Keywords: Anesthesia, hypnosis, noise, saturation, observer, control

This paper deals with the maintenance phase control of general anesthesia during surgery, involving saturated input and noisy output. The objective is to maintain the patient to some given depth of hypnosis, measured by the BIS. The control law is an observer-based control, where a dead-zone observer is built in order to mitigate the presence of the output noise. The global exponential stability of the complete closed-loop system in the noise-free case is guaranteed thanks to a linear matrix inequality condition and an input-to-state property in presence of the noise is also proven. A three-steps optimization algorithm is proposed to determine the parameters of the control law and then evaluated on a patient case.
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INTRODUCTION

Although an old problem (Soltero et al. (1951)), automatic control of anesthesia remains an active research field. Many control approaches have been proposed in the literature but, yet, most of the time, a human-based control is applied during surgery in hospital. Even so, several control approaches have been evaluated in real life [START_REF] Lemos | Robust control of maintenance-phase anesthesia[END_REF] and reference herein). From a control point-of-view, many directions of research may (and have been) investigated, related to patient uncertainty, nonlinear relationship between internal state and output indicators, drug interactions, among others. Both PID-based feedback and more advanced control techniques have been suggested in that framework [START_REF] Ionescu | Robust predictive control strategy applied for propofol dosing using BIS as a controlled variable during anesthesia[END_REF], [START_REF] Nascu | Advanced model based control studies for the induction and maintenance of intravenous anaesthesia[END_REF], [START_REF] Nogueira | Nonlinear controller for bispectral index tracking: Robustness and on-lineretuning[END_REF], [START_REF] Queinnec | Switched control strategy including time optimal control and robust dynamic output feedback for anaesthesia[END_REF]). Difference of dynamics between the fast dynamics of metabolism and circulation of propofol in the central compartment (blood) and at the site effect and the slow dynamics in muscle and fat parts of the body have also been taken into account [START_REF] Queinnec | Switched control strategy including time optimal control and robust dynamic output feedback for anaesthesia[END_REF]). Moreover, as underlined by Bailey and [START_REF] Bailey | Drug dosing control in clinical pharmacology[END_REF], an important issue for research is measurement noise, EEG signals being corrupted by as much as 10% of noise. Experimental data exhibiting noisy effect on BIS (bispectral index) evolution are, for example, given in [START_REF] Beck | Modeling and control of pharmacodynamics[END_REF].

This paper intends to contribute in that direction, with a particular consideration of noise phenomena in the measurement information. The key idea of the paper is to manipulate an adaptive dead-zone mechanism to induce a high-frequency noise rejection in the observation step. Hence, exploiting recent results about this kind
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of observers [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF]), an observer and associated feedback are first built for the fast subsystem, the output (represented by the BIS) being affected by noise. In a second step, considering that the observer and control gains are given, (1) the global exponential stability of the complete closed-loop system (fast and slow) in the noise-free case is guaranteed; and (2) an input-to-state (ISS) property from the noise to the state of the closedloop system is ensured. The parameters of the dead-zone adaptation are selected solving a suitable Linear Matrix Inequality (LMI), and therefore do not request any manual tuning. The effectiveness of the proposed observer is shown by means of numerical simulations in a patient-type case on the nonlinear model of the BIS.

Notation. The notation throughout the paper is standard. For a vector x or a matrix A, x and A denote the transpose of x and A, respectively. For two symmetric matrices of the same dimensions, A and B, A > B means that A -B is symmetric positive definite. For a matrix A, He(A) = A + A, λ max (A) (resp. λ min (A)) denotes the maximal eigenvalue (resp. the minimal one) of matrix A. I and 0 stand respectively for the identity and the null matrix of appropriate dimensions. For a partitioned matrix, the symbol stands for symmetric blocks.

PROBLEM STATEMENT

Patient model

From a control engineering point of view, compartmental mammillary models are interesting and sufficiently representative models for drug dynamics in the patient body [START_REF] Lemos | Robust control of maintenance-phase anesthesia[END_REF]). A three-compartment model, known as the Pharmacokinetic (PK) model, is used to describe the circulation of drugs in a patient's body [START_REF] Derendorf | Modeling of pharmacokinetic / pharmacodynamic (pk/pd) relationships: Concepts and perspectives[END_REF]). This model is then completed by a first-order dynamics (that relies the concentration of drug in the central compartment to its action at the brain level, denoted the effect site) [START_REF] Beck | Modeling and control of pharmacodynamics[END_REF]). That leads to a four-state system described as follows 1 : ẋan = Ax an + Bu an (1) with

A =    -(k 10 + k 12 + k 13 ) k 21 k 31 0 k 12 -k 21 0 0 k 13 0 -k 31 0 k e0 /v 1 0 0 -k e0    , B =    1 0 0 0   
(2) where x an = [ x an1 x an2 x an3 x an4 ] , x an1 , x an2 , x an3 are the masses in milligrams of the propofol in the different compartments, x an4 is the effect site concentration in mg/l and u an is the infusion rate in mg/min of the anesthetic. The parameters k ij ≥ 0, ∀i = j, i, j = 1, 2, 3, are the transfer rates of the drug between compartments. The parameters k 10 and v 1 represent the rate of elimination from the central compartment and the volume of the central compartment (blood), respectively. Moreover, the fact to take into account the inter-patient variability (i.e., the variability observed between different individuals) and intra-patient variability (i.e., the variability observed within one particular individual) needs to consider that the parameters k ij are uncertain [START_REF] Coppens | An evaluation of using population pharmacokinetic models to estimate pharmacodynamic parameters for propofol and bispectral index in children[END_REF]). In the literature, several models have been described to express inter-patient variability, generally distinguishing patients according to their sex, age, weight and/or size. We use the Schnider model [START_REF] Schnider | The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers[END_REF]) to define a simulated patient used in the numerical evaluations.

Output indicator

The depth of anesthesia indicator communally used by clinicians is the BIS (the bispectral index), allowing to quantify the level of consciousness of a patient from 0 (no cerebral activity) to typically 100 (fully awake patient). The BIS evolution is directly related to the effect site concentration x an4 , and can be described empirically by a decreasing sigmoid function [START_REF] Bailey | Drug dosing control in clinical pharmacology[END_REF]):

y BIS (x an4 ) = y BIS0 (1 - x γ an4 x γ an4 + EC γ 50 ) (3)
y BIS0 is the BIS value of an awake patient typically set to 100. EC 50 corresponds to drug concentration associated with 50% of the maximum effect and γ is a parameter modeling the degree of nonlinearity.

Error model with noise

During a surgery, the objective is to maintain the BIS around the value y BISe = 50, or at least in an interval between 40 and 60. From (3), this value corresponds to the effect site concentration equal to EC 50 . The equilibrium point of the system is then defined (see [START_REF] Zabi | New approach for the control of anesthesia based on dynamics decoupling[END_REF]):

x e1 = x 4e v 1 , x e2 = k 12 k 21 x e1 , x e3 = k 13 k 31 x e1 , x e4 = EC 50
and the associated input and output are given by u e = k 10 x e1 , y BISe = y BIS0 2

1 The time dependence is omitted to simplify the notation.

As in [START_REF] Queinnec | Switched control strategy including time optimal control and robust dynamic output feedback for anaesthesia[END_REF] and [START_REF] Haddad | Adaptive control for non-negative and compartmental dynamical systems with applications to general anesthesia[END_REF], we use the linearized function of y BIS around the equilibrium target value y BISe = 50:

y = Cx an + k bis0 (4) with C = [0 0 0 -k bis ] and k bis = γy BIS0 4EC50 , k bis0 = (2+γ)y BIS0 4
.

Le us consider the change of variables x = x an -x e , u = u an -u e and y = y BIS -y BISe with x e = [ x e1 x e2 x e3 x e4 ] and y BISe = y BIS0 /2. Consider also that the magnitude of the control input u an is constrained between 0 and u max , then, u is constrained as follows:

-u e ≤ u ≤ u max -u e (5) where u max -u e is the maximum flow rate of the drug that can be administered in practice.

Moreover, in the paper we want to take into account that the measurement is subject to noise, defined as the additional signal ν, which allows to express the variability of the BIS signal. Then, the system under consideration written as the error model is described by: ẋ

= Ax + Bsat u (y c ) y = C x + ν (6)
where y c ∈ R is the output of the controller and the saturation sat u (y c ) is defined as

sat u (y c ) = -u e if y c < -u e y c if -u e ≤ y c ≤ u max -u e u max -u e if y c > u max -u e (7)

Control problem formulation

As previously discussed in [START_REF] Queinnec | Switched control strategy including time optimal control and robust dynamic output feedback for anaesthesia[END_REF], system (6) may be revwritten as follows:

ẋf = A f x f + A f s x s + B f sat u (y c ) (8a) ẋs = A sf x f + A s x s (8b) y = C f x f + ν (8c)
with a fast dynamics state

x f = [ x1 x4 ] ∈ R n f and a slow dynamics state x s = [ x2 x3 ] ∈ R ns ,
and with matrices A f , A s , A f s , A sf , B f and C f issued from the original matrices A, B and C defined in (2) and (4). Note also that the action u directly acts on the output y through the fast subsystem, which means that the control problem focuses on the fast subsystem disturbed by the slow one.

The key idea of the control problem is to design an observer-based state-feedback controller, taking advantage of a particular kind of observer, namely a dead-zone observer such as proposed in [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF], which allows to deal with the high-frequency noise affecting the system output. Both the observer and the state-feedback controller are designed for the fast subsystem.

Then, in a first step we consider that the slow subsystem can be neglected and the dead-zone observer is build for the fast subsystem as defined by: ẋf

= A f xf + B f sat u (y c ) + Ldz √ σ (ŷ -y) ŷ = C f xf (9)
where xf ∈ R n f is the estimated state, ŷ ∈ R p is the estimated output and σ ∈ R p is a vector whose entries are non-negative and define the magnitude of the dead-zone on the corresponding output channel. L ∈ R n f ×p is the classical observer gain. The function dz √ σ is a decentralized vector-valued dead-zone from R p to R p , where

√ σ ∈ R p ≥0
is a component-wise square root. Moreover, σ is a timevarying vector following the adaptation law:

σ = -Λσ +    (ŷ -y) R 1 (ŷ -y) . . . (ŷ -y) R p (ŷ -y)    , σ ∈ R p ≥0 ( 10 
)
where Λ ∈ R p×p is a diagonal positive definite matrix, and R 1 , . . . , R p ∈ R p×p are symmetric positive semi-definite matrices. The dynamics (10) ensures the invariance of the orthant R p ≥0 and then the non-negativity of σ. Therefore √ σ is well defined.

In a second step, we want to compute a state-feedback control y c = K xf , with K ∈ R m×n f , such that the fast subsystem is asymptotically stable. Therefore the observer under consideration is described by ẋf

= A f xf + B f sat u (K xf ) + Ldz √ σ (ŷ -y) ŷ = C f xf (11)
with the σ-dynamics defined in (10).

The closed-loop system issued from (8a), ( 8b), ( 8c), ( 11) can be written:

ẋf = A f x f + A f s x s + B f sat u (K xf ) ẋs = A sf x f + A s x s ẋf = A f xf + B f sat u (K xf ) +Ldz √ σ (C f xf -C f x f -ν) (12) 
with (10).

By defining φ u (Kx f ) = sat u (K xf ) -K xf and considering the link between the vector-valued saturation and deadzone functions, sat √ σ (w) = w -dz √ σ (w), the closed-loop system can be written as:

ẋ = A 0 x + B 1 φ u (K 1 x) + B 2 sat √ σ (K 2 x -ν) + B 2 ν σ = -Λσ +    (K 2 x -ν) R 1 (K 2 x -ν) . . . (K 2 x -ν) R p (K 2 x -ν)    (13) with x = x f x s x f ∈ R n , n = 2n f + n s , and 
A 0 = A f A f s B f K A sf A s 0 -LC f 0 A f + B f K + LC f ; B 1 = B f 0 B f B 2 = 0 0 -L ; K 1 = [ 0 0 K ] ; K 2 = [ -C f 0 C f ] (14)
Remark 1. The objective of the adaptation mechanism (10) is to manage two antagonistic effects: the adaptation speed and the filtering action tuned by Λ and R 1 , . . . , R p , respectively. Moreover, selecting Λ large enough, and R 1 , . . . , R p sufficiently small a classical Luenberger observer could be recovered. By the same way, the matrix K has to be selected such that

A f + B f K is Hurwitz but slower than A f + LC f .
The control problem we intend to solve can then be summarized as follows:

Problem 1. Find the control and observer gains K and L, the adaptation matrices Λ and R 1 , . . . , R p such that:

(1) For ν = 0, the closed-loop system is globally exponentially stable for any initial condition belonging to R n ; (2) For ν = 0, an Input to State (ISS) property from ν to (x, √ σ) is ensured.

Note that the global stability of the closed-loop system can be investigated because the open-loop matrix A and the closed-loop one A 0 are Hurwitz.

THEORETICAL CONDITIONS

In order to address Problem 1 we consider three steps:

(1) The observer gain L is designed by using Theorem 1 in [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF], recalled below;

(2) The state feedback gain is designed such that A f + B f K is Hurwitz;

(3) The complete closed-loop system (13) is analysed.

Observer gain design

Let us first provide the following results directly derived from [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF], consisting in designing the observer gain L for the observer ( 11)-(10). To this aim let us first write the dynamics of the estimation error

e f = xf -x f :          ėf = (A f + LC f )e f -Lν -Lsat √ σ (C f e f -ν) σ = -Λσ +    (C f e f -ν) R 1 (C f e f -ν) . . . (C f e f -ν) R p (C f e f -ν)    (15) 
Theorem 1. If there exist a symmetric positive definite matrix

P f ∈ R n f ×n f , a matrix X ∈ R n f ×p , a symmetric semi-definite positive R ∈ R p×p , two diagonal positive definite matrices U ∈ R p×p , Λ ∈ R p×p such that He P f A f + XC f + C f RC f -X U C f -U -Λ < 0 (16) with R := p j=1
R j , then the gain L as

L = P -1 f X (17) 
makes (15) globally exponentially stable to the origin for ν = 0 and ISS from ν to (e f , √ σ). Remark 2. Additional pole-placement constraints may be considered to impose some performance on the observer behavior. Typically, a pole-placement in a band {-α L2 , -α L1 } may be added, and/or a pole-placement in a disk centered in -α L3 and of radius α L4 , as additional LMI conditions [START_REF] Furuta | Pole assignment in a specified disk[END_REF]).

Control gain design

A state feedback gain K is designed such that both A f + B f K and A 0 are Hurwitz, the condition on A 0 ensuring the asymptotic stability of the closed-loop system when saturation and noise do not occur. Hence, given the gain L, if there exist symmetric positive definite matrices

W f ∈ R n f ×n f , W f s ∈ R (n f +ns)×(n f +ns) , and a matrix Y ∈ R m×n f such that W f A f + A f W f + B f Y + Y B f ≤ 0 (18) W f s 0 0 W f A 1 + A 1 W f s 0 0 W f + B 1 [0 Y ] + 0 Y B 1 ≤ 0 (19) are satisfied, with A 1 = A f A f s 0 A sf A s 0 -LC f 0 A f + LC f , then the gain K = Y W -1 f ( 20 
)
makes A f + B f K and A 0 Hurwitz. Of course, as suggested in Remark 2, one should add pole-placement constraints on the dynamics of the fast closed-loop system, typically such that the poles of

A f + B f K are slower than those of A f + LC f , namely are slower than α L = | max (Re(A f +LC f ))|,
but faster than those of the open-loop A f , considering a band {-α K2 , -α K1 } and/or a pole-placement in a disk centered in -α K3 and of radius α K4 . These constraints are expressed as additional LMIs in the same decision variables.

Main conditions

With the gains L and K in hand we can provide the following result with respect to the complete closed-loop system (13) to solve Problem 1. Theorem 2. Given the gains L and K defined as in ( 17) and ( 20), respectively. If there exist a symmetric positive definite matrix P ∈ R n×n , a symmetric semi-definite positive matrix R ∈ R p×p , three diagonal positive definite matrices

S ∈ R m×m , U ∈ R p×p , Λ ∈ R p×p such that   A 0 P + P A 0 + 2K 2 RK 2 P B 2 + K 2 U P B 1 -K 1 S -2U -2Λ 0 -2S   < 0 (21) then with R = p j=1 R j ,
(1) for ν = 0 the closed-loop system ( 13) is globally exponentially stable, for any intial condition in R n ; (2) for ν = 0, the closed-loop system ( 13) is ISS from ν to (x, √ σ).

Proof: The strict negativity of the matrix in the lefthand side of relation ( 21) (by using the schur complement) implies that there exists a sufficient small positive scalar c 0 such that M ≤ -2c 0 I with

M = He(P A 0 + K 2 RK 2 ) P B 2 + K 2 U P B 1 -K 1 S -2(1 -c 0 )Λ -2U 0 -2S .
Consider the candidate Lyapunov function V (x, σ) = x P x + 21 σ, with P = P > 0 and 1 is the vector defined by 1 = [1 1 . . . 1] ∈ R p and recalling that σ ∈ R p ≥0 . The function V (x, σ) is positive definite and radially unbounded on R n ×R p ≥0 and satisfies the following bounds,

α 1 (x, √ σ) 2 ≤ V (x, σ) ≤ α 2 (x, √ σ) 2
, where α 1 := min{λ min (P ), 2}, and α 2 := max{λ max (P ), 2}.

The time-derivative of the function along the trajectories of the closed-loop system (13) reads:

V (x, σ) = 2x P ẋ + 21 σ = x (A 0 P + P A 0 )x + 2x P B 1 φ u (K 1 x) + 2x P B 2 sat √ σ (K 2 x -ν) + 2x P B 2 ν -21 Λσ + 2(K 2 x - ν) p j=1 R j (K 2 x -ν).
We use several properties for the nonlinearities φ u and sat √ σ . In particular we use Lemma 1.6 and Lemma 1.4 in [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] with respect to φ u and sat √ σ , respectively, which lead to the following conditions:

• φ u S(φ u + Gx) ≤ 0 for any x ∈ R n and any positive diagonal matrix S ∈ R m×m . Since in the current case, we are studying the global stability, we choose

G = K 1 ; • sat √ σ (K 2 x -ν) U (K 2 x -ν -sat √ σ (K 2 x -ν)) ≥ 0, for any positive diagonal matrix U ∈ R p×p ; • 1 Λσ -sat √ σ (K 2 x -ν) Λsat √ σ (K 2 x -ν) ≥ 0 Then, recalling matrix M previously defined, one gets V (x, σ) ≤ V (x, σ) -2φ u S(φ u + K 1 x) + 2sat √ σ (K 2 x - ν) U (K 2 x -ν -sat √ σ (K 2 x -ν)) ≤ V, with V =   x sat √ σ (K 2 x -ν) φ u (K 1 x)   M   x sat √ σ (K 2 x -ν) φ u (K 1 x)   -2c 0 1 Λσ + 2x P B 2 ν -4x K 2 Rν + 2ν Rν -2sat √ σ (K 2 x -ν) U ν =   x sat √ σ (K 2 x -ν) φ u (K 1 x)   M   x sat √ σ (K 2 x -ν) φ u (K 1 x)   +2   x sat √ σ (K 2 x -ν) φ u (K 1 x)     P B 2 -2K 2 R -U 0   ν -2c 0 1 Λσ + 2ν Rν
To prove the GES when ν = 0, it suffices to put ν = 0 in the expression of V. Then, the GES is obtained if V (x, σ) ≤ V < 0, which leads to

V (x, σ) ≤ -2c 0   x sat √ σ (K 2 x -ν) φ u (K 1 x)   2 -2c 0 Λσ ≤ -2c 0 ( x 2 + sat √ σ (K 2 x -ν) 2 ) -2c 0 λ min (Λ)σ ≤ -2c 0 ( x 2 +σ) -2c 0 λ min (Λ)σ ≤ -2ρ (x, √ σ) 2 ≤ -2 ρ α2 V (x, σ)
, with ρ a positive scalar. Therefore if relation ( 21) holds then the first item of Theorem 2 is satisfied.

To prove the ISS property, we use the expression of V when ν = 0. It follows:

V

(x, σ) ≤ V ≤ -2ρ (x, √ σ) 2 +2 R ν 2 + P B 2 -2K 2 R -U x sat √ σ (K 2 x -ν) ν ≤ -2ρ (x, √ σ) 2 +2 R ν 2 +2ρ 1 (x, √ σ) ν ≤ -2ρ (x, √ σ) 2 +2 R ν 2 +ρ 1 (x, √ σ) 2 + ρ 1 ν 2
where we use the Young inequality to upper-bound the crossed terms in ν and (x, √ σ). By choosing = ρ ρ1 one gets:

V (x, σ) ≤ V ≤ -ρ (x, √ σ) 2 +(2 R + ρ 2 1 ρ ) ν 2 < 0 provided that (x, √ σ) 2 ≥ ρ -1 (2 R + ρ 2 1 ρ ) ν 2 . Therefore the closed-loop system if ISS from ν to (x, √ σ) with the gain ρ -1 (2 R + ρ 2 1 ρ ).
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Remark 3. If the condition ( 21) is not feasible, the local case could be studied by deriving conditions inspired from [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], and therefore by using Lemma 1.6 as mentioned in the proof but with G = K 1 being a new decision variable, and considering symmetric bounds on u in (7). In this case, a set S 0 in which the local exponential stability is ensured has to be characterized. Moreover, the local context should be addressed in the case where we would like to take into account the inter-patient variability (a wide range of adult patients uncertainty), that is the presence of uncertainty in the system and the analysis of the robustness of the closed loop. 

         conditions (18), (19) pole-placement : α K1 = 1 2 α L , α K4 = 1 α K3 = 1.1 1 2 α L -α K4 Keep K = Y W -1 f . •
Step 3. Analysis of the closed-loop system (13). An observer-based control has been proposed, where a dead-zone observer is built in order to reduce the effect of the output noise. The dead-zone observer and the feedback gain are designed for the fast subsystem. Then, the global exponential stability of the complete closedloop system in the noise-free case is guaranteed thanks to a linear matrix inequality condition and an input-tostate property in presence of the noise is also proven. A three-steps optimization algorithm is proposed to select the parameters of the control law without any manual tuning, and then evaluated on a patient case.

These preliminary results pave the way for future work.

In particular, the reference tracking problem should be considered by adding an integrator in the control loop. Furthermore, in order to be closer to real-life anesthesia, sampled output or even event-triggered output controller could be investigated and delays should be considered in the control problem. Patient variability should also be considered as part of the control problem.

  4. NUMERICAL ILLUSTRATIONLet us consider a patient whose characteristics are: male, 53 years, 177 cm and 77 kg. The associated pharmacokinetic parameters are computed with the Schnider model[START_REF] Schnider | The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers[END_REF]), allowing to define: associated to BIS = 50 given by:x e1 = 14.51mg, x e2 = 64.26mg, x e3 = 809.2mg, x e4 = 3.4mg/l, u e = 6.08mg/min The parameters used in the output equation (3) are EC 50 = 3.4mg/l and γ = 3 (Bailey and Haddad (2005)), allowing to determine those of the linearized output equation (4): k bis = 22.06 and k bis0 = 125. To solve Problem 1, one considers the following algorithm, with pole-placement constraints as discussed in Remark 2 and in Section 3.2: • Step 1. Design of the observer Find P f , X, Λ, R and U solution to the feasibility problem issued from Theorem 1 given by:    condition (16) Λ ≤ 100, R ≤ Λ pole-placement: α L1 = 6, α L3 = 6, α L4 = 4 Keep the observer gain L = P -1 f X, and compute α L . • Step 2. Design of the controller gain K Find W f , W f s , Y solution to the feasibility problem:

  Find P , S, U , R and Λ solution to the optimization problem: max trace(R) under conditions (21) and Λ ≤ 100 • Step 4. The observer and controller gain are L and K solution to Step 1 and Step 2, respectively. Matrices of the adaptation law Λ and R are solution to Step 3. Note that as in Cocetti et al. (2019), we impose a bound on Λ (namely 100) to reduce the time scale among the observer dynamics and the adaptation dynamics. Applying the algorithm on the patient model data above given, one obtains the following solution: system, we consider an open-loop induction phase such as described in Queinnec et al. (2019) before to close the loop. It means that one injects 100 mg/min of propofol during 30 seconds followed by 1 minute at rest (u an = 0). Then at time t = 1.5 minutes, σ and xf are initialized to 0 2 and the loop is closed (vertical dashed line in the figure). Excepted for the initial induction bolus, a bound on the flow rate of propofol (between 0 and 20 mg/min) is considered. The time evolution of the noisy BIS output and control input u an are shown in Figures 1 and 2, respectively. The evolution of the deadzone bound √ σ is plotted in Figure 3.

Fig. 1 .

 1 Fig. 1. Time evolution of the BIS for the system involving the dead-zone observer

Fig. 4 .

 4 Fig. 4. Time evolution of u an for the system involving a Luenberger observer without dead-zone attenuation 5. CONCLUSION Control of general anesthesia has been addressed in this paper, considering both input saturation and output noise.An observer-based control has been proposed, where a dead-zone observer is built in order to reduce the effect of the output noise. The dead-zone observer and the feedback gain are designed for the fast subsystem. Then, the global exponential stability of the complete closedloop system in the noise-free case is guaranteed thanks to a linear matrix inequality condition and an input-tostate property in presence of the noise is also proven. A three-steps optimization algorithm is proposed to select the parameters of the control law without any manual tuning, and then evaluated on a patient case.

Following the initial bolus, a more accurate initial estimate could be possibly considered.