allow any packet modification, dynamic
forwarding entry changes, convergence, or randomization: the
forwarding rules may only match on the incoming port2, the
destination t ∈ V , and the failure status of incident links. As
such, FRR is purely local and comes into effect immediately.

II. MOTIVATION: LIMITATIONS OF THE STATE OF THE ART

In order to motivate our perspective and approach, we first
revisit the state-of-the-art approaches for implementing FRR
in our setting. We first consider arborescence-based FRR in
§II-A, which performs well under worst-case failure scenarios
and in homogeneous topologies. We then discuss the approach
by Yang et al. [28] in §II-B, which utilizes adapted greedy
forwarding in heterogeneous network structures. Afterwards,
we draw conclusions for new and improved strategies in §II-C.

A. Homogeneous Networks: Arborescence-Based FRR

The fundamental idea of arborescence-based FRR is to lever-
age arc-disjoint spanning trees (arborescences) for forwarding:
should a link fail, another arborescence can be selected, where
the current arborescence is identified from the incoming port
due to arc-disjointness. In more detail, given a k-link-connected
graph, k arc-disjoint spanning arborescences rooted at a desti-
nation t can be found efficiently [29]. By using, e.g., a global
circular permutation of the arborescences [30], k−1 arc failures
can be tolerated. An exemplary implementation is shown in
Algorithm 1, using a given arborescence decomposition.
2 Without using the incoming port, already very simple link failure scenarios
lead to permanent routing loops, as sending a packet back is impossible.

Algorithm 1: Circular Routing for Arborescences

Upon receiving a packet destined for t at node v:
1: current arborescence Tl (determined by in-port, else T1)
2: if destination not reached yet, t 6= v then
3: if next hop on Tl available then
4: forward packet along Tl
5: else
6: update Tl to be the next arborescence from the

circular arborescence list

From a worst-case perspective, resilience to k − 1 arc
failures is optimal, as k failures can disconnect a graph of
connectivity k. Prior work utilized these worst-case guarantees
to show benefits in highly homogeneous networks, such as
for k − 1 failures under k-connectivity [27], but also multiple
random failures in k-regular k-connected graphs and well-
connected cores of autonomous systems [31], [32]. On the
other hand, the arborescence approach gives no guarantees
beyond the network’s connectivity, and as such scales poorly
for heterogeneous networks, e.g., if the network is 1-connected.

B. Heterogeneous Networks: Keep Forwarding FRR

Yang et al. [28] identified an approach to leverage topol-
ogy heterogeneity, summarized as “Keep Forwarding” (KF):
essentially, when the packet cannot be brought closer (down)
to the destination in a greedy fashion, it tours the nodes of
identical distance, until a not-failed down-link appears. In the
absence of down-links and neighbors of identical distance, the
packet takes a hop away from the destination, in order to find
alternate routes. To avoid small loops, and as the only implicit
memory of the forwarding function, the incoming port is only
picked as the last resort, when all other incident links failed.

Yang et al. [28] show in their evaluations for 1, 2, and 3 link
failures that KF retains over 99% reachability for heterogeneous
autonomous systems and data center networks. Notwithstanding,
no formal guarantee is claimed, not even for a single failure.

In the following, we show that KF already fails after a single
failure, even if the remaining network remains highly connected.
Consider the graph in Fig. 1, where the packet starts at node
v1 and has to be routed to the destination t. The next hop will
be via the only down-link to v, but the link (v, t) has failed,
resulting the packet to be forwarded up to some other node
from v2, . . . , vk. While KF retains the knowledge not to route
back via the inport to v, even though that is the only down-link,
the next hop will be to another node from v1, . . . , vk. However,
then the knowledge not to send the packet to v is lost (as
the only memory is via the incoming port), and the packet is
again forwarded to v, inducing a permanent forwarding loop.
Moreover, observe that the network’s connectivity remains at
k ∈ Ω(|V |), i.e., arborescence-based FRR easily reaches the
destination.

C. Reaping the Benefits of Both Approaches for New FRR

As we discussed above, arborescences have shortcomings
when applied in heterogeneous networks, as they only utilize

https://gitlab.cs.univie.ac.at/ct-papers/fast-failover

t

v

v1 v2 vk

u

u1 u2 uk

w1 w2 wk

#hops to t

1

2

3

Fig. 1. Example where Keep Forwarding (KF) provides no resilience even
though only one link failed. When starting on v1, KF will forward down
(closer) to v, where however the link (v, t) has failed. In turn, KF forwards
up (away) from v, to, e.g., vk . As the incoming port is the last choice, KF
now forwards to a node of identical distance, e.g., v1 (or any other node from
v1, . . . , vk−1), again forwarding down. Hence, KF loops as it forwards down
to v, up, within v1, . . . , vk , down to v, up again etc. Note that the remaining
connectivity is k ∈ Ω(|V |) and that only one link failed.

the (worst-case) global connectivity. While Keep Forwarding
leverages heterogeneity, by traversing the current cluster
until progress can be made, it does not provide any formal
resilience guarantees.

We would like to combine the benefits of both approaches:
survivability w.r.t. worst-case failures, but also retain survivabil-
ity against more failures in dense heterogeneous clusters. To
this end, in the remainder of this paper, we extend the known
arborescence-based approaches by incorporating non-spanning
(partial) arborescences and local greedy routing, using them
when classic arborescences fail. In this fashion, we retain the
worst-case guarantees, but also utilize the path diversity in
heterogeneous settings. We start in Section §III with a first
approach that combines partial arborescences with directed
acyclic graphs, followed by a more intricate arborescence
construction in the following section.

III. DAG-FRR: LEVERAGING HETEROGENEITY VIA DAGS

The idea of using directed acylic graphs (DAGs), instead of a
forwarding tree (or arborescences), has already been proposed
in [33], [34] (note however that these proposals do not fit into a
purely local model, as they use message exchanges [34] or link
reversals [33]): when the link to the next hop fails, the current
node might have alternate next-hops, globally organized in a
way such that no routing loops occur.

However, when only a single DAG is chosen, at least half of
the available arcs (directed links) may not be used for routing:
choosing both directions of a link for routing is a contradiction
to the DAG property. For a simple example, consider routing on
a ring topology: routing on a DAG already stops working after
a single link failure, whereas arborescences can survive the
same link failing. On the other hand, spanning arborescences
perform poorly when the underlying connectivity is one. Here
a DAG can contain a quadratic number of more links in the
extreme case, which the arborescence leaves unused.

In this section we hence focus on combining DAGs and
arborescences, to provide the best of both worlds. Instead
of generating DAGs from scratch, we propose to extend
arborescences to DAGs, meaning that our method can be

understood as an extension of any arborescence structure,
e.g., [27], [32], [35], [36]. We emphasize that the underlying
arborescences do not need to be spanning (as in prior work),
partial rooted structures can be enhanced as well.

Our approach, henceforth called DAG-FRR, thus consists
of three parts: §III-A describes how to build the partial
arborescences, §III-B how to extend the arborescences, and
§III-C how to extend the routing itself. We discuss in §III-D
implications w.r.t. the worst-case resilience of DAG-FRR.

A. Part 1: Building Rooted Partial Arborescences
Prior work focused on building k arc-disjoint rooted spanning

arborescences in k-connected graphs, even if the destination
has a degree of k′ � k. As such, in the common scenario
that the network has a well-connected core that gets sparser in
its outskirts, exactly the low connectivity of the outer regions
defines the global survivability.

We overcome this restriction by building as many rooted
arborescences as the destination can support by its number
of neighbors. While not each of these arborescences can
reach all nodes (i.e., be spanning), already a greedy approach
will guarantee that every node is contained in at least one
arborescence: else, there must be at least one node v, not in
any arborescence, neighboring a node w in an arborescence T ,
a contradiction, as T can be extended from w to v.

We hence propose the following simple decomposition algo-
rithm. We assign each of the k′ incoming arcs of the destination
to a different arborescence T1, . . . , Tk′ , and grow them greedily
one after another, switching to the next arborescence Ti+1 if
no more nodes can be added to Ti. Notwithstanding, this could
leave many arcs unassigned to any arborescence, which we
cover in the next subsection via arborescence extension.

B. Part 2: Extending Arborescences to DAGs
The underlying idea of our extension process is to utilize the

so-far unused links and add them to the arborescence routing
structures. As an input, we require a set of arborescences, or
generalized, DAGs, and proceed as follows: For each DAG
Di, we add unused arcs e to it, as long as: 1) Di with e is
cycle-free, and 2) e connects to V (Di).

We hence check all arcs if they can extend the given DAGs
with the above two properties, repeating the process if some
DAGs increased in size while doing so, see Algorithm 2.

C. Part 3: Extending Arborescence Routing
A fundamental strength of arborescence routing is that

by considering the inport on which a packet arrives global
information about the packet’s journey so far can be inferred:
the current node immediately knows which arborescence
the packet is currently routed on, even though the packet
remains unchanged. We thus strive to retain a packet in its
current arborescence, which is easy in the case of DAGs: due to
loop-freedom, at each node, each outgoing link of the current
arborescence-DAG brings the packet closer to the destination.

A natural routing extension herein is to choose a surviving
link that reduces the distance to the destination the most3, and
3 Though any choice from the set of outgoing links is viable.

Algorithm 2: DAG Extension Algorithm

Input: Directed graph G = (V,E), arc-disjoint
arborescences or DAGs D = {D1, . . . , Dk}
Output: A maximal set D of arc-disjoint DAGs

1: extended←true
2: while extended=true do
3: extended←false
4: for all Di ∈ D do
5: for all e = (u, v) /∈ D do
6: if v ∈ V (Di) then
7: if E(Di) ∪ {e} is cycle-free then
8: E(Di)← E(Di) ∪ {e}
9: extended←true

only switch to the next arborescence-DAG when all outgoing
links of the current arborescence-DAG have failed. Note that
the remaining routing logic stays intact and hence the routing
extension can be implemented conceptionally as a simple
subrouting, respectively an extension of the priority list of
outgoing ports. We formalize this in Algorithm 3.

Algorithm 3: Circular Routing for DAGs

Upon receiving a packet destined for t at node v:
1: current DAG Dl (determined by in-port, else D1)
2: if destination not reached yet, t 6= v then
3: if a next hop on Dl available then
4: forward packet along outgoing arc in Dl that reduces

distance to t the most
5: else
6: update Dl to next DAG from circular DAG list

D. Part 4: Worst-Case Resilience Discussion

Prior work already established that circular routing on k
arc-disjoint rooted spanning arborescences is resilient to k − 1
arc failures [30]. The underlying reasoning is that after k − 1
failures, at least one arborescence will be intact, i.e., the packet
will eventually reach the destination. The invariant still holds
for k arc-disjoint rooted spanning DAGs: by fixing a global
circular order on the DAGs, one will eventually reach a failure-
free DAG. We cast our observation into the following theorem:

Theorem 1. Starting on k arc-disjoint rooted spanning ar-
borescences/DAGs, DAG-FRR is resilient to k− 1 arc failures.

We note that in §III-A we advocated for building partial
rooted decompositions, instead of enforcing (fewer) spanning
ones, to better leverage the network’s heterogeneity, and might
hence lose out on worst-case resilience. On the other hand,
our DAG-FRR is flexible and can also start by employing a
network decomposition that uses k arc-disjoint rooted spanning
arborescences on k-connected topologies [29].

IV. CLUSTER-FRR: LOCAL CLUSTER ALGORITHM

We now describe a more sophisticated arborescence decom-
position algorithm, called Cluster-FRR. It applies a generic
rooted spanning arborescence decomposition, e.g., the greedy
algorithm also used in [30]. The algorithm is based on local
clusters: nodes having a positive clustering coefficient4 may
form local regions of higher link connectivity relative to the
entire graph. Here, algorithms computing the set of arc-disjoint
spanning arborescences covering the graph would only return
so many trees as is the value of the link connectivity of the
graph, while the potential of the highly-connected regions
would remain under-utilized. Indeed, by constructing additional
arc-disjoint trees covering the highly-connected regions and
using them to extend the primary set of arborescences, our
algorithm (see Algorithm 4) is able to improve the fast recovery
capabilities of a network in the case of multiple failures.

A. Cluster-FRR Arborescence Generation

The algorithm starts by computing a spanning arborescence
decomposition of G rooted at the destination. Next, the
clustering coefficient is determined for all nodes. Nodes for
which the corresponding value is greater than zero are marked,
together with their direct neighbors. Based on the previously
marked nodes and the existing links between them, the subgraph
Gm of G is also created. Note that it is not required that
subgraph Gm be connected — in fact, as it comprises nodes
and links belonging to each of the highly-connected regions
of graph G, the next action is to decompose Gm into strongly-
connected components and store them in set Sm. The output
set Tout is also initialized to contain the arc-disjoint spanning
arborescences stored in set T . When the graph is k-connected,
Tout at this point contains k arc-disjoint destination-rooted
spanning arborescences T1, T2, . . . , Tk.

Then, the algorithm considers each of the connected com-
ponents Gcc individually, ignoring those that contain less than
three nodes. First, to improve the local link connectivity of
Gcc, all nodes of degree 1 are removed from Gcc in a series
of subsequent iterations of the while loop, until no more such
nodes can be found in the graph. If the resulting graph contains
less than three nodes or its link connectivity is less than
two, Gcc is rejected and the next connected component is
considered instead. Second, the local root node rcc of the
expected additional arborescences is selected in Gcc based on
the shortest distance to r in the original graph G. The arc-
disjoint spanning arborescences rooted at rcc and covering Gcc

are then determined — the result is stored in set Tcc. Next, the
algorithm adds to set A all arcs of Gcc that are included in one
of the additional arborescences stored in Tcc, except for the arcs
being part of the primary arborescences already included in the
output set Tout. The main reason behind this selection process
is to guarantee that no arc is assigned to multiple arborescences
rooted either at r or rcc; thus, that a failure of a single network
link can disable at most two different arborescences associated
with the related pair of opposite arcs. Each arc in set A is also
4 For the formal definition of the clustering coefficient in the context of graphs,
the reader is referred to [37].

Algorithm 4: Cluster-Based Forest Construction

Input: Directed graph G = (V,E), destination r ∈ V
Output: A set Tout of rooted arc-disjoint spanning arbo-
rescences and additional directed acyclic subgraphs of G

1: T ← ArborescenceDecomposition (G, r)
2: for all v ∈ V do
3: cv ← ClusteringCoefficient (G, v)
4: if cv > 0 then
5: Mark node v (not marked by default): mv ← 1
6: Mark all neighbors of v: ∀u∈Neighbors(G,v)mu ← 1
7: Gm ← Subgraph induced by the marked nodes
8: Sm ← StronglyConnectedComponents (Gm)
9: Tout = T , Acount = 0

10: for all Gcc = (Vcc, Ecc) ∈ Sm do
11: while |Vcc| > 3 and MinDegree (Gcc) < 2 do
12: Remove all nodes of degree 1 from Gcc

13: if |Vcc| < 3 or LinkConnectivity (Gcc) < 2 then
14: Proceed to the next iteration
15: rcc ← GetClosestNodeToDestination (Gcc, r)
16: Tcc ← ArborescenceDecomposition (Gcc, rcc)
17: A← ∅
18: for all (a, b) ∈ Ecc do
19: if (a, b) not included in any graph in Tcc or (a, b)

already included in a graph in Tout then
20: Proceed to the next iteration
21: id← GetArborescenceId (Tcc, (a, b))
22: A← A ∪ (id, (a, b))
23: s← The number of unique arborescence identifiers

among the elements of A
24: Index of an extra graph: j = 1
25: for all identifiers id among the elements of A do
26: for all (a, b) associated with id in A do
27: Current graph identifier:

q ← LinkConnectivity (G) +Acount + j
28: Add (a, b) to the q-th graph in Tout
29: j ← j + 1
30: Acount ← Acount + s
31: return Tout

associated with the unique numeric identifier of the related
arborescence. Finally, in lines 23− 28, the algorithm groups
arcs associated with the same tree and transfers the resulting
groups from A into the output set Tout. Both the primary
arborescences and the newly added groups of arcs are assigned
unique numeric identifiers from a contiguous range (the primary
arborescences have the lowest indices starting from 1).

B. Cluster-FRR Routing and Resilience

For k-connected graphs, Cluster-FRR generates
a destination-rooted spanning arborescence decomposition
T1, T2, . . . , Tk, along with further non-spanning partial
arborescences, with local root nodes and identifiers
greater than k. Cluster-FRR then employs the circular
arborescence-based routing scheme from Algorithm 1,

starting in the arborescence with the lowest identifier. Hence,
Cluster-FRR retains good worst-case guarantees: after up
to k − 1 arc failures, at least one of the primary spanning
arborescences T1, T2, . . . , Tk remains intact and can be used
to route to the destination. In other words:

Theorem 2. On k-connected graphs, Cluster-FRR is re-
silient to k − 1 arc failures.

After more than k − 1 arc failures, Cluster-FRR might
need to resort to the local partial arborescences, and we can
hence no longer provide the worst-case guarantees. On the other
hand, the increased local survivability leads to greater resilience
to non-adversarial failures, as we will see later in §VI.

V. AUGMENT-FRR: CONNECTIVITY AUGMENTATION

So far, we proposed two methods that start with few arbores-
cences, and then incorporate the remaining links, either by
means of DAGs in §III or by building small local arborescences
in §IV. In this section, we take a fundamentally different
approach and start with many arborescences.

To this end, we augment the graph with virtual links to
extend large local connectivity to the whole graph, build
arborescences on top, and then remove these virtual links from
the arborescences (hence they are no longer spanning) and let
standard failover routing take over. In other words, we leverage
that arborescences work well on homogeneous topologies.

In the following, we first describe how to augment the
network efficiently to the desired level in §V-A and then cover
in §V-B how to build the arborescences in a way that takes
the distinction between virtual and real links into account.

A. Turning a Network Homogeneous

In order to maximize the efficiency of arborescence routing,
a first step would be to obtain a network that is minimally
k-connected, i.e., the removal of any bidirected5 link reduces
the connectivity below k. In such networks, a rooted spanning
arborescence decomposition can include every arc, except for
the ones outgoing from the root.

A simple way of achieving this goal would be to turn the
network into a clique Kn, which however raises the question
of how many virtual links we should include. On the one
hand, we want to cover as many real arcs as possible with our
augmentation, on the other hand, we want to include only few
virtual links, as they disrupt the routing behavior.

To this end, we pick the node with the highest degree ∆ in
the network (as each arborescence, for each node v 6= t, can
only cover one outgoing arc of v), and augment the network to
be ∆-connected. For bidirected graphs, this is a well-studied
problem, and selecting the minimum number of links can be
solved efficiently [38].6

Hence, to summarize, Augment-FRR selects the largest
degree ∆ in the network and then turns the network to be
∆-connected with a minimum number of virtual links.
5 The problem can be defined analogously for directed networks, but we
focus on bidirected full-duplex links given their prevalence in most networks.
6 We refer to Frank [38] for a discussion on further (directed) model variants.

B. Building Arborescences on Virtual Links

Building ∆ arc-disjoint rooted spanning arborescences on
∆-connected graphs is well understood and can be computed
efficiently [29]. However, in our context, we have to consider
how to distribute real and virtual links over the arborescences.
Augment-FRR follows an approach that preserves worst-

case resilience. To this end, it takes a ∆-connected network as
the input, and then runs an greedy rooted spanning arborescence
decomposition [30] adapted to the problem at hand as follows:
when growing arborescence Ti, (1) a candidate arc a is only
added if the remaining network, without T1, . . . , Ti and without
a is still be ∆− i-connected, and (2), when multiple arcs can
be selected for growing the arborescence Ti, arcs belonging to
real links are strictly preferred over virtual ones.

C. Augment-FRR Routing and Resilience

Augment-FRR utilizes circular arborescence routing from
Algorithm 1 on the obtained decomposition, treating virtual
links as link failures, in turn obtaining high resilience:

Theorem 3. Augment-FRR achieves resilience to k − 1 arc
failures on k-connected graphs.

Proof: As proven in prior work [30], using circular
arborescence routing on k-arc disjoint t-rooted spanning
arborescences achieves resilience to k − 1 arc failures. It
is left to show that Augment-FRR retains these worst-case
guarantees. Observe that when building the arborescences,
Augment-FRR leverages the greedy algorithm from Chiesa
et al. [30] in such a way, that real links always have preference
over virtual links. Hence, as the greedy algorithm builds
k arc-disjoint t-rooted spanning arborescences on the non-
augmented network, the greedy algorithm’s output behavior
will be identical for the first k arborescences on the augmented
network. As such, virtual links will only be included from the
k + 1 arborescence on.

As k− 1 arc failures leave at least one of the first k arbores-
cences unharmed, circular routing starting on arborescence T1
will hence allow Augment-FRR to reach the destination.

VI. EVALUATION

To evaluate our approach and algorithms, we conducted
extensive simulations. In general, whether the network will be
able to restore the connectivity between any pair of nodes in
the event of one or more link failures, depends on the structure
of the network graph, and its link connectivity in particular.

In the following, we hence first present different link failure
models for which we will evaluate our algorithms, and also
describe the experimental setup. We then report on our main
insights from our evaluation.

A. Link Failure Models

To investigate how the proposed solutions perform in
different failure scenarios, we considered two different link
failure models, denoted as RANDOM and CLUSTER.
Random Link Failures (RANDOM). The first considered
model introduces link failures uniformly at random across the

entire network. It assumes that each link in the network has
an equal probability of failure, and that none of the observed
link failures result from targeted actions taken by malicious
actors. Thus, in this model, we do not focus on how to take
the maximum advantage of local redundancy — instead, we
investigate how the network deals with multiple link failures
in the general case. We also assume that each failure affects
the corresponding network link in both directions.7

Targeted Attacks (CLUSTER). In this failure model, we try
to capture more adversarial failures, e.g., due to an attack.
We imagine that clusters in a network graph may represent
well-connected regions, e.g., associated with groups of cities
of strategic importance. In this context, the potential adversary
might be interested in carrying out targeted and coordinated
attacks against links belonging to one or more clusters, to
degrade the fast-recovery capabilities of the network in the
affected areas. Indeed, despite the relatively high connectivity
in such areas, it is still possible that targeted link attacks will
disrupt some of the precomputed or predefined primary and
backup paths used by many data flows [40]. Thus, the related
challenge for the investigated fast-recovery algorithms is how
to use the local redundancy in those regions to respond to
targeted attacks effectively.

According to the considered model, failed links are selected
as follows. First, the clustering coefficient is computed for all
nodes in the network, and then, each arc incident to a node
with a non-zero value of the clustering coefficient is added to
the set Fcand of candidate arcs that might be disabled, unless
the set already contains the opposite arc. Second, as the number
of failed bidirectional links is limited by one of the simulation
parameters, fnum, the following two cases are considered:
• |Fcand| > fnum: if the set of candidate arcs contains

more elements than the value of fnum, select fnum arcs
uniformly at random from set Fcand and disable the
corresponding bidirectional network links;

• |Fcand| ≤ fnum: if the set of candidate arcs contains no
more elements than fnum, disable all bidirectional network
links corresponding to arcs included in Fcand.

B. Experimental Setup and Metrics

Each of our experiments was performed based on the
following general scheme, proceeding in five steps:

1) Given the topology of a network, a destination node t was
selected uniformly at random from the set of all nodes.

2) Then, the precomputations to construct the routing tables
were performed for each of the investigated algorithms and
the time for these computation was measured separately
for each algorithm.

3) In the next step, fnum undirected links were selected as
the failed network links based on one of the link failure
models discussed in §VI-A. In addition, sample_size
source nodes were chosen uniformly at random from the
set of all nodes in the graph excluding the destination.

7 We note that it would also be interesting to consider unidirectional link
failures. For example, a recent data center study found that “only 8.2% of the
links [. . .] with packet corruption had bidirectional corruption” [39].

4) Then, the routing function was executed on the graph with
fnum failed links. In some cases, the source nodes may
no longer have been connected to the destination.

5) Finally, the success rate (defined as the number of data
flows reaching the destination, divided by the number of all
data flows) was computed separately for the investigated
algorithms. The expected success rate for a perfectly
resilient algorithm ρ is thus (ncc− 1)/(n− 1) where ncc
denotes the number of nodes in the connected component
of the destination after failures.

C. Routing Success in Highly Heterogeneous Networks

We first investigate the performance of our algorithms in
highly heterogeneous networks in which connectivity varies
significantly. To this end, we consider the following synthetic
ring-of-cliques network topology model which contains several
well-connected regions. Specifically, we assume that the
network topology consists of L interconnected cliques (see
Fig. 2), each having an internal link connectivity of kclique.

C1

C2

C...

CL

mbridge

· · ·· · ·

· · ·

Fig. 2. Illustration of the ring-of-cliques network topology model. Each of the
cliques C1, C2, . . . , CL has an internal link connectivity kclique and there
are mbridge links between adjacent cliques.

Two adjacent cliques are connected by mbridge links incident
to randomly chosen nodes on the two involved cliques, forming
a graph for which the overall link connectivity is kgraph ≥
min (kclique, 2mbridge). To investigate the effectiveness of the
considered algorithms in terms of their ability to deal with
simultaneous failures of multiple network links, we further
assume that kclique > kgraph (the internal link connectivity of
cliques is higher than the link connectivity of the entire graph).

In our first experiment we vary the number of failed links
the algorithms have to cope with and study their success rate.
For randomly created rings of 10 cliques with kclique = 9 and
mbridge = 2, i.e., graphs with 100 nodes and 470 links we
observe the following behavior in Fig. 3:

Under randomly chosen failures the three proposed algo-
rithms are able to sustain around 100 link failures without
any routing failures, while the pure Greedy Arborescence De-
composition and Keep Forwarding approaches exhibit routing
problems already for as few as 10 failed links. When the
number of failed links exceeds 100, the number of nodes in
the connected component of the destination is below n, yet
on average DAG-FRR, Cluster-FRR and Augment-FRR
achieve a success rate of ρ, the expected success rate of a
perfectly resilient algorithm for randomly chosen sources.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300
Number of failed links fnum

R
ou

tin
g

su
cc

es
s

ra
te

Algorithm Greedy KF DAG Cluster Augment

Fig. 3. Routing success rates on the ring of cliques for varying number
of RANDOM failures and for different algorithms. The black dashed line
represents the average value of ρ, the percentage of the number of nodes in
the connected component containing the destination (after failures), and is
therefore a statistical upper bound on the success rate. Ribbons represent 1/4th
of the standard deviation over 200 independent repetitions.

When choosing the failed links with the cluster failure
approach, see Fig. 4, Greedy and KF perform even worse. While
KF gets stuck in local sinks as in Fig. 1, the Greedy method
cannot leverage the local link diversity. On the other hand,
our algorithms DAG-FRR and Cluster-FRR still reach ρ,
while Augment-FRR is a bit below them on average.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300
Number of failed links fnum

R
ou

tin
g

su
cc

es
s

ra
te

Algorithm Greedy KF DAG Cluster Augment

Fig. 4. Routing success rates on the ring of cliques for varying number
of CLUSTER failures and for different algorithms. The black dashed line
represents the average value of ρ, the percentage of the number of nodes in
the connected component containing the destination (after failures), and is
therefore a statistical upper bound on the success rate. Ribbons represent 1/4th
of the standard deviation over 200 independent repetitions.

The reason is due to how Augment-FRR chooses
the roots of partial non-spanning arborescences. Whereas
Cluster-FRR picks them according to the distance to the
destination, the corresponding choice for Augment-FRR is
driven by the underlying connectivity augmentation algorithm,
which takes this distance orientation only by a lesser degree into
account. Similar in result to Cluster-FRR, DAG-FRR points

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.25 0.50 0.75 1.00
Fraction of connected nodes after failures

R
ou

tin
g

su
cc

es
s

ra
te

Algorithm ● Greedy KF DAG Cluster Augment

Fig. 5. Routing success rates on the Topology Zoo dataset, as a function of
the fraction of nodes remaining connected after 10 RANDOM failures. The
black dashed line represents the average value of ρ, the percentage of the
number of nodes in the connected component containing the destination (after
failures), and is therefore a statistical upper bound of the success rate. A point
(x, y) indicates that for a network topology on which 10 random link failures
disconnect an average fraction of 1− x nodes, the corresponding algorithm
achieved a routing success rate of y.

the additional arcs towards nodes that are closer to the
destination, w.r.t. distance in routing along the current directed
acyclic graph, and hence also performs well here.

D. Routing Success on Real-World Networks

We next evaluate the performance of our algorithms for
the real-world network topologies collected as part of the
Internet Topology Zoo project8 Since the number of nodes
and links in these graphs as well as their local and global
connectivity varies considerably, we restrict ourselves to the
subset of 122 topologies with 20 to 50 nodes and study the
routing performance under random link failures.

To avoid cases where the destination is not connected to a
significant number of nodes, we select them from the largest
connected component after link failures. In Fig. 5 we present
the success rate of the routing algorithms with respect to
the percentage of nodes that are in the connected component
of the destination after 10 random failures. We observe that
DAG-FRR, Cluster-FRR, and Augment-FRR achieve a
success rate of almost ρ, the expected success rate of a perfectly
resilient algorithm for randomly chosen sources, while Greedy
and Keep Forwarding perform less well.

Figure 6 provides a detailed look at the relative performance
of our algorithms. It shows, for each Topology Zoo graph, the
routing success rate of each algorithm normalized by the routing
success of Cluster-FRR in the same graph. This allows for a
more precise comparison of our algorithms: a point above y = 1
translates that the algorithm under scrutiny performed better
than Cluster-FRR on the corresponding graph, whereas
a point below translates a routing success rate under the
one of Cluster-FRR. We omit Greedy for readability, and
Cluster-FRR as all its corresponding datapoints lie on the
y = 1 line by construction.
8 http://www.topology-zoo.org

0.90

0.95

1.00

0.25 0.50 0.75 1.00
Fraction of connected nodes after failures

R
ou

tin
g

su
cc

es
s

re
la

tiv
e

to
 C

lu
st

er
−

F
R

R

Algorithm KF DAG Augment

Fig. 6. Relative routing success rates of algorithms on the Topology Zoo
dataset, for all graphs containing between 20 and 50 nodes, as a function of the
fraction of nodes remaining connected to the destination after 10 RANDOM
failures, compared to Cluster-FRR.

Interestingly, DAG-FRR performs precisely identically to
Cluster-FRR (all data points on y = 1). KF always performs
worse than Cluster-FRR, especially on lightly impacted
topologies (x > 0.5). Augment-FRR performs differently
than Cluster-FRR, but with overall the same performance.

The gap between Augment-FRR and Cluster-FRR
performances increases on heavily impacted topologies. The
small amplitude of these differences can be explained by
the performance of these algorithms: even on highly affected
topologies, Augment-FRR, Cluster-FRR and DAG-FRR
all rarely fail to route in the remaining connected compo-
nent. As before, the underlying augmentation process of
Augment-FRR explains its variance, but as we see here,
there is a good set of topologies where Augment-FRR also
performs better than all other algorithms.

E. Runtime to Compute Routing Tables

In order to evaluate how the precomputation time complexity
of the algorithms scales in terms of the number of nodes in
the network, we consider the ring-of-cliques network which is
defined for any number of nodes by changing the number of
cliques from 3 to 20 with 5 nodes per clique.

Figure 7 plots the runtime of the different algorithms,
specifically showing the average wall clock time. Our results
show that for all algorithms, the routing tables in networks
with up to one hundred nodes can be precomputed in less
than twenty seconds, rendering these algorithms practical in
many scenarios. In fact, except for Augment-FRR which is
significantly slower, all algorithms even complete in less than
two seconds — an overhead we deem bearable, especially for
infrequent updates. KF is significantly faster. However, as we
have seen above, this comes at a price of reduced resilience.

VII. RELATED WORK

Failures are common in ISP networks [41], [42], cloud
provider WANs [43], and datacenters [1], [44]. The design of
fast rerouting algorithms has already been studied intensively

http://www.topology-zoo.org

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.1

1.0

2.0
3.0
4.0
5.0

10.0

15.0

20.0

25 50 75
Number of nodes

A
ve

ra
ge

 w
al

l c
lo

ck
 r

un
tim

e
(s

)
Algorithm ● Greedy KF DAG Cluster Augment

Fig. 7. Average wall clock times for the precomputation of the routing tables
of each algorithm on networks of increasing number of nodes. The shaded
area symbolizes the 10 and 90 percentiles of the distribution sampled over 80
independent runs. The y-axis is square-rooted.

in the literature. While there exists much interesting work
on how to efficiently react to link failures in the control
plane [45], [46], e.g., using fast reconvergence techniques [47],
link reversal schemes [48], [49] or leveraging centralized
approaches arising in software-defined networks [48]–[51], the
reaction times provided by these solutions are significantly
higher compared to fast failover mechanisms in the data
plane [52]: the focus of our paper. Data plane-based failover
mechanisms are typically used as a first line of defense and
also well-explored in the literature; implementations exist for
most relevant protocols, IP [53], [54] (including Segment
Routing [55]–[57]), MPLS [19], [58], BGP [59], SDN and
programmable data planes [20], [60], among many more. We
refer the reader to the recent survey by Chiesa et al. [13] for a
literature overview on fast recovery schemes in the data plane.

Fast failover algorithms for the data plane can be categorized
according to whether they require dynamic packet headers
modifications (or even dynamic state at the routers), and
according to which header fields a router needs to be able to
match. By rewriting packet headers, it becomes possible to, e.g.,
carry failure information in the packets [26], [61] or to employ
classic graph exploration algorithms [62], [63] as well as
rotor router approaches [64], which can be exploited to render
networks more resilient. However, this is often impractical, and
is generally not supported. It is also known that in scenarios in
which not only the destination field but e.g., also the source or
the inport can be matched, the design of resilient fast failover
algorithms is greatly simplified [27], [30], [65]. We also note
that the focus in this paper is on deterministic algorithms,
which, in contrast to related work such as [66], [67], do not
require random number generators at routers.

There already exist several interesting results on fast failover
algorithms which do not require packet header rewriting.
Feigenbaum et al. showed [12] that it is not always possible
to achieve “perfect resilience” in this scenario, that is, it is not
always possible to locally reroute packets to their destination
even if the underlying network is remains connected after
the failures; similar observations were obtained in parallel by
Borokhovich and Schmid [68] who also derive bounds on what

can be achieved in terms of load-balancing in such scenarios.
Foerster et al. [69] recently generalized the impossibility results
related to connectivity by establishing a connection between
graph minors and resilience; in particular, the authors showed
that perfect resilience cannot be achieved on any non-planar
graph, but is at least possible on outerplanar graphs.

The state-of-the-art approach to design highly resilient
failover algorithms is based on arc-disjoint arborescence covers
and is due to Chiesa et al. [27], [30], [66]. This approach
generalizes the widely-used approaches based on spanning
trees [70]. However, while this approach may work well on
graphs which are homogeneously k-connected (this is still an
open question), it is not well-suited if directly applied to the
general setting considered in our paper. In contrast, we in
this paper have shown how to extend these concepts to more
general and more heterogeneous networks.

The work closest to ours is by Yang et al. [28], who aim
to go beyond the limitations of spanning trees and acyclic
graphs by introducing what they call the partial structural
network model. The authors show that this model indeed has
several interesting features in practice. However, while their
simulations look promising, the approach fails under worst-case
failure scenarios. In particular, we have shown in this paper
that even if the remaining connectivity is very high (linear in
the number of nodes), a single arc failure suffices for their
algorithm to fail. In contrast, our algorithms retain worst-case
guarantees from arborescence approaches and can maintain
k − 1 arc failures, tolerating adversarial link failures.

VIII. CONCLUSION

This paper has studied how to extend existing fast failover
mechanisms based on spanning trees and arborescences to
improve the resilience of more heterogeneous networks whose
connectivity varies across the topology. In particular, we pre-
sented three novel data plane algorithms which outperform state-
of-the-art solutions in that they allow to maintain connectivity
under significantly more failures.

From the three algorithms, our cluster and DAG algorithms
perform relatively identical throughout our simulations, with
our connectivity augmentation algorithm showing some slight
variance in comparison. Due to our DAG algorithm having the
fastest routing table precomputation time, we recommend it as a
general choice amongst the three, but note that the augmentation
algorithm sometimes performs slightly better, and hence a brief
simulation for the intended topology might be worthwhile. To
this end, and in order to guarantee reproducibility and allow
other researchers to build upon our algorithms, we have made
our code publicly available together with this paper.

We believe that our work opens several interesting avenues
for future research. In particular, it remains to explore the
resilience of our algorithms in more specific failure scenarios,
both analytically and empirically. It would also be interesting
to explore whether there are opportunities to improve our
approach with randomization.
Acknowledgements: Research supported by the Vienna Science
and Technology Fund (WWTF), grant ICT19-045, 2020-2024.

REFERENCES

[1] P. Gill et al., “Understanding network failures in data centers: measure-
ment, analysis, and implications,” in SIGCOMM. ACM, 2011.

[2] M. Alizadeh et al., “Data center TCP (DCTCP),” in SIGCOMM. ACM,
2010.

[3] B. Vamanan et al., “Deadline-aware datacenter tcp (D2TCP),” in
SIGCOMM. ACM, 2012.

[4] D. Zats et al., “Detail: reducing the flow completion time tail in datacenter
networks,” in SIGCOMM. ACM, 2012.

[5] P. François et al., “Achieving sub-second IGP convergence in large IP
networks,” ACM CCR, vol. 35, no. 3, pp. 35–44, 2005.

[6] J. Moy, “OSPF version 2,” RFC, vol. 2328, pp. 1–244, 1998.
[7] ISO, “Intermediate Ststem-to-Intermediate System (IS-IS) Routing

Protocol,” ISO/IEC 10589, 2002.
[8] A. G. Greenberg et al., “A clean slate 4d approach to network control

and management,” ACM CCR, vol. 35, no. 5, pp. 41–54, 2005.
[9] N. McKeown et al., “Openflow: enabling innovation in campus networks,”

ACM CCR, vol. 38, no. 2, pp. 69–74, 2008.
[10] H. Yan et al., “Tesseract: A 4d network control plane,” in NSDI, 2007.
[11] J. Liu et al., “Ensuring connectivity via data plane mechanisms,” in

NSDI, 2013.
[12] J. Feigenbaum et al., “Brief announcement: on the resilience of routing

tables,” in PODC. ACM, 2012.
[13] M. Chiesa et al., “A survey of fast recovery mechanisms in the data

plane,” TechRxiv, May 2020.
[14] D. Stamatelakis and W. D. Grover, “IP layer restoration and network

planning based on virtual protection cycles,” IEEE J. Sel. Areas Commun.,
vol. 18, no. 10, pp. 1938–1949, 2000.

[15] A. Kabbani et al., “Flowbender: Flow-level adaptive routing for improved
latency and throughput in datacenter networks,” in CoNEXT. ACM,
2014.

[16] J. Papán et al., “Overview of ip fast reroute solutions,” in ICETA, 2018.
[17] A. Jarry, “Fast reroute paths algorithms,” Telecommunication Systems,

vol. 52, no. 2, pp. 881–888, 2013.
[18] A. Kamisiński, “Evolution of IP fast-reroute strategies,” in RNDM. IEEE,

2018.
[19] P. Pan et al., “Fast reroute extensions to RSVP-TE for LSP tunnels,”

RFC, vol. 4090, pp. 1–38, 2005.
[20] Switch Specification 1.3.1, “OpenFlow,” in https://bit.ly/2VjOO77, 2013.
[21] Cisco, “Configuring BGP PIC Edge and Core for IP and MPLS,” Oct.

2017.
[22] D. Xu et al., “Failure protection in layered networks with shared risk

link groups,” IEEE Network, vol. 18, no. 3, pp. 36–41, 2004.
[23] P. Sebos et al., “Auto-discovery of shared risk link groups,” in OFC,

vol. 3, 2001, pp. WDD3–WDD3.
[24] M. Menth et al., “Resilience analysis of packet-switched communication

networks,” IEEE/ACM Trans. Netw., vol. 17, no. 6, pp. 1950–1963, 2009.
[25] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-free

alternates,” RFC, vol. 5286, pp. 1–31, 2008.
[26] T. Elhourani et al., “IP fast rerouting for multi-link failures,” in

INFOCOM. IEEE, 2014.
[27] M. Chiesa et al., “On the resiliency of static forwarding tables,”

IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133–1146, 2017.
[28] B. Yang et al., “Keep forwarding: Towards k-link failure resilient routing,”

in INFOCOM. IEEE, 2014.
[29] A. Bhalgat et al., “Fast edge splitting and edmonds’ arborescence

construction for unweighted graphs,” in SODA, 2008.
[30] M. Chiesa et al., “The quest for resilient (static) forwarding tables,” in

INFOCOM. IEEE, 2016.
[31] K.-T. Foerster et al., “CASA: congestion and stretch aware static fast

rerouting,” in INFOCOM. IEEE, 2019.
[32] ——, “Bonsai: Efficient fast failover routing using small arborescences,”

in DSN. IEEE, 2019.
[33] J. Liu et al., “Data-driven network connectivity,” in HotNets. ACM,

2011.
[34] S. Ray et al., “Always acyclic distributed path computation,” IEEE/ACM

Trans. Netw., vol. 18, no. 1, pp. 307–319, 2010.
[35] K.-T. Foerster et al., “Improved fast rerouting using postprocessing,” in

SRDS. IEEE, 2019.
[36] ——, “Local fast failover routing with low stretch,” ACM CCR, vol. 48,

no. 1, pp. 35–41, 2018.
[37] D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ networks,”

Nature, vol. 393, pp. 440–442, June 1998.

[38] A. Frank, “Augmenting graphs to meet edge-connectivity requirements,”
SIAM J. Discret. Math., vol. 5, no. 1, pp. 25–53, 1992.

[39] D. Zhuo et al., “Understanding and mitigating packet corruption in data
center networks,” in SIGCOMM. ACM, 2017.

[40] H. Cetinay et al., Comparing Destructive Strategies for Attacking
Networks. Cham: Springer International Publishing, 2020, pp. 117–140.

[41] A. Markopoulou et al., “Characterization of failures in an operational IP
backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–762,
2008.

[42] D. Turner et al., “California fault lines: understanding the causes and
impact of network failures,” in SIGCOMM. ACM, 2010.

[43] R. Govindan et al., “Evolve or die: High-availability design principles
drawn from googles network infrastructure,” in SIGCOMM, 2016.

[44] R. Potharaju and N. Jain, “When the network crumbles: an empirical
study of cloud network failures and their impact on services,” in SoCC.
ACM, 2013, pp. 15:1–15:17.

[45] C. Jiang et al., “PCF: provably resilient flexible routing,” in SIGCOMM.
ACM, 2020.

[46] H. H. Liu et al., “Traffic engineering with forward fault correction,” in
SIGCOMM. ACM, 2014.

[47] C. Busch et al., “Analysis of link reversal routing algorithms for mobile
ad hoc networks,” in SPAA. ACM, 2003.

[48] E. Gafni and D. P. Bertsekas, “Distributed algorithms for generating
loop-free routes in networks with frequently changing topology,” IEEE
Trans. Communications, vol. 29, no. 1, pp. 11–18, 1981.

[49] M. S. Corson and A. Ephremides, “A distributed routing algorithm for
mobile wireless networks,” Wirel. Netw., vol. 1, no. 1, pp. 61–81, 1995.

[50] M. Markovitch and S. Schmid, “SHEAR: A highly available and flexible
network architecture marrying distributed and logically centralized control
planes,” in ICNP. IEEE, 2015.

[51] A. Vahdat et al., “A purpose-built global network: Google’s move to
SDN,” Commun. ACM, vol. 59, no. 3, pp. 46–54, 2016.

[52] J. Liu et al., “Ensuring connectivity via data plane mechanisms,” in
NSDI, 2013.

[53] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-free
alternates,” RFC, vol. 5286, pp. 1–31, 2008.

[54] G. Rétvári et al., “IP fast reroute: Loop free alternates revisited,” in
INFOCOM. IEEE, 2011.

[55] A. Bashandy et al., “Topology independent fast reroute using segment
routing,” Working Draft, Internet-Draft draft-bashandy-rtgwg-segment-
routing-tilfa-05, 2018.

[56] K.-T. Foerster et al., “TI-MFA: keep calm and reroute segments fast,” in
Global Internet Symposium. IEEE, 2018.

[57] ——, “Local fast segment rerouting on hypercubes,” in OPODIS, 2018.
[58] J. S. Jensen et al., “P-rex: fast verification of MPLS networks with

multiple link failures,” in CoNEXT. ACM, 2018.
[59] C. Filsfils et al., “Bgp prefix independent convergence (pic),” Cisco, San

Jose, CA, Tech. Rep, 2011.
[60] M. Chiesa et al., “PURR: a primitive for reconfigurable fast reroute:

hope for the best and program for the worst,” in CoNEXT. ACM, 2019.
[61] M. Canini et al., “A distributed and robust SDN control plane for

transactional network updates,” in INFOCOM. IEEE, 2015.
[62] M. Borokhovich et al., “Provable data plane connectivity with local fast

failover: introducing openflow graph algorithms,” in HotSDN. ACM,
2014.

[63] O. Reingold, “Undirected connectivity in log-space,” J. ACM, vol. 55,
no. 4, pp. 17:1–17:24, 2008.

[64] D. Dereniowski et al., “Bounds on the cover time of parallel rotor walks,”
in STACS, 2014.

[65] M. Chiesa et al., “Exploring the limits of static failover routing (v4),”
CoRR, vol. abs/1409.0034.v4, 2016.

[66] ——, “On the resiliency of randomized routing against multiple edge
failures,” in ICALP, 2016.

[67] G. Bankhamer et al., “Local fast rerouting with low congestion: A
randomized approach,” in ICNP. IEEE, 2019.

[68] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with
SDN local fast failover - A load-connectivity tradeoff,” in OPODIS,
2013.

[69] K.-T. Foerster et al., “On the feasibility of perfect resilience with local
fast failover,” in Symposium on Algorithmic Principles of Computer
Systems (APOCS), 2021.

[70] J. Tapolcai, “Sufficient conditions for protection routing in ip networks,”
Optimization Letters, vol. 7, no. 4, pp. 723–730, 2013.

https://bit.ly/2VjOO77

	Introduction
	Motivation: Limitations of the State of the Art
	Homogeneous Networks: Arborescence-Based FRR
	Heterogeneous Networks: Keep Forwarding FRR
	Reaping the Benefits of Both Approaches for New FRR

	DAG-FRR: Leveraging Heterogeneity via DAGs
	Part 1: Building Rooted Partial Arborescences
	Part 2: Extending Arborescences to DAGs
	Part 3: Extending Arborescence Routing
	Part 4: Worst-Case Resilience Discussion

	Cluster-FRR: Local Cluster Algorithm
	Cluster-FRR Arborescence Generation
	Cluster-FRR Routing and Resilience

	Augment-FRR: Connectivity Augmentation
	Turning a Network Homogeneous
	Building Arborescences on Virtual Links
	Augment-FRR Routing and Resilience

	Evaluation
	Link Failure Models
	Experimental Setup and Metrics
	Routing Success in Highly Heterogeneous Networks
	Routing Success on Real-World Networks
	Runtime to Compute Routing Tables

	Related Work
	Conclusion
	References

