
HAL Id: hal-03059942
https://laas.hal.science/hal-03059942v1

Submitted on 30 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contract-Based Verification of Model Transformations:
A Formally Founded Approach

Guillaume Brau, Mohammed Foughali

To cite this version:
Guillaume Brau, Mohammed Foughali. Contract-Based Verification of Model Transformations: A
Formally Founded Approach. 36th ACM/SIGAPP Symposium On Applied Computing (SAC 2021),
Mar 2021, Gwangju (virtual), South Korea. �hal-03059942�

https://laas.hal.science/hal-03059942v1
https://hal.archives-ouvertes.fr

Contract-Based Verification of Model Transformations:
A Formally Founded Approach

Guillaume Brau*

LAAS-CNRS, Université de Toulouse, CNRS, France

gbrau@laas.fr

Mohammed Foughali*

Université Grenoble Alpes, CNRS, VERIMAG, France

mohammed.foughali@univ-grenoble-alpes.fr

ABSTRACT
In safety-critical applications, using a Model-Driven Engineering
(MDE) approach requires a high-level of trust in its underlying

model transformations, i.e. the latter’s correctness should be verified

formally. Yet, the applicability of formal methods to transformations

correctness remains limited due to the absence of formal founda-

tions of popular MDE languages and frameworks such as AADL

and SysML. In this paper, we propose a formally founded environ-

ment to verify model transformations in MDE. First, we define a

transformation in a formal way: this involves formalizing input and
output models at some level of abstraction, as well as the transfor-
mation rules. Then, we build a verification environment, formalized

as a transition system (TS), by extending the transformation with

contracts. Finally, we formulate and verify some correctness prop-

erties which we reduce, based on the previous steps, to reachability

properties over the TS. We show how our approach can be imple-

mented in Ocarina, an open-source transformation tool for AADL,

and how it applies, for example, to build correct transformations

from AADL models to their Cheddar ADL counterpart.

KEYWORDS
model-driven engineering, model transformation, formal methods

1 INTRODUCTION
Designing, developing and implementing complex systems can be

eased by Model-Driven Engineering (MDE) approaches in which

model transformations play a prominent role [30]. A transformation

operates on an input model to produce an output model. Moreover,

a transformation has an intent [20], typically enabling some ac-

tivity on the output model that is unfeasible on the input model

(e.g. transforming an AADL [11] model into Petri nets enables

model checking on the latter). In safety-critical applications, model

transformation correctness is a key property.

Model transformation correctness englobes a large number of

properties the relevance of which vary according to the application

at hand [23, 24]. In this paper, we propose a focus on two correctness

properties. First, the input model must be “transformable” w.r.t the

transformation intent (prop1). As an example of prop1, if the intent
of the transformation is to carry out real-time analysis, a given

input model must allow to produce an output model exempt from

anomalies such as a periodic task with no period specified. Second,

the output model must be “equivalent” to the input model (prop2).
An example of prop2 is an input model in UML and an output

model in Java where the latter contains all the classes specified in

the former.

Once defined, correctness properties must be verified in a rig-

orous manner, i.e. through integrating formal methods in MDE.

*Authors contributed equally.

Such integration remains however limited due to the absence of

formal foundations in popular languages and frameworks used in

MDE such as AADL [11], which is in fact a consequence of soft-

ware engineers and developers detaining little knowledge of formal

methods. As a side effect, “classical” verification of correctness

properties, proposed from a formal-method expert point of view,

focuses on the equivalence between input and output models (prop2
above) following a “correctness types” [21]. For instance, Adam

et al. [1] perform a series of (robotic) model-to-model transforma-

tions, where only syntactic correctness (the simplest type and thus

“highest level” of correctness) is verified. At the opposite “extreme”,

Foughali et al. [13–15] ensure semantic correctness between robotic

models and their timed-automata output. Syntactic and semantic

correctness verification approaches have each their own pros and

cons, but share the disadvantages of being not accessible to soft-

ware engineers and leaving property prop1 unattended. Contracts,
e.g. with pre- and post-conditions, are a promising alternative: they

are well-known by software engineers [22] and may be tailored to

reason on both prop1 and prop2. However, contracts definition and

deployment remain mostly informal and/or attached to particular

languages/tools (Section 7).

In this paper, we propose a contract-based approach to verify

both prop1 and prop2 of correctness of model transformations in

MDE. Our solution aims at overcoming the challenges described

above by enabling fully formal yet engineer-friendly verification.

We formally define a transformation as an input model, an output

model and a set of rules. Then, we extend the transformation with

contracts to build a lightweight environment formalized as a Tran-

sition System TS. Such environment enables the verification of both

(i) prop1, equivalent to the “transformability” of the input model

(w.r.t the transformation intent) and (ii) prop2, equivalent to the

correct implementation and execution of the transformation rules.

Verifying prop1 and prop2 boils down to checking contracts assump-
tions and guarantees, which we reduce to reachability properties

over the TS “at runtime”, i.e. when the transformation is performed

on some input model instance. To remain engineer friendly, the

formal theory is mirrored with an implementation in a well-known

programming language (e.g. Ada). While our approach is presented

with a particular focus on the AADL to Cheddar ADL [31] transfor-

mation and implemented in Ocarina [19], it remains generalizable

to e.g. other input and output models (Section 6).

The rest of this paper is organized as follows. In Section 2, we

provide an introduction to AADL and Cheddar ADL, the source and

target languages considered as an example of transformation in this

paper. Section 3 deals with the formalization of the transformation

and Section 4 presents the verification environment built from the

formalized transformation extended with contracts. An application

to Ocarina is presented in Section 5 with an implementation and a

case study. Finally, we discuss the generalizability of our approach

(Section 6), compare it to related work (Section 7) and conclude

with possible directions for future work in Section 8.

2 PRELIMINARIES
For illustration in this paper, we focus on AADL2Cheddar, the trans-
formation from AADL (Section 2.1) to Cheddar ADL (Section 2.2).

We consider a subset of AADL and Cheddar where we keep only

the entities/mechanisms that are necessary for AADL2Cheddar.

2.1 AADL
AADL (Architecture Analysis and Design Language) is a standard-

ized architecture description language for the modeling, analysis,

and code generation of real-time, embedded and concurrent com-

puter systems [11]. An AADL model describes the architecture

of a system with components. Components can describe software
or hardware entities that can be hierarchically assembled to build

complex systems describing possible links between their building

components. In addition, properties can be defined for components.

Let us review these elements in greater detail.

Components. Software components may encapsulate compo-

nents called processes, each process describing a part of the pro-

gram being executed and encapsulating itself (sub)components:

threads of execution and possibly data structures. Hardware com-

ponents, on the other hand, include components known as memories
and processors specifying physical storage and execution resources.
Physical memory components do not intervene in AADL2Cheddar
and are therefore discarded. Figure 1 shows a simple AADL example

of a system component s1 which is built from:

• software: with one process p1, encapsulating two threads of

execution (th1, th2) and one data structure (d1),
• hardware: represented by one processor component pr1.

Process p1

System s1

Thread th1 Thread th2

Processor pr1

Data d1

Figure 1: AADL model example.

1 thread th1

2 features
3 d1_a c c e s s : requires data access d1 ;

4 propert ies
5 D i s p a t c h _P r o t o c o l => P e r i o d i c ;

6 D i s p a t c h _O f f s e t => 2 ms ;

7 Pe r i od => 25 ms ;

8 Compute_Execution_Time => 1478 us . . 1660 us ;

9 Dead l ine => 10 ms ;

10 end th1 ;

Listing 1: An example of a thread declaration.

AADL allows to describe a system that includes several processes

and processors, e.g. to represent multiprocessor systems. The com-

position of systems is also possible, e.g. to describe interconnected

systems. However, since AADL2Cheddar applies to one system at a

time, we restrict an AADL model to only one system, which can

still have any number of processes and processors.
A component declaration is textual and includes features and

properties, as we can see in the declaration of the thread th1 in List-

ing 1. Features provide the interface of a component, thus allowing

to link components, while properties define the characteristics of a

component. More explanation below.

Links. A link can be either a connection or a binding (both con-

nections and bindings are optional).

Connections represent logical flows (e.g. event and/or data) be-

tween components through their features. The access feature is

reserved to link threads with data. For instance, in Figure 1, both

threads th1 and th2 are connected to the data structure d1 within
the process p1 (solid-line links): the connection between th1 and
the data d1 occurs via the feature d1_access of th1 specified

in Listing 1 (line 5). A component may be involved in any num-

ber of connections. Since only access connections are relevant to

AADL2Cheddar, we restrict connections in AADL to only access

connections, to which we may thus refer simply as connections.

Also, in the context ofAADL2Cheddar, connections are intra-process
only, i.e. between threads and data of the same process.

Bindings, on the other hand, link software to hardware compo-

nents. For example, in Figure 1, process p1 is bound to processor

pr1 which means that p1 is to be executed on pr1. AADL bindings

are compatible with partitioned scheduling: a process can be bound

to only one processor whereas a processor can be bound to several

processes (i.e. may execute several processes).

Properties. The description of a system is completed with prop-
erties (optional). For example, the properties of th1 in Listing 1

provide timing information about the thread. A Periodic
Dispatch_Protocol (line 7) means that the thread jobs occur on a

regular basis, with a constant interval of time between jobs called

the Period (line 9) and possibly a Dispatch_Offset (line 8) from
the time origin, and a job duration is within a time interval called

Compute_Execution_Time (line 10). A temporal constraint may be

specified for the thread as a Deadline which is the time by which

the thread must be completed (line 11). We see in Listing 1 that

properties are typed: Dispatch_Protocol must be within an enu-

meration of Supported_Dispatch_Protocols, Period has a time value

that is an aadlinteger plus a time unit (which itself may be defined

from the base picosecond (ps) time unit, e.g. 𝑢𝑠 => 𝑝𝑠 ∗ 1000000),
Compute_Execution_Time must be of “range of time” value, etc.

Since timing constraints are – naturally – positive, we restrict the

use of aadlinteger to naturals when describing time.

2.2 Cheddar ADL
Cheddar ADL is the modeling language of the Cheddar tool [31].

In the remainder of this paper, we refer to Cheddar ADL simply as

Cheddar and use “Cheddar tool” to describe its underlying analysis

tool. Cheddar allows to describe a “real-time task model” [6] on

which schedulability analysis can be performed. A Cheddar model

is “flat” (no hierarchies) and is made of entities, links and parameters,
which we represent using a class diagram (Figure 2). As for AADL,

we consider in this paper a subset of Cheddar including all the

elements needed for AADL2Cheddar.

Entities and links. Entities and links form a real-time application.
The latter is made of:

• a number of tasks executing on execution_unit(s), and possi-
bly sharing some resources,

• a number of address_spaces for tasks and resources.

A real-time task is the basic entity of a real-time application. It

represents a set of program instructions to be executed by execution

unit(s). In this model, an execution unit is an abstraction of both the

hardware required to execute the tasks (i.e. the central processing
unit, CPU) and the software needed to build an execution order of

the tasks (i.e. the scheduler). In addition, tasks can optionally share

resources such as shared memories. Address spaces are virtual

memory spaces allocated to tasks and resources.

Links define relations between entities, e.g. execution unit(s) to

which a task is statically allocated (affinity). The cardinalities of

associations in Figure 2 reflect restrictions on links, e.g. a task/re-

source cannot be allocated to more than one address space.

Execution_Unit

name
scheduling_policy

Address_Space

name

Task

name
type
offset
period
capacity
deadline

Resource

name
sharing_protocol

executes on

1..* 1..*

has

1..*

1

has1
1..*

uses

1..*

0..*

Figure 2: Elements of a real-time application in Cheddar.

Parameters. Entities of a real-time application can (optionally)

have various parameters:

• task parameters: a constant interval of time between task jobs

called the period according to the task type, a capacity (or worst-
case execution time) for a task job, an offset that is an amount of

time to the first release of the task, and a deadline to be respected,
• execution unit parameters: a scheduling_policy that dynami-

cally assigns tasks to execution units as the execution goes (within

the allowed static affinity, defined by links between tasks and ex-

ecution units as explained above),

• resource parameters: a sharing_protocol to manage concurrent

access to the shared resources between tasks.

Parameters are defined with usual types available in program-

ming languages, e.g. unsigned integers for time-related parameters

and enumerations for available task types, scheduling policies and

sharing protocols.

3 AADL2CHEDDAR FORMALIZATION
The first step of our approach consists in formalizing the trans-

formation (in this case, AADL2Cheddar). Thus, we formalize, at

some level of abstraction, both the input and output model: AADL

(Section 3.2) and Cheddar (Section 3.3), described informally in Sec-

tion 2. Then, we present and formalize AADL2Cheddar : we define
its rules and develop its formal semantics (Section 3.4). Before we

get into the details, we first introduce some basic definitions and

notations which we will use throughout the rest of this paper.

3.1 Basic definitions and notations
We first remind the notions of binary relations, partial functions

and functions (Section 3.1.1), then provide definitions (simplified

from [26]) of Transition Systems (Section 3.1.2) and Transition

Diagrams (Section 3.1.3).

3.1.1 Relations and functions. A binary relation R ⊆ X × Y is a set

of ordered pairs (x ∈ X , y ∈ Y).
𝑅 is called a partial function iff it satisfies the following:

∀x ∈ X , y, y′ ∈ Y : (x, y) ∈ R ∧ (x, y′) ∈ R ⇒ y = y′
. That is, a par-

tial function is a special type of binary relation that maps each

element of 𝑋 to at most one element of 𝑌 , we may then write

R : X ↛ Y .𝑋 (resp.𝑌) is the domain (resp. codomain) of𝑅, and𝑦 ∈ 𝑌

is the image of 𝑥 ∈ 𝑋 iff (x, y) ∈ R. A partial function does not re-

quire that each element in𝑋 has an image in𝑌 .𝑋𝑑 ⊆ 𝑋 , the domain
of definition of 𝑅, is the largest subset of 𝑋 each element of which

has an image in𝑌 through 𝑅, that is: ∀x ∈ Xd ∃y ∈ Y s.t . (x, y) ∈ R
and∀x ∈ X\Xd �y ∈ Y s.t . (x, y) ∈ R. We say that 𝑅 is defined over
𝑋𝑑 and undefined over X\Xd . We use the standard computer science

notation R(x) ↑ (resp. R(x) ↓) to denote that 𝑅 is undefined (resp.

defined) at 𝑥 ∈ 𝑋 .

A partial function 𝑅 is called a function iff 𝑋𝑑 = 𝑋 , i.e. a function
is a special type of partial function that is defined over all elements

of its domain 𝑋 . We may then write R : X ↦→ Y .

3.1.2 Transition systems.

Syntax. A transition system (TS) is a tuple TS = ⟨U ,Q, q0,−→⟩
where U = Uro ∪ Urw is a finite set of read-only (Uro) and read-
write (Urw) variables; 𝑄 a set of states, each state q ∈ Q provides

an interpretation q(u) of each 𝑢 ∈ 𝑈 ; 𝑞0 ∈ 𝑄 the initial state that

maps each variable 𝑢 ∈ 𝑈 to its initial value 𝑢0 (each read-only

variable u ∈ Uro satisfies q(u) = q0 (u) = u0 for all 𝑞 ∈ 𝑄); and −→
a set of transitions where each transition 𝑡 ∈−→ is a binary relation

that maps every state 𝑞 ∈ 𝑄 to a (possibly empty) set of successors

𝑡 (𝑞) ⊆ 𝑄 (we write 𝑞
𝑡−→ 𝑞′ iff 𝑞′ ∈ 𝑡 (𝑞)).

Semantics. A TS evolves through taking enabled transitions. A
transition 𝑡 ∈−→ is enabled iff the TS is at state 𝑞 and 𝑡 (𝑞) ≠ ∅.
After taking 𝑡 , the TS reaches a state 𝑞′ ∈ 𝑡 (𝑞). We may thus define

the set of reachable states𝑄𝑟 ⊆ 𝑄 s.t. state 𝑞 is reachable, i.e. 𝑞 ∈ 𝑄𝑟 ,

iff there exists a (possibly empty) sequence of transitions seq such

that q0
seq
−−−→ q.

3.1.3 Transition Diagram.

Syntax. We define a graphical notation for a TS, called a Tran-

sition Diagram (TD). A TD is a finite directed graph with 𝑉 its set

of vertices and 𝐸 its set of edges. TD operates on X = Xro ∪ Xwr , a
finite set of variables that may be read-only (in Xro) or read-write
(in Xwr). The vertex 𝑣0 in𝑉 is the unique initial vertex of the TD. If 𝑒

connects vertex 𝑣𝑎 to vertex 𝑣𝑏 , then we may write va
e (ge,ope)−−−−−−−−→ vb

where (i) 𝑔𝑒 is a Boolean expression over 𝑋 and (ii) 𝑜𝑝𝑒 an atomic

sequence of operations over variables in 𝑋 (read-only over Xro).

Semantics. Let 𝑞(𝑔) denote the truth value of guard 𝑔 at state

𝑞, and 𝑞′|𝑌 = 𝑜𝑝 (𝑞 |𝑌) denote that the valuation of each variable

𝑦 ∈ 𝑌 at state 𝑞′ agrees with the result of 𝑜𝑝 over 𝑦 from state

𝑞. The semantics of a TD is then given by the TS ⟨𝑈 ,𝑄, 𝑞0,−→⟩
(Section 3.1.2) where:

• U = X ∪ {𝜋} s.t. 𝜋 holds the current vertex of the TD,

• Each state 𝑞 in 𝑄 is an interpretation of variables in 𝑋 ∪ {𝜋},
• 𝑞0 maps 𝜋 to 𝑣0 and each variable in 𝑋 to its initial value,

• −→ results from mapping each edge 𝑒 in 𝐸 to a transition 𝑡𝑒 in

−→ as follows. If va
e (ge,ope)−−−−−−−−→ vb then

q′ ∈ te (q) ⇔

(1) (q(𝜋) = va ∧ q′(𝜋) = vb) ∧
(2) q(ge) ∧
(3) (q′|X = ope (q |X))

3.2 AADL
We define an AADL model compositionally, from the process up to

the model, while formalizing the description given in Section 2.1.

Definition 1. Process. A process is a tuple p = ⟨Th,D,C⟩ where
Th = {th1, . . . , th |Th |} is a set of threads; D = {d1, . . . , d |D |} a set of
data; and C ⊆ Th × D a binary relation representing connections from
threads to data.

As explained in Section 2.1, a process is made up of two sets:

threads and data. C is the set of connections within a process, de-

fined here as a binary relation (Section 3.1.1) to make it possible

for a thread to access several data and, conversely, data to be ac-

cessed by several threads, as allowed in AADL (Section 2.1). Note

how process (sub)components (threads and data) features do not

appear in our definition. Indeed, features are mainly introduced to

define the “type” of interface through which connections are made.

Since only access connections are considered (Section 2.1), features

become superfluous and are consequently abstracted away.

Definition 2. System. A system is a tuple s = ⟨P, Pr, PB⟩ where
P = {p1, . . . , p |P |} is a set of processes (Definition 1);
Pr = {pr1, . . . , pr |Pr |} a set of processors; and PB : P ↛ Pr a partial
function representing processes bindings to processors.

Thus, the system is built from processes tied to hardware ele-

ments, that is processors. Defining PB as a partial function is delib-

erate, as it is neither restrictive nor permissive w.r.t AADL. Indeed,

since PB enjoys the properties of partial functions (Section 3.1.1),

(i) a process in 𝑃 may not bind to more than one processor and (ii)

creating a binding for a given process is optional, which agrees with

the AADL restrictions and permissions (Section 2.1). Therefore, in

a given AADL system, the domain of PB is 𝑃 while its domain of

definition is the largest subset of 𝑃 all the elements (processes) of

which are bound to processors.

Flattening a system. In order to have a direct access to sets of

components at a lower level (i.e. at the process level), we define a
flat AADL system. This “raw” flat representation is only provided

to ease the definition of AADL properties andAADL2Cheddar trans-
formation rules later in this section: it does not replace our original

definition (Definition 2) which reflects the real architecture of an

AADL system.

To atomize the system, we adopt a generic notation following a

downward propagation of indices: subscript 𝑖 of each process 𝑝𝑖 in

the processes set 𝑃 (Definition 2) is propagated as a superscript to

each tuple element of 𝑝𝑖 (Definition 1), e.g. Thi = {thi
1, . . . , th

i
|Thi |}

is the set of threads in the 𝑖𝑡ℎ process of 𝑃 , the set of processes

in 𝑠 . We obtain consequently TH =
⋃

i∈1... |P | Thi
, the set of all

threads (in all processes) in the system,D =
⋃

i∈1... |P | Di
, the set of

all data (in all processes) in the system, and C =
⋃

i∈1... |P | Ci
, the

set of all connections between threads and data (in all processes)

in the system. We may then define the flat system by redefining 𝑃

(Definition 2), as the set of sets of all threads, data and connections

in all processes, that is P = {TH , D, C}.
Definition 3. Model. An AADL model is a tuple ma = ⟨s, Prop⟩

where 𝑠 is a system (Definition 2) and Prop a set of properties.

A property in Prop is a partial function with some domain 𝑋 of

components or subcomponents of 𝑠 , i.e.𝑋 can be taken directly from

the flat representation of 𝑠 (e.g. the domain of any thread property is

TH , of any processor property is 𝑃𝑟 , etc.). The codomain 𝑌 varies

depending on the property.

Let us exemplify with thread properties. To simplify notations,

we assume that time values are uniformized to the smallest time

unit, which permits rewriting them in N (e.g. in Listing 1, all val-

ues given in period, dispatch_offset, compute_execution_time and
deadline are transformed to the 𝜇s scale). Thus, the codomain is

N for the period property (that is period : TH ↛ N), but also for

dispatch_offset and deadline. For dispatch_protocol, the codomain

is the set DP = {aperiodic, sporadic, periodic}, formalizing the Sup-
ported_Dispatch_Protocols enumeration (Section 2.1). Finally, com-
pute_execution_time associates a thread to an interval delimited by

a minimum and a maximum execution time (example in Listing 1,

Section 2.1). Its codomain is thus I, the set of closed intervals of

positive reals with natural bounds, which we may define formally:

I = {[a, b] | a, b ∈ N ∧ a ≤ b} with [a, b] = {x ∈ R≥0 | a ≤ x ≤ b}.
Wemay give examples of other components properties. For instance,

concurrency_protocol hasD (the set of all data) as a domain and

CP = {Maximum_Priority, Priority_Ceiling, Spin_Lock,
Priority_Inheritance, Protected_Access}, the enumeration of support-

ed concurrency protocols, as a codomain.

The rationale of formalizing properties as partial functions is

similar to the one used in bindings: on one hand, a component

cannot have two values for the same property (e.g. a thread cannot

be periodic and sporadic at the same time) and, on the other hand,

AADL properties are optional (the user may choose not to define e.g.
the period of a sporadic thread). Similarly to bindings, the domain

of definition of a property is the largest subset of its domain for

which the property is defined (e.g. for the deadline property, the
largest set in TH where a deadline is provided for each thread).

3.3 Cheddar
To formalize a Cheddar model, we adopt a similar strategy to the

one used for AADL. The real-time application firstly describes

the entities in Figure 2 (Section 2.2) and their relationships. Then,

parameters are defined at the model level.

Definition 4. Real-time application. A real-time application
is a tuple 𝜎 = ⟨T , EU , Re,AS, L⟩ where T = {𝜏1, . . . , 𝜏 |T |} is a set of
tasks; EU = {eu1, . . . , eu |EU |} a set of execution units;

Re = {re1, . . . , re |R |} a set of resources; AS = {as1, . . . , as |AS |} a set
of address spaces; and 𝐿 defined as follows. L = {TE, TR, TA, RA} is
a set of binary relations TE ⊆ T × EU and TR ⊆ T × Re and partial
functions TA : T ↛ AS and RA : Re ↛ AS for links between, respec-
tively, tasks and execution units, tasks and resources, tasks and address
spaces and resources and address spaces.

Thus, the entities of Cheddar and their links appearing in Figure 2

(Section 2.2) are described as a tuple. In the latter, 𝐿, representing all

links, contains four relations to reflect the associations in Figure 2

and their cardinalities. In particular, TA and RA are defined as partial

functions since no task (resp. resource) can be linked to more than

one address space.

Definition 5. Cheddar model. A Cheddar model is a tuple
mc = ⟨𝜎, Param⟩ were 𝜎 is a real time application (Definition 4) and
Param a set of parameters.

Parameters in Param are defined as partial functions over entities

of 𝜎 (codomains vary depending on the parameter). For instance,

offset, period, capacity and deadline have the same domain𝑇 (the set

of all tasks) and the same codomainN. As another example, parame-

ter sharing_protocol maps resources (domain 𝑅𝑒) to access protocols

in the set AP = {First_In_First_Out, Priority_Ceiling_Protocol,
Priority_Inheritance_Protocol}.

The rationale of using partial functions is the same as in AADL

properties (Section 3.2), and the domain of definition of a parameter

is the largest subset of its domain such that the parameter is defined

for all elements (e.g. the domain of definition of period is the largest

subset of 𝑇 where a period has been provided for each task).

3.4 AADL2Cheddar
Now that we have formalized AADL and Cheddar models, we may

define AADL2Cheddar formally: we develop its formal semantics

involving an input AADL model, an output Cheddar model and a

number of rules. We start by formally defining the latter.

3.4.1 Rules. In the following definition (and the remainder of this

paper henceforth), we use the set membership symbol ∈ for tuple

memberships as well
1
.

Definition 6. Rule. A transformation rule 𝑅 : 𝑋 ↦→ 𝑌 is a
function with X ∈ ma its domain, an element of the AADL model and
Y ∈ mc its codomain, an element of the Cheddar model.

A rule is defined as a function because, intuitively, describing a

transformation rule implies (i) a unique mapping of input elements

and (ii) an “all” quantifier, for instance “transform all threads into

tasks” (see rule R3 in Table 1). That is, a rule is defined over all its

domain of which each element has exclusively one image, which co-

incides with the definition of a function (Section 3.1.1). To compute

the image of an element, a rule 𝑅 may need to read the elements of

another rule R′
, that is pairs (x, R′(x)) ∈ R′

, which creates a rule

dependency (examples in Section 3.4.2).

In total, the AADL2Cheddar transformation includes nine trans-

formation rules, which are enumerated in Table 1 with their do-

mains, codomains and a brief informal explanation (examples on

what each rule does are given in Section 3.4.2). To ease access to

1
This shortcut can be straightforwardly motivated using a set-based representation of

tuples such as nested ordered pairs.

lower level entities in an input AADL model ma = ⟨s, prop⟩, we rely
on its flat representation (definition 3).

Rule Mapping Object

𝑅1 Pr ↦→ EU maps every processor to an execution unit

𝑅2 P ↦→ AS maps every process to an address space

𝑅3 TH ↦→ T maps every thread to a task

𝑅4 D ↦→ Re maps every data to a resource

𝑅5 C ↦→ TR maps every connection to a task-resource link

𝑅6 PB ↦→ TE maps every processor binding to a task-EU link

𝑅7 TH ↦→ TA maps every thread to a task-address space link

𝑅8 D ↦→ RA maps every data to a resource-address space link

𝑅9 Prop ↦→ Param maps every property to a parameter

Table 1: Rules of AADL2Cheddar transformation.

3.4.2 Transformation. Before we define AADL2Cheddar formally,

let us first clarify its technical aspects: how AADL hierarchies are

dealt with and how the transformation works.

Technicalities. First, we discuss architectural issues. As one may

notice from the informal and formal definitions of AADL and Ched-

dar, the latter is flat while the former has two architectural levels

(the processes level and the system level, Definition 3). To cope with

this issue, we reason as follows. It is rather intuitive that the coun-

terpart of threads in AADL is tasks in Cheddar (rule 𝑅3) and that of

data is resources (rule 𝑅4). Now, an address space in Cheddar can

be linked to many resources and many tasks, but a resource/task

can be linked to only one address space (Definition 4). Dually, in

AADL, the relation between a process and threads/data is a parent-
child one (a process encapsulates threads/data, Definition 1). Thus,

a process in AADL should be translated into an address space in

Cheddar (rule 𝑅2), and the fact that a thread/data is encapsulated in

it is translated into a link between the process counterpart (address

space) and the thread/data counterpart (task/resource) in Cheddar

(rules 𝑅7, 𝑅8). The process level is thus atomized in Cheddar as the

parent-child relations transform into links. Consequently, a binding

between a process and a processor in AADL transforms simply into

a link between the (task) Cheddar counterpart of each of the process

encapsulated threads and the (execution unit) Cheddar counterpart

of the processor (rule 𝑅6).

Second, we explain how AADL2Cheddar works. The transfor-
mation applies to an input AADL model ma to generate an output

Cheddar model mc. The latter, initially empty, is constructed by ex-
ecuting the rules in table 1 sequentially. Executing a rule boils down

to the application of the function formalizing it, e.g. the execution of

R1 (Table 1) is equivalent to computing for each pr ∈ Pr from ma its

image R1 (th), which results in a set of execution units that are then

written to mc. We explain more formally some of AADL2Cheddar
rules, mainly those that translate bindings, connections and prop-

erties, which need to read the elements of other rules. 𝑅5 translates

connections into task-resource links: for each connection between

a thread and a data in ma, a link between their task and resource

counterpart, already written to mc (after executing, respectively,
𝑅3 and 𝑅4) is created. More formally, for each 𝐶 ∈ C such that

(th ∈ TH , d ∈ D) ∈ 𝐶 , a link is created between 𝜏 ∈ 𝑇 , the image

of th through 𝑅3 ((th, 𝜏) ∈ R3) and 𝑟 ∈ 𝑅𝑒 , the image of 𝑑 through

𝑅4 ((d, r) ∈ R4). In a similar way, the execution of 𝑅6 generates links

between tasks and execution units. Finally, through executing 𝑅9,

the Cheddar counterpart parameters of the properties in ma are

generated and written to mc (e.g. the dispatch_protocol property
is translated into the scheduling_protocol parameter). The need of

a rule to read the (pairs) elements of another rule creates a rule

dependency, which makes the order of execution of rules important

(e.g. 𝑅5 may be executed only after 𝑅3 and 𝑅4). To simplify the pre-

sentation, AADL2Cheddar rules (Table 1) are executed sequentially

following the increasing order of their indices
2
.

Let us now define formal syntax and semantics ofAADL2Cheddar
in line with the explanations above.

Syntax. AADL2Cheddar is a tuple ⟨ma,mc,R⟩ where ma is the

input AADL model (Definition 3), mc the (initially empty) output

Cheddar model (Definition 5) and R = {R1, . . . , R9} a set of rules
(Definition 6, Table 1).

Semantics. We can represent AADL2Cheddar with a TD that

defines its semantics (Section 3.1.3), where:

• Variables the set Xro , i.e. read-only (resp. Xrw , i.e. read-write) is
the input (resp. output) model ma (resp. mc),

• Vertices V = {v0, . . . , v9}, (the transformation steps),
• Edges E = {e1, . . . , e9} s.t. each 𝑒𝑖 in 𝐸 connects vertex 𝑣𝑖−1 to

vertex 𝑣𝑖 (𝑖 ∈ 1..9), i.e. vi−1
ei (gei ,opei)−−−−−−−−−−→ vi where 𝑔𝑒𝑖 is a tautology

and opei = UPi the operation of updating the output model by

applying rule 𝑅𝑖 over all its domain (from ma) and writing the

result of such application to mc.

Figure 3 shows a part of the TD that gives the AADL2Cheddar
transformation semantics (the dashed edge denotes missing edges

and vertices). Operations are in blue and guards are not represented

(always true here). Taking an edge 𝑒𝑖 moves the underlying TS

(Section 3.1.3) from state 𝑞 (with q(𝜋) = vi−1) to𝑞
′
(with q′(𝜋) = vi)

such that the set (element of mc) corresponding to the codomain of

rule 𝑅𝑖 is empty at 𝑞 and “filled” at 𝑞′: from 𝑞 to 𝑞′, the operation
UPi executes 𝑅𝑖 and “fills” the corresponding element of mc with
the result of such execution. And so, by reaching 𝑣9, all entities in

ma are translated and the corresponding mc is fully constructed.

The transformation is thus terminated.

𝑣0 𝑣1 𝑣8 𝑣9
𝑒1

𝑈𝑃1

𝑒9

𝑈𝑃9

Figure 3: An example of transformation TD.

4 VERIFICATION ENVIRONMENT
Our objective is to verify properties prop1 and prop2 of correctness
(Section 1): respectively, the transformability of the input model

w.r.t transformation intent and the correctness of the transforma-

tion rules themselves. To make that possible, we build, by extending

the transformation with contracts, a lightweight verification envi-

ronment with formal semantics.

2
Actually, since there are rules that do not depend on each other, other orders of

execution are allowed, e.g. permuting 𝑅3 and 𝑅4 in Table 1. It can be easily shown that

choosing any allowed order accordingly has no effect on the verification results, but

this is omitted for the lack of space.

4.1 Contracts
A contract extends a transformation rule with an assumption on

the input model ma to apply the rule and a guarantee provided on

the output model mc after executing the rule.

Definition 7. Contract. A contract is a triple 𝛾 = ⟨𝐴, 𝑅,𝐺⟩ with
A and G are logical formulae called, respectively, an assumption and
a guarantee; and 𝑅 a transformation rule (Definition 6). The domain
of discourse for any 𝐴 (resp. 𝐺) is ma (resp. ma ∪ mc).

Thus, a contract provides a means to reason on two types of

anomalies: either in the input model (an assumption does not hold)

or at the rule level (a guarantee fails). Notice how the domain of

discourse of 𝐺 is ma ∪ mc rather than just mc. This is because,
oftentimes, a guarantee on the output model is given w.r.t the input

model (see example below).

Examples. We give below two examples of contracts. The first

example relates only to reasoning on the correctness of a trans-

formation rule using a guarantee (prop2). For rule 𝑅1, we may

propose a contract 𝛾1 = {A1, R1,G1} where A1 is a tautology and

G1 = (|EU | = |Pr |). This means that 𝑅1 may execute without a prior

condition (𝐴1) and, after it executes, we have a “weak” equivalence

guarantee between the input (AADL processors) and the output

(Cheddar execution units) stating that the number of execution

units written to mc is equal to the number of processors in ma
(which can be strengthened according to the engineer needs).

In the second example, both prop1 and prop2 are considered.

For rule 𝑅5, we may propose contract 𝛾5 = {A5, R5,G5} where

A5 = ∀p ∈ P : PB(p) ↓ andG5 = ∀𝜏 ∈ T : TE(𝜏) ↓. Here, the assump-

tion conditions the execution of 𝑅5 to the fact that bindings are

defined for all processes in the input AADL model. This is a typical

example of prop1 of correctness (Section 1), where correctness de-

pends on the intent of the transformation: we require all processes

to be bound to processors because the transformation to Cheddar

is for real-time analysis purposes, and such analysis would not be

possible if there is a process that is not allocated to any processor.

𝐺5, on the other hand, is a guarantee on the correct implementation

of 𝑅5, ensuring that, after executing 𝑅5, all tasks in the output model

are bound to execution units, which gives a form of equivalence be-

tween input bindings and output links (prop2)3. We emphasize the

importance of both assumptions and guarantees even if they look

similar. For instance, 𝐴5 may seem redundant because anyway 𝐺5

will check a posteriori whether all tasks in the generated Cheddar

model are linked to execution units. However, if we remove 𝐴5 and

𝐺5 does not hold, it will be impossible to know whether the error

comes from the input AADL model or the implementation of 𝑅5,

whereas with both 𝐴5 and 𝐺5 localizing the source of the error is

straightforward using a transition system (see below).

4.2 Building the Environment
We extend AADL2Cheddar with contracts (once all contracts are

defined) to obtain a formal environment in which assumptions and

guarantees can be verified. The transformation thus succeeds iff all

contracts are validated, i.e. all assumptions and guarantees evaluate

to true as the transformation goes.

3
Note that since the elements of each pair in 𝑅5 come from, respectively, ma and

mc, all the literals of𝐺5 fall within the domain of discourse of a guarantee given in

Definition 7, that is ma ∪ mc

4.2.1 Syntax. The syntax of the verification environment is ex-

tended from that of AADL2Cheddar (Section 3.4.2): each rule in

R is incorporated within a contract. Thus, the environment is a

triple E = ⟨ma,mc, Γ⟩, where ma and mc are the input and output

models of the transformation (Section 3.4.2) and Γ = {𝛾1, . . . , 𝛾9} is
the set of contracts each incorporating the rule having the same

index from R, that is 𝛾i = {Ai, Ri,Gi} for each i ∈ 1..9.

4.2.2 Semantics. The semantics of the verification environment is

obtained by extending the semantics (TD) of AADL2Cheddar (Sec-
tion 3.4.2) so that for each rule 𝑅𝑖 , assumption 𝐴𝑖 (resp. guarantee

𝐺𝑖) is verified before (resp. after) its execution. This gives a new

TD with a set of vertices 𝑉 ′
, a set of edges 𝐸 ′ and a set of variables

𝑋 ′
derived from the AADL2Cheddar TD (vertices 𝑉 , edges 𝐸 and

variables 𝑋) following the rules below:

• Variables: 𝑋 ′ = 𝑋 (with X ′
ro = Xro and X ′

rw = Xrw),
• Vertices: V ′ = V ∪i∈1..9 {vi−1,i}. Each additional vertex vi−1,i de-
notes an intermediate step between vertices 𝑣𝑖−1 and 𝑣𝑖 in 𝑉 ,

• Edges: Each edge vi−1
e (ge,ope)−−−−−−−−→ vi in 𝐸 is replaced with two edges

vi−1
e (Ai,ope)−−−−−−−−→ vi−1,i and vi−1,i

e (Gi,null)
−−−−−−−−−→ vi where null denotes

any side-effect-free operation.

Thus, the resulting TD has the same input and output variables,

and augments the original transformation TD with additional ver-

tices, edges and guards to verify assumptions and guarantees. Fig-

ure 4 shows a part of the TD resulting from the extension of the TD

in Figure 3, following the rules given in the semantics above (the

dashed edge denotes missing edges and vertices, null operations

and edges names are removed). Additional vertices are in red. Thus,

rule 𝑅1, for instance, will not be executed unless 𝐴1 is true (guard

in green), in which case the result of executing 𝑅1 is written to mc
(operation UP1 in blue) and vertex v0,1 is reached. Afterwards, 𝑣1
may not be reached unless the guarantee following the execution

of 𝑅1 is satisfied (guard 𝐺1 in green). Then the same behavior is

repeated for all remaining rules until 𝑣9 is reached.

𝑣0 𝑣0,1 𝑣1 𝑣8 𝑣8,9 𝑣9
𝐴1

UP1

𝐺1 𝐴9

UP9

𝐺9

Figure 4: Example of verification environment TD.

4.2.3 Correctness verification. Using the verification environment

semantics, we can reason on the transformation correctness w.r.t

the transformability of the input model (assumptions) and the cor-

rectness of the execution rules implementation (guarantees) at

“runtime” (i.e. on the fly when executing the transformation on

an input model instance). For example, if 𝐺9 is false, any state 𝑞

in the underlying TS such that 𝑞(𝜋) = 𝑣9 (we recall that 𝜋 is the

variable, in the underlying TS, denoting the current vertex of the

TD, Section 3.1.3) is unreachable, that is q ∉ Qr . Dually, if 𝐴9 does

not hold, states 𝑞 s.t. 𝑞(𝜋) = 𝑣8,9 are also unreachable. And so, we

can define from the set of reachable states exactly at which state

the transformation failed and conclude on the error source, i.e. in-
put model or rule implementation, and in the former case, more

precisely from which part of the input model (e.g. threads, bindings,

etc.). If any reachable state 𝑞 ∈ 𝑄𝑟 satisfies q(𝜋) = vi , this means

that rule 𝑅𝑖 is successfully executed with both𝐴𝑖 and𝐺𝑖 evaluating

to true, in which case we say contract 𝛾𝑖 is validated.

Since the system is sequential, concluding on reachability of

states is rather straightforward: if 𝑞 is unreachable with 𝑞(𝜋) =

𝑣𝑖−1,𝑖 (resp. 𝑞(𝜋) = 𝑣𝑖) then any other state 𝑞′ with 𝑞′(𝜋) = 𝑣 𝑗−1, 𝑗
or 𝑞′(𝜋) = 𝑣 𝑗 is also unreachable for any j ≥ i (resp. j > i). Also, if
there exists a reachable state 𝑞 such that q(𝜋) = vi where 𝑖 is the
largest index (9 for AADL2Cheddar), then the transformation is

correct (all contracts are validated).

5 APPLICATION TO OCARINA
In this section, we propose an implementation of our formal envi-

ronment (Section 4) within the transformation tool called Ocarina

(Section 5.1), then illustrate with verifying AADL2Cheddar correct-
ness on a case study (Section 5.2). All the implementation and case

study elements presented in this section are publicly available at

https://github.com/artxy/sac2021 with a notice to reproduce the

experimentation results.

5.1 Implementation
We briefly introduce Ocarina and review the key elements of our

implementation. Then, we explain how the abstract verification

of reachability, explained in Section 4.2.3, can be achieved at the

implementation level.

Ocarina. Ocarina is a “processor” of AADL models, written in

Ada. In particular, it allows to generate, fromAADL, various kinds of

codes for embedded platforms and models for analysis/verification

purposes such as real-time task models (e.g. for Cheddar) and Petri

nets (e.g. for TINA [5]).

Ocarina is designed as a compiler. Figure 5 gives an overview of

a typical process flow in Ocarina, that transforms an AADL model

into a Cheddar model. Models are represented as Abstract Syntax

Trees (AST) and transformation rules as AST-to-AST mappings,

encoded as Ada functions. The transformation itself is then a set

of organized visitor routines that process the AST and execute

on-the-fly transformation rules.

AADL

Model

AADL

Instance Tree

Ocarina

Transformation

Rules

Cheddar

ADL

Model

XML Tree

Figure 5: Process flow to transform an AADL model.

Therefore, the formal elements of AADL2Cheddar (Section 3.4)

are implemented via three main mechanisms: ASTs (implementing

the input and output models ma and mc), Ada functions (imple-

menting the transformation rules 𝑅1 to 𝑅9) and a set of visitors

(implementing reading the elements of ma and writing the rules

execution results to mc). To deal with rule dependencies, the pairs

(x, y) ∈ R of each rule 𝑅 on which at least another rule 𝑅′
depends

https://github.com/artxy/sac2021

are temporarily saved in a data structure which 𝑅′
can access. Such

structures are destroyed at the end of the transformation.

Now, in order to incorporate contracts, we extend their imple-

mentation, that is Ada functions, using Ada 2012 contracts: for each
Ada function implementing rule𝑅𝑖 , we add a precondition (resp. post-
condition) that maps 𝐴𝑖 (resp.𝐺𝑖), the assumption (resp. guarantee)

of contract 𝛾𝑖 incorporating 𝑅𝑖 (Section 4.2.1). This implementation

coincides with the semantics of our environment in Section 4.2.2

(see below).

We have thus a full equivalent implementation to our environ-

ment in Ocarina the elements of which are further detailed below.

Models = AST. In Figure 5, an instance of model (either an AADL

model in input or a Cheddar in output) is described with a tree

structure, namely the AST, that is a collection of nodes (each one is

identified by a node_id) that forms a tree structure via child-parent

links descending from the root node. A node in the tree denotes

an entity in the related model (e.g. a component, a connection, a

property, ...), thus representing the structure of anAADL or Cheddar

model, hierarchical in the case of AADL (Definition 3, Definition 5).

In Figure 5, the AST of the input AADL model is an Instance Tree

(on the top left), whereas the XML Tree (at the bottom right) is the

AST of the output Cheddar model.

Rules = functions. Transformation rules are mapped to functions
defined over AST nodes, thereby implementing the definition of

rules (Definition 6, Section 3.4). For instance, rule 𝑅3, that translates

every thread (in an AADL model) into a task (in a Cheddar model),

is implemented in a function called Map_Thread. A rule is “atomic”

in a function: the function takes a node_Id in the input AST and

returns the node_Id of the created node in the output AST. The

application of a rule over its whole domain is ensured by a visitor

(see below). For each rule 𝑅′
that depends on the result of executing

rule 𝑅, 𝑅′
reads, besides the node_Id in the AST, the temporary

data structure holding all pairs (x, y) ∈ R as explained above.

(Ada) contracts. The function declaration is extended with pre-

conditions and postconditions. According to the Ada 2012 Rationale

[2], “a precondition is an obligation on the caller to ensure that it

is true before the subprogram is called”, whereas “a postcondition

is an obligation on the implementer of the body to ensure that it is

true on return from the subprogram”. Thus, this implementation

complies with the semantics of our environment (Section 4.2.2).

Let us see how this is done for e.g. assumption 𝐴9 in contract

𝛾9, incorporating rule 𝑅9 (transform all properties in Prop to pa-

rameters in Param, Table 1). Similarly to 𝐴5 on bindings (see ex-

ample in Section 4.1), 𝐴9 stipulates that each property in Prop
must be defined over all its domain, that is 𝜙 (x) ↓ is satisfied

for each 𝑥 in 𝑋 for each property 𝜙 : 𝑋 ↛ 𝑌 in Prop. For e.g.
the compute_execution_time property, that is the literal of 𝐴9:

∀th ∈ TH : compute_execution_time(th) ↓, the precondition inAda
checks, for each thread node th, whether the function
Get_Execution_Time, giving the image of th via the property

compute_execution_time in an array, returns a valid value (i.e.
different from Empty_Time_Array, denoting that such property is

not defined for th):

(Get_Execution_Time(th) /= Empty_Time_Array)

Transformation flow = visitors. Finally, a main procedure ensures
the transformation flow by reading all the input AST nodes and in-

voking transformation rules sequentially as the visiting goes (which

results in nodes creation in the output AST). Contracts are validated

(or not) on the fly through preconditions and postconditions.

Verification = condition checks. If a precondition or postcondi-

tion fails, an execution error is raised as the flow is interrupted.

Locating the function at which the error occurred allows to find the

error source: a rule implementation or the input model. In the latter

case, we may further locate at which element of the input model

(threads, data, etc.) the transformation failed. This “error location”

mirrors the state reached last in the underlying TS (Section 4.2.2)

and enables thus an implementation-level verification of the reach-

ability property explained in Section 4.2.3 (an example is given in

Section 5.2). A transformation is then correct iff the flow terminates

without errors, thus generating a complete Cheddar model.

5.2 Case Study
Let us illustrate our approach on a real AADL model describing the

well-known Mars Pathfinder system
4
; with model transformation

fromAADL to Cheddar performed using our implementationwithin

Ocarina (Section 5.1). We shortly present the AADL model of the

system before we perform transformation verification.

5.2.1 Overview of the AADL model. The Mars Pathfinder system

consists of a stationary lander and a rover named Sojourner. All the

system elements are described with the usual AADL components

(see Section 2). In particular, the overall system mars_pathfinder
includes a main process (prs_PSC) describing the lander applica-
tion and a processor (rs_6000) specifying the RS 6000 processor.

The main (lander) process includes seven (periodic) threads, four of

which may access a critical resource, described by a data (data_rw),
in mutual exclusion (for read/write). The AADL model is completed

with the description of connections/bindings and properties.

5.2.2 Verification. We apply our environment, implemented in

Ocarina, to the AADL model of the case study as an input. We recall

that our environment includes the AADL2Cheddar transformation

extended with 9 contracts (Section 4) and implemented within

Ocarina using ASTs and Ada functions and contracts (Section 5.1).

We run our environment on an initial AADL model

mars_pathfinder.init. From the execution log (Figure 6), we

see that an error is raised during the transformation of the AADL

model: a precondition given at line 102 within the flow specifica-

tion (cheddar-mapping.ads) fails. This precondition is found in

the declaration of the function which implements rule 𝑅9 and the

error occurs at the line corresponding to the literal of 𝐴9 request-

ing concurrency_protocol to be defined for all data in the input

model, that is ∀d ∈ D : concurrency_protocol(d) ↓. Indeed, by in-

vestigating the AADL model, we find that such a property is not

specified for data_rw which is shared between four threads in the

main process prs_PSC of the system mars_pathfinder.init.
Once we locate the error source, we correct it by adding the miss-

ing property. Listing 2 shows an excerpt of the corrected AADL

model mars_pathfinder.correctwhich extends the initial model

mars_pathfinder.init and specifies a concurrency_protocol

4
From the Mars Pathfinder mission by the NASA, https://mars.nasa.gov/

mars-exploration/missions/pathfinder/(last accessed October 2020)

https://mars.nasa.gov/mars-exploration/missions/pathfinder/
https://mars.nasa.gov/mars-exploration/missions/pathfinder/

Figure 6: Transformation error raised by Ocarina.

property (value Priority_Ceiling) for prs_PSC.data_rw (data_rw
in process prs_PSC in mars_pathfinder.correct). Now, we may

re-apply our environment to the corrected AADL model. No error

is raised as the flow terminates and a full Cheddar model is created.

1 system implementation mar s_pa t h f i nd e r . c o r r e c t

2 ex t end s ma r s _pa th f i nd e r . impl

3 propert ies
4 c on cu r r en cy_p r o t o c o l => P r i o r i t y _ C e i l i n g appl ies to prs_PSC .

data_rw ;

5 end mar s_pa t h f i nd e r . c o r r e c t ;

Listing 2: Corrected AADL model through an extension of
the Mars Pathfinder system.

The error found in this example is at the input model level w.r.t

the transformation intent, i.e. since the transformation to Cheddar

is for real-time analysis purposes, the input model must define a

concurrency protocol over data. Verifying the transformation allows

to detect such anomaly at an early stage of the transformation and

thus prevents using analysis techniques on an unreliable output

model. In this case, if we run the transformation blindly (without

contracts), the Cheddar tool still runs analysis on the output model

on which no shared protocols are defined for resources and gives

thus non exploitable results w.r.t the input model: in a real-time

system with shared resources, the definition of a shared protocol

is necessary in order to ensure that the system does not exhibit

undesirable phenomena such as priority inversion [6].

6 GENERALIZABILITY
In this section, we explain how our approach can be generalized to

other transformations and customized according to the engineer

needs w.r.t to both prop1 and prop2 of correctness (Section 1).

Other input/output models. Reusing our approach for other in-

put/output models requires formalizing such models like we did for

AADL and Cheddar (Section 3). Though it might seem disabling,

such formalization is rather achievable with a reasonable cost. In-

deed, first, as we have seen in Section 3, our formalization is done

at some abstraction level that is the highest necessary for the trans-

formation: e.g. we did not need to formalize AADL memories since

they play no role in AADL2Cheddar. Second, the cost of formaliza-

tion may be further reduced on a property-driven basis: e.g. we did

not need to formalize the internal behavior of AADL threads be-

cause the “equivalence” between AADL and Cheddar models here

(prop2 of correctness) relates to entities (AADL threads, Cheddar

tasks, etc.), their relations (AADL bindings, Cheddar links, etc.) and

properties/parameters rather than low-level behavioral models.

Other transformations. Though presented for AADL2Cheddar,
our formal environment is rather generic. For instance, if the num-

ber of any transformation rules is parametrized with the natural 𝑛,

it is sufficient to replace the upper bound of i ∈ 1 . . . 9 (and conse-

quently the indices of 𝑣9, 𝑒9, 𝛾9 and 𝑅9) with 𝑛 to make the trans-

formation and environment syntax and semantics (Section 3.4.2,

Section 4.2.1, Section 4.2.2) fully generic. Therefore, besides defining

their input model, output model, transformation rules and contracts

according to their needs, engineers may reuse our formal environ-

ment without any further effort.

Other “levels” of prop2. Engineers may need to verify prop2 of
correctness at different “levels”, e.g. one may content, in some con-

text, with only syntactic correctness, whereas semantic correctness

is necessary in a different context. This may be achievable following

our approach without any change made to the underlying defini-

tions of rules, contracts, and the formal environment. Indeed, since

contracts guarantees can be any logical formulae (including quanti-

fiers), they may be written to express most syntactic and semantic

checks (and anything in between). For instance, our guarantee 𝛾5
(Section 4.1) may be viewed as something between syntactic and

semantic equivalence, which may be replaced with a weaker or a

stronger variant according to the level of prop2 to achieve. This

“flexibility” strengthens the rationale of using contracts, especially

that in the case where only simple guarantees are needed, the cost of

formalizing the input and output model may be drastically reduced

(since such cost depends on the properties to verify, see §"Other
input/output models" above). Yet, using our approach for heavy

semantical checks (e.g. bisimulation) will need further reflection

(Section 8).

Discarding prop1/prop2. Finally, if the engineer needs to verify

only prop1 or prop2, they may do so easily by simply encoding

their assumptions (resp. guarantees) as tautologies. This aspect,

stemming from the flexibility aspect described in the previous para-

graph, gives the practitioner a full control over which aspect of

correctness they are interested in.

7 RELATEDWORK
There is a large corpus of works on model transformation veri-

fication (see e.g. reviews in [7, 25]). In this section, we focus on

contract-based works. Contracts, having their roots in the Floyd-

Hoare logic [12, 18], have been proposed to support the design and

analysis of software in various domains [10, 22, 27, 28]. Due to their

assumption/guarantee structure, contracts have naturally been in-

tegrated within transformation frameworks. In particular, Cariou

et al. [8, 9] studied model transformation contracts written in OCL,

where transformation operations are associated with contracts. Part

of these contracts can be implemented as OCL invariants and then

checked using a standard OCL evaluator. The other part requires

to use a set of OCL utility functions. Thus, the approach enables to

ensure that a model transformation conforms to a set of contracts

with no need to execute the transformation. In a quite different

scope, Guerra et al. [17] proposed a language called PaMoMo to

specify visual transformation contracts and a process to compile

and verify them. At first, contracts enable to specify requirements

on a model transformation through preconditions, postconditions

and invariants. Then, the model transformation is compiled with

its contract(s) into the QVT-R executable language for checking

whether it fulfills the requirements or not (providing the user with

information on which part of contract failed and where). In general,

besides applicability limitations (e.g. contracts in [8, 9] are only

applicable to endogenous model transformation, i.e. models with

the same input and output metamodels), contract-based verifica-

tion efforts presented above lack formal environments that define

correctness properties and explain how they are verified.

The closest approach to ours is DSLTrans [3, 29], a transforma-

tion language featuring a formal contract-based prover. The spirit

of DSLTrans is similar to that of our approach as contracts are

verified in a formal way. However, whereas our approach relies

on verifying the correctness of a transformation at runtime given

an input model instance, DSLTrans is more generic as it targets

proving correctness of a given transformation for any input model.

Yet, since in DSLTrans the existence of a transformation (on which

the prover runs) is assumed, such transformation (i) is not executed,

which makes it impossible to verify prop1 and (ii) must be encoded

beforehand into DSLTrans (e.g. GM-2-AUTOSAR in [29]), which

raises concerns on the correctness of such encoding.

8 CONCLUSION AND PERSPECTIVES
Reasoning on model transformations correctness in MDE is a chal-

lenging task. Formal methods may be employed to rigorously verify

such correctness, but are out of software engineers expertise. In

this paper, we proposed a formal, engineer-friendly and flexible ap-

proach to verify both prop1 and prop2 (Section 1) of transformation

correctness. Flexibility refers to the possibility to tailor such verifi-

cation to the engineer needs by e.g. increasing the level of prop2 or
discarding prop1. The “formal” aspect enables rigorous verification

of correctness on a formal model. Finally, engineer friendliness is

achieved through contracts, supported with a well-known program-

ming language. Our approach is applied to the AADL to Cheddar

model transformation and validated on a real case study.

We give two examples of future work directions. First, we will

investigate extending our approach to other model-based frame-

works, other application domains and other levels of correctness

(Section 6). We believe that our approach may be suitable for e.g.

component-based robotic frameworks (e.g. MAUVE [16]), where

systematic mapping to verification frameworks through model

transformation is of high importance. A major challenge will be to

account for heavy yet necessary semantical guarantees knowing

that the underlying robotic models feature rich behavioral models,

hard real-time constraints and complex interaction mechanisms.

Second, locating the source of errors (in case an assumption or a

guarantee fails) based on errors raised by Ada may be inconvenient

for large applications or transformations with a significant num-

ber of contracts. In future work, we will investigate implementing

our framework in BIP [4]. Being both based on transition systems

and able to embed blackbox functions, the BIP model will allow to

find at which “state” the transformation failed without the need to

worry about the Ada code or read the runtime errors.

REFERENCES
[1] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Mod-

eling Robotics Software Architectures with Modular Model Transformations.

Journal of Software Engineering for Robotics, 8(1):3–16, 2017.
[2] John Barnes. Rationale for Ada 2012: 1 Contracts and Aspects. Ada User Journal,

32(4):247, 2011.

[3] Bruno Barroca, Levi Lúcio, Vasco Amaral, Roberto Félix, and Vasco Sousa.

DSLTrans: A Turing Incomplete Transformation Language. In International
Conference on Software Language Engineering, pages 296–305. Springer, 2010.

[4] Ananda Basu, Bensalem Bensalem, Marius Bozga, Jacques Combaz, Mohamad

Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous Component-Based

System Design Using the BIP Framework. IEEE software, 28(3):41–48, 2011.
[5] Bernard Berthomieu, Pierre-Olivier Ribet, and François Vernadat. The Tool

TINA: Construction of Abstract State Spaces for Petri Nets and Time Petri Nets.

International Journal of Production Research, 42(14):2741–2756, 2004.
[6] Björn B Brandenburg. Scheduling and Locking in Multiprocessor Real-Time

Operating Systems. PhD Thesis, University of North Carolina at Chapel Hill, 2011.
[7] Daniel Calegari and Nora Szasz. Verification of Model Transformations: A Survey

of the State-of-the-Art. Electronic Notes in Theoretical Computer Science, 292:5–25,
2013.

[8] Eric Cariou, Nicolas Belloir, Franck Barbier, and Nidal Djemam. OCL Contracts

for the Verification of Model Transformations. Electronic Communications of the
EASST, 24, 2009.

[9] Eric Cariou, Raphël Marvie, Lionel Seinturier, and Laurence Duchien. Model

Transformation Contracts and their Definition in UML and OCL. Technical

Report 2004-08, LIFL, 2004.

[10] Patricia Derler, Edward A. Lee, Stavros Tripakis, and Martin Törngren. Cyber-

Physical System Design Contracts. In International Conference on Cyber-Physical
Systems, pages 109–118. ACM/IEEE, 2013.

[11] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley,

2012.

[12] Robert W. Floyd. Assigning Meanings to Programs. Mathematical Aspects of
Computer Science, 19(19-32):1, 1967.

[13] Mohammed Foughali. Formal Verification of the Functional Layer of Robotic and

Autonomous Systems. PhD Thesis, INSA Toulouse, 2018.
[14] Mohammed Foughali, Silvano Dal Zilio, and Félix Ingrand. On the Semantics of

the GenoM3 Framework. Technical Report 19036, LAAS-CNRS, 2019.

[15] Mohammed Foughali, Félix Ingrand, and Cristina Cerschi Seceleanu. Statistical

Model Checking of Complex Robotic Systems. In International Symposium on
Model Checking of Software, pages 114–134, 2019.

[16] Nicolas Gobillot, Charles Lesire, and David Doose. A Design and Analysis

Methodology for Component-Based Real-Time Architectures of Autonomous

Systems. Journal of Intelligent & Robotic Systems, 96:123–138, 2019.
[17] Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika Kusel,

Werner Retschitzegger, Johannes Schönböck, andWieland Schwinger. Automated

Verification of Model Transformations Based on Visual Contracts. Automated
Software Engineering, 20(1):5–46, 2013.

[18] Charles A. R. Hoare. An Axiomatic Basis for Computer Programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

[19] Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérôme Hugues. Ocarina : An

Environment for AADL Models Analysis and Automatic Code Generation for

High Integrity Applications. In International Conference on Reliable Software
Technologies (Ada-Europe), pages 237–250. Springer, 2009.

[20] Levi Lúcio, Moussa Amrani, Jürgen Dingel, Leen Lambers, Rick Salay, Gehan MK

Selim, Eugene Syriani, and Manuel Wimmer. Model Transformation Intents and

Their Properties. Software & systems modeling, 15(3):647–684, 2016.
[21] TomMens and Pieter Van Gorp. A Taxonomy ofModel Transformation. Electronic

Notes in Theoretical Computer Science, 152:125–142, 2006.
[22] Bertrand Meyer. Applying “Design by Contract". IEEE Computer, 25(10):40–51,

1992.

[23] Anantha Narayanan and Gabor Karsai. Specifying the Correctness Properties of

Model Transformations. In International Workshop on Graph and Model Transfor-
mations, pages 45–52, 2008.

[24] Anantha Narayanan and Gabor Karsai. Verifying Model Transformations by

Structural Correspondence. Electronic Communications of the EASST, 10, 2008.
[25] Lukman Ab Rahim and Jon Whittle. A Survey of Approaches for Verifying Model

Transformations. Software & Systems Modeling, 14(2):1003–1028, 2015.
[26] Christophe Reymann, Mohammed Foughali, and Simon Lacroix. Repeatable De-

centralized Simulations for Cyber-Physical Systems. In International Conference
on Software Quality, Reliability and Security (QRS), pages 240–247. IEEE, 2019.

[27] Ivan Ruchkin, Dionisio De Niz, Sagar Chaki, and David Garlan. Contract-Based

Integration of Cyber-Physical Analyses. In International Conference on Embedded
Software (EMSOFT), page 23. ACM, 2014.

[28] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. Taming

Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. European
Journal of Control, 18(3):217–238, 2012.

[29] Gehan MK Selim, Levi Lúcio, James R Cordy, Juergen Dingel, and Bentley J Oakes.

Specification and Verification of Graph-Based Model Transformation Properties.

In International Conference on Graph Transformation, pages 113–129, 2014.
[30] Shane Sendall and Wojtek Kozaczynski. Model Transformation: the Heart and

Soul of Model-Driven Software Development. IEEE Software, 20(5):42–45, 2003.
[31] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. Cheddar: a

Flexible Real Time Scheduling Framework. In SIGAda International Conference
(SIGAda), pages 1–8, 2004.

