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Abstract: This paper deals with the maintenance phase control of general anesthesia during
surgery, involving saturated input and noisy output. The objective is to maintain the patient
to some given depth of hypnosis, measured by the BIS. The control law is an observer-based
control, where a dead-zone observer is built in order to mitigate the presence of the output
noise. The global exponential stability of the complete closed-loop system in the noise-free case
is guaranteed thanks to a linear matrix inequality condition and an input-to-state property
in presence of the noise is also proven. A three-steps optimization algorithm is proposed to
determine the parameters of the control law and then evaluated on a patient case.
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1. INTRODUCTION

Although an old problem (Soltero et al. (1951)), auto-
matic control of anesthesia remains an active research field.
Many control approaches have been proposed in the liter-
ature but, yet, most of the time, a human-based control is
applied during surgery in hospital. Even so, several control
approaches have been evaluated in real life (Lemos et al.
(2014) and reference herein). From a control point-of-view,
many directions of research may (and have been) investi-
gated, related to patient uncertainty, nonlinear relation-
ship between internal state and output indicators, drug
interactions, among others. Both PID-based feedback and
more advanced control techniques have been suggested in
that framework (Ionescu et al. (2008), Nascu et al. (2015),
Nogueira et al. (2017), Queinnec et al. (2019)). Difference
of dynamics between the fast dynamics of metabolism and
circulation of propofol in the central compartment (blood)
and at the site effect and the slow dynamics in muscle and
fat parts of the body have also been taken into account
(Queinnec et al. (2019)). Moreover, as underlined by Bai-
ley and Haddad (2005), an important issue for research
is measurement noise, EEG signals being corrupted by as
much as 10% of noise. Experimental data exhibiting noisy
effect on BIS (bispectral index) evolution are, for example,
given in Beck (2015).

This paper intends to contribute in that direction, with
a particular consideration of noise phenomena in the
measurement information. The key idea of the paper
is to manipulate an adaptive dead-zone mechanism to
induce a high-frequency noise rejection in the observation
step. Hence, exploiting recent results about this kind
? Research funded in part by ANR via project HANDY, number
ANR-18-CE40-0010.

of observers (Cocetti et al. (2019)), an observer and
associated feedback are first built for the fast subsystem,
the output (represented by the BIS) being affected by
noise. In a second step, considering that the observer and
control gains are given, (1) the global exponential stability
of the complete closed-loop system (fast and slow) in the
noise-free case is guaranteed; and (2) an input-to-state
(ISS) property from the noise to the state of the closed-
loop system is ensured. The parameters of the dead-zone
adaptation are selected solving a suitable Linear Matrix
Inequality (LMI), and therefore do not request any manual
tuning. The effectiveness of the proposed observer is shown
by means of numerical simulations in a patient-type case
on the nonlinear model of the BIS.

Notation. The notation throughout the paper is stan-
dard. For a vector x or a matrix A, x> and A> denote
the transpose of x and A, respectively. For two symmetric
matrices of the same dimensions, A and B, A > B means
that A − B is symmetric positive definite. For a matrix
A, He(A) = A> + A, λmax(A) (resp. λmin(A)) denotes
the maximal eigenvalue (resp. the minimal one) of matrix
A. I and 0 stand respectively for the identity and the
null matrix of appropriate dimensions. For a partitioned
matrix, the symbol ? stands for symmetric blocks.

2. PROBLEM STATEMENT

2.1 Patient model

From a control engineering point of view, compartmental
mammillary models are interesting and sufficiently rep-
resentative models for drug dynamics in the patient body
(Lemos et al. (2014)). A three-compartment model, known
as the Pharmacokinetic (PK) model, is used to describe



the circulation of drugs in a patient’s body (Derendorf
and Meibohm (1999)). This model is then completed by a
first-order dynamics (that relies the concentration of drug
in the central compartment to its action at the brain level,
denoted the effect site) (Beck (2015)). That leads to a
four-state system described as follows 1 :

ẋan = Axan +Buan (1)

with

A =

−(k10 + k12 + k13) k21 k31 0
k12 −k21 0 0
k13 0 −k31 0

ke0/v1 0 0 −ke0

 , B =

 1
0
0
0


(2)

where xan = [ xan1 xan2 xan3 xan4 ]
>

, xan1, xan2, xan3
are the masses in milligrams of the propofol in the different
compartments, xan4 is the effect site concentration in mg/l
and uan is the infusion rate in mg/min of the anesthetic.
The parameters kij ≥ 0, ∀i 6= j, i, j = 1, 2, 3, are the
transfer rates of the drug between compartments. The
parameters k10 and v1 represent the rate of elimination
from the central compartment and the volume of the
central compartment (blood), respectively. Moreover, the
fact to take into account the inter-patient variability
(i.e., the variability observed between different individuals)
and intra-patient variability (i.e., the variability observed
within one particular individual) needs to consider that
the parameters kij are uncertain (Coppens et al. (2011)).
In the literature, several models have been described to
express inter-patient variability, generally distinguishing
patients according to their sex, age, weight and/or size. We
use the Schnider model (Schnider et al. (1998)) to define
a simulated patient used in the numerical evaluations.

2.2 Output indicator

The depth of anesthesia indicator communally used by
clinicians is the BIS (the bispectral index), allowing to
quantify the level of consciousness of a patient from 0 (no
cerebral activity) to typically 100 (fully awake patient).
The BIS evolution is directly related to the effect site
concentration xan4, and can be described empirically by a
decreasing sigmoid function (Bailey and Haddad (2005)):

yBIS(xan4) = yBIS0
(1− xγan4

xγan4 + ECγ50
) (3)

yBIS0 is the BIS value of an awake patient typically set to
100. EC50 corresponds to drug concentration associated
with 50% of the maximum effect and γ is a parameter
modeling the degree of nonlinearity.

2.3 Error model with noise

During a surgery, the objective is to maintain the BIS
around the value yBISe = 50, or at least in an interval
between 40 and 60. From (3), this value corresponds to the
effect site concentration equal to EC50. The equilibrium
point of the system is then defined (see Zabi et al. (2015)):

xe1 = x4ev1, xe2 =
k12
k21

xe1, xe3 =
k13
k31

xe1, xe4 = EC50

and the associated input and output are given by

ue = k10xe1, yBISe =
yBIS0

2
1 The time dependence is omitted to simplify the notation.

As in Queinnec et al. (2019) and Haddad et al. (2003), we
use the linearized function of yBIS around the equilibrium
target value yBISe = 50:

y` = Cxan + kbis0 (4)

with C = [0 0 0 − kbis] and kbis = γyBIS0

4EC50
, kbis0 =

(2+γ)yBIS0

4 .

Le us consider the change of variables x̃ = xan − xe,
u = uan − ue and y = yBIS − yBISe with xe =

[ xe1 xe2 xe3 xe4 ]
>

and yBISe = yBIS0
/2. Consider also

that the magnitude of the control input uan is constrained
between 0 and umax, then, u is constrained as follows:

−ue ≤ u ≤ umax − ue (5)

where umax − ue is the maximum flow rate of the drug
that can be administered in practice.

Moreover, in the paper we want to take into account
that the measurement is subject to noise, defined as the
additional signal ν, which allows to express the variability
of the BIS signal. Then, the system under consideration
written as the error model is described by:{

˙̃x = Ax̃+Bsatu(yc)
y = Cx̃+ ν

(6)

where yc ∈ R is the output of the controller and the
saturation satu(yc) is defined as

satu(yc) =

{−ue if yc < −ue
yc if −ue ≤ yc ≤ umax − ue
umax − ue if yc > umax − ue

(7)

2.4 Control problem formulation

As previously discussed in Queinnec et al. (2019), system
(6) may be revwritten as follows:

ẋf = Afxf +Afsxs +Bfsatu(yc) (8a)

ẋs = Asfxf +Asxs (8b)

y = Cfxf + ν (8c)

with a fast dynamics state xf = [ x̃1 x̃4 ]
> ∈ Rnf and

a slow dynamics state xs = [ x̃2 x̃3 ]
> ∈ Rns , and with

matrices Af , As, Afs, Asf , Bf and Cf issued from the
original matrices A, B and C defined in (2) and (4). Note
also that the action u directly acts on the output y through
the fast subsystem, which means that the control problem
focuses on the fast subsystem disturbed by the slow one.

The key idea of the control problem is to design an
observer-based state-feedback controller, taking advantage
of a particular kind of observer, namely a dead-zone
observer such as proposed in Cocetti et al. (2019), which
allows to deal with the high-frequency noise affecting the
system output. Both the observer and the state-feedback
controller are designed for the fast subsystem.

Then, in a first step we consider that the slow subsystem
can be neglected and the dead-zone observer is build for
the fast subsystem as defined by:{

˙̂xf = Af x̂f +Bfsatu(yc) + Ldz√σ(ŷ − y)

ŷ = Cf x̂f
(9)

where x̂f ∈ Rnf is the estimated state, ŷ ∈ Rp is the
estimated output and σ ∈ Rp is a vector whose entries are
non-negative and define the magnitude of the dead-zone on



the corresponding output channel. L ∈ Rnf×p is the clas-
sical observer gain. The function dz√σ is a decentralized

vector-valued dead-zone from Rp to Rp, where
√
σ ∈ Rp≥0

is a component-wise square root. Moreover, σ is a time-
varying vector following the adaptation law:

σ̇ = −Λσ +

(ŷ − y)>R1(ŷ − y)
...

(ŷ − y)>Rp(ŷ − y)

 , σ ∈ Rp≥0 (10)

where Λ ∈ Rp×p is a diagonal positive definite matrix, and
R1, . . . , Rp ∈ Rp×p are symmetric positive semi-definite
matrices. The dynamics (10) ensures the invariance of the
orthant Rp≥0 and then the non-negativity of σ. Therefore√
σ is well defined.

In a second step, we want to compute a state-feedback
control yc = Kx̂f , with K ∈ Rm×nf , such that the fast
subsystem is asymptotically stable. Therefore the observer
under consideration is described by{

˙̂xf = Af x̂f +Bfsatu(Kx̂f ) + Ldz√σ(ŷ − y)

ŷ = Cf x̂f
(11)

with the σ-dynamics defined in (10).

The closed-loop system issued from (8a), (8b), (8c), (11)
can be written:

ẋf = Afxf +Afsxs +Bfsatu(Kx̂f )
ẋs = Asfxf +Asxs
˙̂xf = Af x̂f +Bfsatu(Kx̂f )

+Ldz√σ(Cf x̂f − Cfxf − ν)

(12)

with (10).

By defining φu(Kxf ) = satu(Kx̂f )−Kx̂f and considering
the link between the vector-valued saturation and dead-
zone functions, sat√σ(w) = w − dz√σ(w), the closed-loop
system can be written as:

ẋ = A0x+B1φu(K1x) +B2sat√σ(K2x− ν) +B2ν

σ̇ = −Λσ +

(K2x− ν)>R1(K2x− ν)
...

(K2x− ν)>Rp(K2x− ν)


(13)

with x =
[
x>f x>s x̂>f

]> ∈ Rn, n = 2nf + ns, and

A0 =

[
Af Afs BfK
Asf As 0
−LCf 0 Af +BfK + LCf

]
;B1 =

[
Bf
0
Bf

]

B2 =

[
0
0
−L

]
; K1 = [ 0 0 K ] ;K2 = [−Cf 0 Cf ]

(14)

Remark 1. The objective of the adaptation mechanism
(10) is to manage two antagonistic effects: the adaptation
speed and the filtering action tuned by Λ and R1, . . . , Rp,
respectively. Moreover, selecting Λ large enough, and
R1, . . . , Rp sufficiently small a classical Luenberger ob-
server could be recovered. By the same way, the matrix
K has to be selected such that Af +BfK is Hurwitz but
slower than Af + LCf .

The control problem we intend to solve can then be
summarized as follows:

Problem 1. Find the control and observer gains K and L,
the adaptation matrices Λ and R1, . . . , Rp such that:

(1) For ν = 0, the closed-loop system is globally expo-
nentially stable for any initial condition belonging to
Rn;

(2) For ν 6= 0, an Input to State (ISS) property from ν
to (x,

√
σ) is ensured.

Note that the global stability of the closed-loop system
can be investigated because the open-loop matrix A and
the closed-loop one A0 are Hurwitz.

3. THEORETICAL CONDITIONS

In order to address Problem 1 we consider three steps:
(1) The observer gain L is designed by using Theorem 1 in
Cocetti et al. (2019), recalled below; (2) The state feedback
gain is designed such that Af +BfK is Hurwitz; (3) The
complete closed-loop system (13) is analysed.

3.1 Observer gain design

Let us first provide the following results directly derived
from Cocetti et al. (2019), consisting in designing the
observer gain L for the observer (11)-(10). To this aim
let us first write the dynamics of the estimation error
ef = x̂f − xf :

ėf = (Af + LCf )ef − Lν − Lsat√σ(Cfef − ν)

σ̇ = −Λσ +

(Cfef − ν)>R1(Cfef − ν)
...

(Cfef − ν)>Rp(Cfef − ν)

 (15)

Theorem 1. If there exist a symmetric positive definite
matrix Pf ∈ Rnf×nf , a matrix X ∈ Rnf×p, a symmetric
semi-definite positive R ∈ Rp×p, two diagonal positive
definite matrices U ∈ Rp×p, Λ ∈ Rp×p such that

He

[
PfAf +XCf + C>f RCf −X

UCf −U − Λ

]
< 0 (16)

with R :=

p∑
j=1

Rj , then the gain L as

L = P−1f X (17)

makes (15) globally exponentially stable to the origin for
ν = 0 and ISS from ν to (ef ,

√
σ).

Remark 2. Additional pole-placement constraints may be
considered to impose some performance on the ob-
server behavior. Typically, a pole-placement in a band
{−αL2,−αL1} may be added, and/or a pole-placement in
a disk centered in −αL3 and of radius αL4, as additional
LMI conditions (Furuta and Kim (1987)).

3.2 Control gain design

A state feedback gain K is designed such that both
Af + BfK and A0 are Hurwitz, the condition on A0

ensuring the asymptotic stability of the closed-loop system
when saturation and noise do not occur. Hence, given the
gain L, if there exist symmetric positive definite matrices
Wf ∈ Rnf×nf , Wfs ∈ R(nf+ns)×(nf+ns), and a matrix
Y ∈ Rm×nf such that

WfA
>
f +AfWf +BfY + Y >B>f ≤ 0 (18)



[
Wfs 0

0 Wf

]
A>1 +A1

[
Wfs 0

0 Wf

]
+B1 [0 Y ]+

[
0
Y >

]
B>1 ≤ 0

(19)

are satisfied, with A1 =

[
Af Afs 0
Asf As 0
−LCf 0 Af + LCf

]
, then the

gain

K = YW−1f (20)

makes Af +BfK and A0 Hurwitz. Of course, as suggested
in Remark 2, one should add pole-placement constraints on
the dynamics of the fast closed-loop system, typically such
that the poles of Af +BfK are slower than those of Af +
LCf , namely are slower than αL = |max (Re(Af+LCf ))|,
but faster than those of the open-loop Af , considering a
band {−αK2,−αK1} and/or a pole-placement in a disk
centered in −αK3 and of radius αK4. These constraints
are expressed as additional LMIs in the same decision
variables.

3.3 Main conditions

With the gains L and K in hand we can provide the
following result with respect to the complete closed-loop
system (13) to solve Problem 1.

Theorem 2. Given the gains L and K defined as in (17)
and (20), respectively. If there exist a symmetric positive
definite matrix P ∈ Rn×n, a symmetric semi-definite
positive matrix R ∈ Rp×p, three diagonal positive definite
matrices S ∈ Rm×m, U ∈ Rp×p, Λ ∈ Rp×p such thatA>0 P + PA0 + 2K>2 RK2 PB2 +K>2 U PB1 −K>1 S

? −2U − 2Λ 0
? ? −2S

 < 0

(21)

then with R =

p∑
j=1

Rj ,

(1) for ν = 0 the closed-loop system (13) is globally
exponentially stable, for any intial condition in Rn;

(2) for ν 6= 0, the closed-loop system (13) is ISS from ν
to (x,

√
σ).

Proof: The strict negativity of the matrix in the left-
hand side of relation (21) (by using the schur complement)
implies that there exists a sufficient small positive scalar
c0 such that M ≤ −2c0I with

M =

[
He(PA0 + K>

2 RK2) PB2 + K>
2 U PB1 −K>

1 S
? −2(1 − c0)Λ − 2U 0
? ? −2S

]
.

Consider the candidate Lyapunov function V (x, σ) =
x>Px + 21>σ, with P = P> > 0 and 1 is the vector

defined by 1 = [1 1 . . . 1]
> ∈ Rp and recalling that σ ∈

Rp≥0. The function V (x, σ) is positive definite and radially

unbounded on Rn×Rp≥0 and satisfies the following bounds,

α1 ‖ (x,
√
σ) ‖2≤ V (x, σ) ≤ α2 ‖ (x,

√
σ) ‖2, where

α1 := min{λmin(P ), 2}, and α2 := max{λmax(P ), 2}.
The time-derivative of the function along the trajecto-
ries of the closed-loop system (13) reads: V̇ (x, σ) =
2x>Pẋ+ 21>σ̇ = x>(A>0 P +PA0)x+ 2x>PB1φu(K1x) +

2x>PB2sat√σ(K2x− ν) + 2x>PB2ν − 21>Λσ+ 2(K2x−

ν)>
p∑
j=1

Rj(K2x− ν).

We use several properties for the nonlinearities φu and
sat√σ. In particular we use Lemma 1.6 and Lemma 1.4 in
Tarbouriech et al. (2011) with respect to φu and sat√σ,
respectively, which lead to the following conditions:
• φ>u S(φu + Gx) ≤ 0 for any x ∈ Rn and any positive
diagonal matrix S ∈ Rm×m. Since in the current case, we
are studying the global stability, we choose G = K1;
• sat√σ(K2x− ν)>U(K2x− ν − sat√σ(K2x− ν)) ≥ 0, for

any positive diagonal matrix U ∈ Rp×p;
• 1>Λσ − sat√σ(K2x− ν)>Λsat√σ(K2x− ν) ≥ 0

Then, recalling matrix M previously defined, one gets
V̇ (x, σ) ≤ V̇ (x, σ) − 2φ>u S(φu + K1x) + 2sat√σ(K2x −
ν)>U(K2x− ν − sat√σ(K2x− ν)) ≤ V, with

V =

 x
sat√σ(K2x− ν)

φu(K1x)

>M
 x
sat√σ(K2x− ν)

φu(K1x)


−2c01

>Λσ + 2x>PB2ν − 4x>K>2 Rν + 2ν>Rν
−2sat√σ(K2x− ν)>Uν

=

 x
sat√σ(K2x− ν)

φu(K1x)

>M
 x
sat√σ(K2x− ν)

φu(K1x)


+2

 x
sat√σ(K2x− ν)

φu(K1x)

> PB2 − 2K>2 R
−U
0

 ν
−2c01

>Λσ + 2ν>Rν

To prove the GES when ν = 0, it suffices to put ν = 0
in the expression of V. Then, the GES is obtained if
V̇ (x, σ) ≤ V < 0, which leads to

V̇ (x, σ) ≤ −2c0 ‖

 x
sat√σ(K2x− ν)

φu(K1x)

 ‖2 −2c0Λσ ≤

−2c0(‖ x ‖2 + ‖ sat√σ(K2x − ν) ‖2) − 2c0λmin(Λ)σ ≤
−2c0(‖ x ‖2 +σ) − 2c0λmin(Λ)σ ≤ −2ρ ‖ (x,

√
σ) ‖2≤

−2 ρ
α2
V (x, σ), with ρ a positive scalar.

Therefore if relation (21) holds then the first item of
Theorem 2 is satisfied.

To prove the ISS property, we use the expression of V when
ν 6= 0. It follows:

V̇ (x, σ) ≤ V ≤ −2ρ ‖ (x,
√
σ) ‖2 +2 ‖ R ‖‖ ν ‖2

+ ‖
[
PB2 − 2K>2 R

−U

]
‖‖
[

x
sat√σ(K2x− ν)

]
‖‖ ν ‖

≤ −2ρ ‖ (x,
√
σ) ‖2 +2 ‖ R ‖‖ ν ‖2

+2ρ1 ‖ (x,
√
σ) ‖‖ ν ‖

≤ −2ρ ‖ (x,
√
σ) ‖2 +2 ‖ R ‖‖ ν ‖2

+ρ1ε ‖ (x,
√
σ) ‖2 +

ρ1
ε
‖ ν ‖2

where we use the Young inequality to upper-bound the
crossed terms in ν and (x,

√
σ). By choosing ε = ρ

ρ1
one

gets:

V̇ (x, σ) ≤ V ≤ −ρ ‖ (x,
√
σ) ‖2 +(2 ‖ R ‖ +

ρ21
ρ

) ‖ ν ‖2< 0



provided that ‖ (x,
√
σ) ‖2≥ ρ−1(2 ‖ R ‖ +

ρ21
ρ ) ‖ ν ‖2.

Therefore the closed-loop system if ISS from ν to (x,
√
σ)

with the gain ρ−1(2 ‖ R ‖ +
ρ21
ρ ). 2

Remark 3. If the condition (21) is not feasible, the local
case could be studied by deriving conditions inspired from
Tarbouriech et al. (2011), and therefore by using Lemma
1.6 as mentioned in the proof but withG 6= K1 being a new
decision variable, and considering symmetric bounds on u
in (7). In this case, a set S0 in which the local exponential
stability is ensured has to be characterized. Moreover, the
local context should be addressed in the case where we
would like to take into account the inter-patient variability
(a wide range of adult patients uncertainty), that is the
presence of uncertainty in the system and the analysis of
the robustness of the closed loop.

4. NUMERICAL ILLUSTRATION

Let us consider a patient whose characteristics are: male,
53 years, 177 cm and 77 kg. The associated pharmacoki-
netic parameters are computed with the Schnider model
(Schnider et al. (1998)), allowing to define:

A =

−0.9170 0.0683 0.0035 0
0.3021 −0.0683 0 0
0.1958 0 −0.0035 0
0.1068 0 0 −0.4560


with an equilibrium associated to BIS = 50 given by:

xe1 = 14.51mg, xe2 = 64.26mg, xe3 = 809.2mg,

xe4 = 3.4mg/l, ue = 6.08mg/min

The parameters used in the output equation (3) are
EC50 = 3.4mg/l and γ = 3 (Bailey and Haddad (2005)),
allowing to determine those of the linearized output equa-
tion (4): kbis = 22.06 and kbis0 = 125.

To solve Problem 1, one considers the following algorithm,
with pole-placement constraints as discussed in Remark 2
and in Section 3.2:

• Step 1. Design of the observer
Find Pf , X, Λ, R and U solution to the feasibility
problem issued from Theorem 1 given by:

condition (16)

Λ ≤ 100, R ≤ Λ

pole-placement: αL1 = 6, αL3 = 6, αL4 = 4

Keep the observer gain L = P−1f X, and compute αL.
• Step 2. Design of the controller gain K

Find Wf , Wfs, Y solution to the feasibility problem:
conditions (18), (19)

pole-placement : αK1 =
1

2
αL, αK4 = 1

αK3 = 1.1
1

2
αL − αK4

Keep K = YW−1f .

• Step 3. Analysis of the closed-loop system (13).
Find P , S, U , R and Λ solution to the optimization
problem:

max trace(R)

under conditions (21) and Λ ≤ 100

• Step 4. The observer and controller gain are L and K
solution to Step 1 and Step 2, respectively. Matrices
of the adaptation law Λ and R are solution to Step 3.

Note that as in Cocetti et al. (2019), we impose a bound
on Λ (namely 100) to reduce the time scale among the
observer dynamics and the adaptation dynamics. Applying
the algorithm on the patient model data above given, one
obtains the following solution:

L =

[
17.5890
0.5446

]
K = [−5.4555 −84.0538 ]

R = 83.9259 Λ = 99.9860

To simulate the system, we consider an open-loop induc-
tion phase such as described in Queinnec et al. (2019)
before to close the loop. It means that one injects 100
mg/min of propofol during 30 seconds followed by 1
minute at rest (uan = 0). Then at time t = 1.5 minutes, σ
and x̂f are initialized to 0 2 and the loop is closed (vertical
dashed line in the figure). Excepted for the initial induc-
tion bolus, a bound on the flow rate of propofol (between
0 and 20 mg/min) is considered. The time evolution of
the noisy BIS output and control input uan are shown in
Figures 1 and 2, respectively. The evolution of the dead-
zone bound

√
σ is plotted in Figure 3.

Fig. 1. Time evolution of the BIS for the system involving
the dead-zone observer

Fig. 2. Time evolution of uan for the system involving the
dead-zone observer

To illustrate the positive effect of the dead-zone observer,
another simulation is performed in which a classical Luen-

berger observer
(

˙̂xf = Af x̂f +Bfsatu(yc) + L(Cf x̂f − y)
)

is used instead of the dead-zone observer (9), with the

2 Following the initial bolus, a more accurate initial estimate could
be possibly considered.



Fig. 3. Time evolution of the bound
√
σ of the dead-zone

observer

same observer and controller gains. The time evolution of
the input signal uan, plotted in Figure 4, is much more
affected by the output noise and much more saturates.

Fig. 4. Time evolution of uan for the system involving a
Luenberger observer without dead-zone attenuation

5. CONCLUSION

Control of general anesthesia has been addressed in this
paper, considering both input saturation and output noise.
An observer-based control has been proposed, where a
dead-zone observer is built in order to reduce the effect
of the output noise. The dead-zone observer and the
feedback gain are designed for the fast subsystem. Then,
the global exponential stability of the complete closed-
loop system in the noise-free case is guaranteed thanks
to a linear matrix inequality condition and an input-to-
state property in presence of the noise is also proven. A
three-steps optimization algorithm is proposed to select
the parameters of the control law without any manual
tuning, and then evaluated on a patient case.

These preliminary results pave the way for future work.
In particular, the reference tracking problem should be
considered by adding an integrator in the control loop.
Furthermore, in order to be closer to real-life anesthesia,
sampled output or even event-triggered output controller
could be investigated and delays should be considered in
the control problem. Patient variability should also be
considered as part of the control problem.
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