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Human can interact with several kinds of machine (motor vehicle, robots, among others) in different ways. One way is through his/her head pose. In this work we propose a head pose estimation framework that combines 2D and 3D cues using the concept of Key-Frames (KF). KFs are a set frames learned automatically offline that consist: 2D features, encoded through Speeded Up Robust Features (SURF) descriptors; 3D information, captured by Fast Point Feature Histograms (FPFH) descriptors; and target's head orientation (pose) in real world coordinates, which is represented through a 3D facial model. Then, the KF information is re-enforced through a global optimization process that minimizes error in a way similar to bundle adjustment. The KF allows to formulate, in an online process, a hypothesis of the head pose in new images that is then refined through an optimization process, performed by the Iterative Closest Point (ICP) algorithm. This KF-based framework can handle partial occlusions and extreme rotations even with noisy depth data, improving the accuracy of pose estimation and detection rate. We evaluate the proposal using two public benchmarks in state-of-art: (1) BIWI Kinect Head Pose Database, and (2) ICT 3D HeadPose Database. In addition, we evaluate this framework with a small but challenging dataset of our own authorship where the targets perform more complex behaviors, that those in the aforementioned public datasets. We show how our approach outperforms relevant state-of-the-art proposals on all these datasets.

Introduction

The head pose provides rich information about the emotional state, behavior and intentionality of a person. This knowledge is useful in several areas such as humanmachine interaction [START_REF] Sheikhi | Combining dynamic head pose-gaze mapping with the robot conversational state for attention recognition in human-robot interactions[END_REF], augmented reality [2, 3], expression recognition [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF], driver assistance [START_REF] Tawari | Continuous head movement estimator for driver assistance: Issues, algorithms, and on-road evaluations[END_REF], among others.

The task of correctly estimating the head pose with noninvasive systems might seem easy, many current devices (smart phones or webcams) can detect human faces from videos or images in real time. Those are good for recreation, but they cannot handle all the difficulties in Head Pose Estimation (HPE) such as (self) occlusion, extreme head poses, facial expressions and fast movements.

Driver assistance scenario is a particular case where the user may exhibit complex behaviors such as zooming in / out of the steering wheel, wide range of head rotation and fast movements. Here, the pose can verify if the user pays attention to the road allowing an autonomous system to assist the driver when necessary. Therefore, HPE algorithms Full list of author information is available at the end of the article should provide fast and robust information because missed detections or spurious estimates can lead to accidents.

Usually, HPE proposals [START_REF] Kazemi | One millisecond face alignment with an ensemble of regression trees[END_REF][START_REF] Barros | Fusion of keypoint tracking and facial landmark detection for real-time head pose estimation[END_REF][START_REF] Valenti | Combining head pose and eye location information for gaze estimation[END_REF] rely in RGB images to find specific 2D facial features, such as eyes, eyebrows, mount or nose. These heterogeneous features provide accurate estimations but those are not available all the time, i.e. working with blurry images or light changes. Depth-based approaches, e.g. Fanelli et al. [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF], can overcome some of the limitations of the 2D estimation allowing a better 3D HPE. Both methodologies perform well where the target's face is nearly frontal but, as mentioned above, this assumption cannot be guaranteed. Some applications use 3D models ( [START_REF] Yu | Headfusion: 360 • head pose tracking combining 3d morphable model and 3d reconstruction[END_REF][START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF]) to retrieve the pose because they also provide semantic information, i.e. gaze estimation, facial expression.

We propose a framework that takes the best features of the aforementioned methodologies, combining 2D and 3D cues with a rigid 3D face model. It can handle challenging situations, such as large head poses, with a high detection rate and good accuracy for a wide range of orientations. Our approach follows an efficient Key-Frame (KF) methodology with an offline learning phase and an online pose estimation step. Our fast and non-invasive offline step learns target's appearance and pose using a RGB-D sensor, in such a way that it creates a set of Key-Frames (KFs) for that specific person, see Fig. 1. The KFs could be spurious or inaccurate, therefore we propose a global optimization process based on bundle adjustment that improves the set of KFs and updates the 3D face model to better fix the target. This information is later used to estimate an accurate pose in the online step.

This process could be seen as a disadvantage due to it needs to learn KFs for each new user, but our proposal incorporates an automatic learning system that only requires the user to perform simple movements in a short time before launching the online step. In several contexts we can afford to perform this initialization stage. This is the case for driving assistance where learning could done when the vehicle is stopped. Moreover, we might even suppose that the offline process conditions the start of the vehicle, allowing to verify in advance whether the user is in good conditions to drive.

We show how this Key-Frames based proposal provides competitive results to those in the state of the art. We evaluate our approach using: (i) the standard benchmark BIWI Kinect Head Pose Database [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF], (ii) ICT 3D HeadPose Database and (iii) our own dataset recorded with a Microsoft Kinect v1.

BIWI and ICT-3DHP datasets are, in the literature, standard benchmarks for evaluating head pose detectors with more than 240 and 200 cites respectively ([4, 11, 10, 12]), where each target is recorded with neutral expression, rotating the head at a slow-medium speed. However, these datasets do not represent complex and challenging movements that a human could do. Therefore we develop our own dataset where the targets perform more natural movements as those expected in real scenarios. It consists of 4 sequences where targets show complex behaviors, such as: rapid head movements, self-occlusion, facial expression, among others. Although we evaluate several datasets, all the examples shown in this paper use images from our "ICU" dataset to describe the different steps of our proposal. Thanks to quantitative evaluations of these challenging sequences, we demonstrate that our monocular RGB-D based approach offers competitive results to current approaches in the state of the art.

The main contributions of this paper are: 1 A Key-Frame based framework, with state-of-the-art accuracy, that consists of: an original offline process with an automatic learning step with global consistency, a KF optimization step based on error propagation, and a 3D face model updating methodology. All the above learned information is considered during an online head pose estimation with a formulation that takes into account the descriptors, normal surface and self-occlusion.

2 A new dataset exhibiting more complex behaviors to those present in the aforementioned datasets. This paper has the following structure: we present the related work in Section 2. The formulation of our methodology for pose detection is given in Section 3. Section 4 presents the quantitative and qualitative results including a discussion where we compare our framework with respect to other two approaches in the state-of-the-art. Last, Section 6 describes conclusions and future work.

Related works

In the fields of mobile robotics and computer vision, there are works focused on monocular systems for HPE, i.e. [START_REF] Murphy-Chutorian | Head pose estimation in computer vision: A survey[END_REF][START_REF] Czupry Ński | High accuracy head pose tracking survey[END_REF], that can be categorized according to cue used. Hereafter, we mention a few of the most relevant ones.

RGB-based approaches

Some approaches tackle the HPE problem by using 2D deformable models that can approximate the human face shape [START_REF] Saragih | Deformable model fitting by regularized landmark mean-shift[END_REF][START_REF] Zhou | AAM based face tracking with temporal matching and face segmentation[END_REF]. In [START_REF] Kazemi | One millisecond face alignment with an ensemble of regression trees[END_REF], Kazemi et al.propose a fast face alignment framework based on a random forest where each regression tree is learned by a gradient boosting-based loss function. This methodology allows to detect multiple faces with high accuracy at a speed of 1 ms per image even with complex expression (strong facial deformations) or small head rotations.

Other proposals seek specific facial features, i.e. eyes, nose, among others. Valenti et al. [START_REF] Valenti | Combining head pose and eye location information for gaze estimation[END_REF] learn the location of the eyes from a set of training images and, assuming that head follows a geometrical shape, those are projected in a cylinder. This person specific model is used then for detecting and tracking the target. Barros et al. [START_REF] Barros | Fusion of keypoint tracking and facial landmark detection for real-time head pose estimation[END_REF] follow a similar strategy, but including motion information from optical flow to reinforce the estimation. Drouard et al. [START_REF] Drouard | Head pose estimation via probabilistic high-dimensional regression[END_REF] propose a learning method based on histogram of oriented gradients (HoG). HoG features are mapped (through a Gaussian locally-linear model) onto the head pose space, which is then used to predict a new head orientation. Chen et al. [START_REF] Chen | Estimating head pose orientation using extremely low resolution images[END_REF] achieves good results with RGB images of low resolution using a Support Vector Regression (SVR) classifier trained with a gradient-based feature. All these methods combine the information in a single model and achieve state-of-art (SoA) results when sufficient training data is provided.

Learning the appearance of a person with a single shot is not always possible due to problems such as changes in lighting or occlusions. Therefore, several works rely on the information coming from a set of relevant frames, called Key-Frames (KF) [START_REF] Dong | Efficient keyframe-based real-time camera tracking[END_REF]. In [START_REF] Vacchetti | Stable real-time 3d tracking using online and offline information[END_REF], Vacchetti et al.propose a KF-based method that detects and estimates the 3D pose of static rigid objects using only RGB images. Each KF consists of a set of key-points and a 3D model, projected to image plane using camera calibration. The proposal provides SoA results by considering both 2D-3D key-frame matching and 2D-2D temporal matching. The work of Kim et al. [START_REF] Kim | Keyframe-based modeling and tracking of multiple 3d objects[END_REF] exploits the idea of KF for pose estimation and tracking of multiple 3D objects from 2D information. The methodology can obtain results in real time, i.e. 40 objects within 6 to 25 ms per frame. In the last two proposals the camera is moving while the target remains static. Nevertheless, these methods can work in the opposite way, i.e. static camera with moving targets. [START_REF] Morency | Monocular head pose estimation using generalized adaptive view-based appearance model[END_REF] proposes a generalized adaptive view-based appearance model (extension of the AVAM algorithm of [START_REF] Morency | Pose estimation using 3d view-based eigenspaces[END_REF]) that estimate the head pose for a specific image region. The final pose is inferred by merging the results of: (1) a referential frame, (2) tracking between current and previous frame, and (3) matching against a KF.

A more recent method ( [START_REF] Ahn | Real-time head orientation from a monocular camera using deep neural network[END_REF]) use Deep Learning to train a Convolutional Neural Network (CNN) using RGB images. The results are provided in real time and can handle challenging issues such as different light conditions. The 2D-based proposals perform well with nearly frontal views but they have difficulty estimating an accurate head pose due to problems such as large poses, (self) occlusions and changes in lighting. In this sense, depth cue is more efficient in such situations.

Depth-based approaches

Many of nowadays SoA methods are based on the depth cue because 3D information provides the shape of the head in a more distinctive way [START_REF] Breitenstein | Real-time face pose estimation from single range images[END_REF][START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF][START_REF] Papazov | Real-time 3d head pose and facial landmark estimation from depth images using triangular surface patch features[END_REF] .

In [START_REF] Breitenstein | Real-time face pose estimation from single range images[END_REF], the authors use the depth image to tackle some of the problem of pose estimation such as partial occlusion and head orientation variations. The proposal rotates a generic 3D human face model and each rotation is transformed in a depth image, which is later used in the alignment process. This offline learned set is compared to the input depth frame and the best match provides the pose hypothesis. It achieves real-time results thanks to a framework based on Graphics Processing Units (GPUs).

Fanelli et al. [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF] train a Random Regression Forest that allows to detect poses in real time through nose' tip detection. The training data is generated in a similar way as [START_REF] Breitenstein | Real-time face pose estimation from single range images[END_REF] using a 3D face model set with several orientations. Each leaf of the regression tree votes for a possible nose position and the final pose is inferred by considering all votes. The high quality of their results has converted it in a baseline to compare new proposals.

Papazov et al. [START_REF] Papazov | Real-time 3d head pose and facial landmark estimation from depth images using triangular surface patch features[END_REF] propose a new 3D invariant descriptor that encodes facial landmarks. The descriptors are learned in an offline training phase using a group of high-resolution meshes with triangular paths. A CNN is used in [START_REF] Venturelli | From depth data to head pose estimation: A siamese approach[END_REF] to estimate head pose from pure depth data with the use a Siamese network (a couple of CNN) achieving high accurate results in real time.

RGB-D-based approaches

The combination of color and depth cues has shown high performance in challenging situations. In the work of [START_REF] Ghiass | Highly accurate and fully automatic head pose estimation from a low quality consumer-level rgb-d sensor[END_REF], the pose is inferred by fitting a morphable 3D model on the target represented by a 3D point cloud. The model is learned for a specific person in an offline training step. [START_REF] Saeed | Boosted human head pose estimation using kinect camera[END_REF] use HoG features, extracted from both RGB and D cues, to train a classifier based on Support Vector Machine (SVM). In [START_REF] Yang | Face pose estimation with combined 2d and 3d hog features[END_REF], the authors present a similar method that combines 2D and 3D HoG features but to train a multi-layer perceptron classificator. In [START_REF] Baltrušaitis | 3d constrained local model for rigid and non-rigid facial tracking[END_REF] the authors present an improvement to the Constrained Local Model by including 3D information. Then, they train some SVM classifiers and logistic regressors using probabilistic features.

Some works enhance classical methods by including depth information. This is the case with [START_REF] Strupczewski | Head pose tracking from rgbd sensor based on direct motion estimation[END_REF], the authors use the depth cue in a visual odometry technique. Smolyanskiy et al. [START_REF] Smolyanskiy | Real-time 3d face tracking based on active appearance model constrained by depth data[END_REF] add a depth-based constraint to an Active Appearance Model fitting. However this approach suffers from drift problems, where the final model is not well aligned with target's 3D position. Some other proposals propose to combine depth and color cues using random forest [START_REF] Kaymak | Exploiting depth and intensity information for head pose estimation with random forests and tensor models[END_REF]. Here, tensor-based regressors allow to model large variations of head orientation.

In [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF], Li proposes a method based on an energy minimization function that optimizes the distance between a 3D point cloud (current frame) and a rigid template model of the human face. The optimization is carried out using ICP algorithm, the color cue is used in two ways: [START_REF] Sheikhi | Combining dynamic head pose-gaze mapping with the robot conversational state for attention recognition in human-robot interactions[END_REF] to detect 2D facial landmarks, using the method of Viola and Jones ( [START_REF] Viola | Robust real-time face detection[END_REF]); and (2) to remove outliers, using a k-means clustering algorithm. The detected landmarks, i.e. eyes, are projected to 3D world through the depth image and included in the energy function as a weight factor, which increasing the accuracy and convergent speed of ICP. On the other hand, k-means allows to separate relevant 3D points (i.e. those belonging to the face) from the spurious ones (i.e. clutter). The face model is updated online in a parallel process using only the depth cues allowing to adapt to different kinds of faces. The proposal relies in the work of Fanelli et al. [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF] to reinitialize the approach because ICP requires more time to infer a face pose from an initial position that from previous frame. Meanwhile Fanelli's approach finds a face faster but with less precision. Yu et al. [START_REF] Yu | Headfusion: 360 • head pose tracking combining 3d morphable model and 3d reconstruction[END_REF] propose a similar method that instead learns a 360 • 3D morphable model, including a motion cue, based on optical flow, in the ICP optimization process.

Descriptors

Descriptors encode important information about the visual characteristics of the objects present in images [START_REF] Yan | Cross-modality bridging and knowledge transferring for image understanding[END_REF], such as appearance [START_REF] Alioua | Driver head pose estimation using efficient descriptor fusion[END_REF][START_REF] Yan | Stat: Spatial-temporal attention mechanism for video captioning[END_REF], motion [START_REF] Yan | Efficient parallel framework for hevc motion estimation on many-core processors[END_REF] or geometry [START_REF] Rusu | Fast point feature histograms (fpfh) for 3d registration[END_REF]. Therefore, they have been used in multiple contexts. Yu et al. [START_REF] Yan | A fast uyghur text detector for complex background images[END_REF] proposes a FAST-like descriptor which considers the orientation of image intensity. Yu et al. [START_REF] Alioua | Driver head pose estimation using efficient descriptor fusion[END_REF] propose a 2D head pose estimation framework using a combination of classic descriptors, e.g. HoG, SURF and Haar. [START_REF] Yan | Stat: Spatial-temporal attention mechanism for video captioning[END_REF] uses two Convolutional Neuronal Network (CNN) features to model global and local appearance of the target and a 3-D CNN which codify the motion. The computational cost of some descriptors could be expensive, e.g. especially those based on Deep Learning [START_REF] Yan | Stat: Spatial-temporal attention mechanism for video captioning[END_REF], even using parallelization methods [START_REF] Yan | Efficient parallel framework for hevc motion estimation on many-core processors[END_REF]. Therefore, we rely on robust features with fair computational cost.

Synthesis

The aforementioned proposals have some qualities that adapt well in specific scenarios. To mention some outstanding methods, we have: Kazemi and Sullivan [START_REF] Kazemi | One millisecond face alignment with an ensemble of regression trees[END_REF] a RGBbased method with fast estimation and high accuracy in frontal view, Fanelli et al. [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF] proposal relies in depth information and provides good detection rate, and Li et al. [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF] can achieve accurate results for head poses with large rotation. A combination of these (or more) methods could face the challenges of estimating head pose, but a direct combination could not generate results in real-time.

Finally, there are some datasets to evaluate the performance of HPE algorithms, such as BIWI dataset [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF] and ICT-3DHP dataset [START_REF] Baltrušaitis | 3d constrained local model for rigid and non-rigid facial tracking[END_REF], that are the standard benchmark used in several relevant papers [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF][START_REF] Ghiass | Highly accurate and fully automatic head pose estimation from a low quality consumer-level rgb-d sensor[END_REF][START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF][START_REF] Papazov | Real-time 3d head pose and facial landmark estimation from depth images using triangular surface patch features[END_REF][START_REF] Yu | Headfusion: 360 • head pose tracking combining 3d morphable model and 3d reconstruction[END_REF]. They consist of multiple sequences, each with a different person, where the target has a neutral expression, with slowmedium speed head rotation and (mostly) remaining in the same position.

From above, we can summaries our contributions as follows: 1 A robust HPE algorithm based on KF that combines 3D geometry information (Point Cloud), appearance and shape (encoded through SURF and FPFH descriptors), exploiting all RGB-D channels. 2 A double mechanism consisted of : (1) An offline learning phase that exploits the complementarity of aforementioned techniques to create a person-specific set of KFs; and (2) An online framework based on KF and ICP that estimates robustly and in real time the head pose. 3 A bundle adjustment process that improves the accuracy, in terms of performance and CPU cost, of the learned KFs in order that they are consistent between them. 4 An online update of both the KFs and 3D face model. 5 A new dataset with more challenging behaviors and situations that those in the literature consisting of 4 sequences with a ground truth generated from a Motion Caption (MoCap) system. It includes rapid head movements, facial deformation, self-occlusions, position displacement, among others. 6 A rigorous and large-scale evaluation and comparison with relevant existing approaches in the state of the art.

Method

Our Key-Frame based approach is inspired by some works like [START_REF] Vacchetti | Stable real-time 3d tracking using online and offline information[END_REF], [START_REF] Morency | Monocular head pose estimation using generalized adaptive view-based appearance model[END_REF] and [START_REF] Breitenstein | Real-time face pose estimation from single range images[END_REF] but for the applicative context of HPE for human-machine interaction, i.e. human HPE instead of static objects considering both appearance and depth cues with a partial 3D face model. Each KF consists of a set of 3D appearance features (SURF descriptors projected to 3D world through the depth image), 3D-based features and an approximate head pose, represented with a 3D template model. First, we describe the contents of each Key-Frame to then show how they are learned consistently and subsequently used in a pose estimation system.

Key-Frames generation 3.1.1 3D Face Model

A 3D morphable face model (3DMFM) is a shape representation of a human face that can be used to provide accurate estimations for most of the head poses. Then, a face model M is a set of 3D vertex/points created as a linear combination of a mean shape µ with a weighted deformation basis DB as follows:

M = µ + Vn i=1 γ i ωi DB i . (1) 
Here, γ i and DB i are the eigenvalue and eigenvector, respectively, learned from a set of 3D scans. In our approach, we use the Basel Face Model (BFM) [START_REF] Paysan | A 3d face model for pose and illumination invariant face recognition[END_REF], which has learned the DB values from the 3D face scans of 200 subjects, each with different age, gender, height and width. Traditionally, 3DMFM fitting is an off-line optimization step that finds the ωi values through the minimization of the distance between one (or more) 3D frame(s) and the model. This allows to create a model with a facial shape similar to a specific person, i.e. [START_REF] Yu | Headfusion: 360 • head pose tracking combining 3d morphable model and 3d reconstruction[END_REF][START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF].

Our offline Key-Frame learning step uses a generic human face model M with average characteristics, i.e. age, weight and gender. This model fits well in most of the cases, but it must be updated in order to fit some facial structures. Section 3.2.3 describes an efficient optimization scheme that does not rely in calculating ω of Eq. 1 like other methods, but in an error propagation-based approach inspired by as bundle adjustment.

Even with a well-fitted model, some HPE algorithms have problems handling face deformation such as mouth movements or facial expressions. This is a common situation when a person is speaking with other one or reacting to external situations, i.e. music, other people movements, to mention a few. We keep this in consideration and create a partial model with only the part between nasal base and forehead. This region does not deform much and provides results as accurate as more complete models.

In any case, we use Eq. 1 to build a partial face model M = {p 1 , . . . , p m } consisting of m = 1000 3D points p = {x, y, z}, an example of the model is shown in Fig. 1 represented as the output of the red block.

Face descriptors

Our proposal relies is based on natural facial landmarks encoded through SURF descriptors, which allow to estimate features invariant to rotation and scale, and Fast Point Feature Histograms (FPFH) descriptors, which include 3D information invariant to illumination changes. These descriptors enhance the robustness of the HPE and increase both accuracy and detection orientation range.

SURF descriptors SURF is a robust and reliable descriptor that has shown good performance in several topics such as SLAM, camera pose estimation and image registration.

In the context of HPE, SURF describes a specific-person's face in a general way, avoiding the need to search specific features (e.g. eyes, nose). Therefore, any relevant characteristic is taken into account, regardless of its origin, i.e. beard, mustache, glasses or other. In addition, these descriptors are invariant to scale and rotation allowing to detect no-static targets, i.e. drivers moving around in the cockpit, people interacting with robots, among others. We use SURF in a similar way as in image registration: we calculate a set of η α interest point in the foreground of image plane using the Good Features to Track algorithm. Since each RGB pixel has associated a depth value, we define the background as any point farther than a threshold th a . Thereby, we have a set of f α features with their respective 3D position p α j = {x, y, z} as follows:

d α j = {f α j , p α j } ∀ j ∈ {1 . . . η α } : ||p α j || < th bg . (2)
From Eq. 2 we have a descriptor that encode the appearance of a specific person in 3D world and by grouping them we get the set:

D α = {d α 1 . . . d α η }. (3) 
In practice, the parameters used in SURF get a η α ≈ 100-200 descriptors. SURF descriptors are robust in cases with little luminosity changes and flat objects, and in our problem they have proven to be useful for the pose estimation. Although, certain changes of a 3D object, due to lighting or rotation, can not be captured properly by these descriptors, therefore we use a shape descriptor that reinforces the estimation.

FPFH descriptors Curvature estimates and surface normals are a basic representation of the geometry of an object, easy to compute and compare. Although the level of detail captured is not much, with many points containing same (or similar) feature information. An alternative are the 3D descriptors, they summarize the object's geometry taking into account the aforementioned features in an efficient manner. Fast Point Feature Histograms (FPFH) descriptor, proposed by Rusu et al. [START_REF] Rusu | Fast point feature histograms (fpfh) for 3d registration[END_REF], captures the normal surface variations around a point, resulting in a high hyperspace signature that is invariant to the 6D pose (rotation and position) and robust against the neighborhood noise. It is formulated as follows:

f β j = F P F H(p β j ) = SP F H(p β j )+ 1 |N j | i∈Nj 1 κ i • SP F H(p i ), (4) 
where SPFH (Simplified Point Feature Histogram) computes the set of angular features of the PFH descriptor, κ i is the distance between p β j and p i and N j is the set of neighboring points of p β j . We build the set point to evaluate by considering: (1) the 3D projection of the points computed by Good Feature to Track methods, in the same way as in SURF, and (2) a down-sampling of the target point cloud. The 3D frame descriptors are formulated in a similar way as in the previous section:

D β = {d β 1 . . . d β η }, (5) 
where

d β j = {f β j , p β j } ∀ j ∈ {1 . . . η β } : ||p β j || < th bg . (6) 
Finally, each KF contains these three elements: appearance and shape signatures and a 3D face model, together with the depth image. In practice, the number of descriptors η β ≈ 200.

Offline Key-Frame learning

In this section we describe how the KFs are learned from a RGB-D stream, see workflow in Fig. 1. First, target pose is roughly estimated using a robust but computational expensive system based on 3 state-of-the-art methods (red block in Fig. 1). Only the most relevant frames, according to the quality of the estimated pose and the descriptors, are selected as Key-Frames, yellow block. Finally, an optimization process (green block) improves the KF estimated poses and suppresses spurious frames, i.e. which are not consistent with any other.

Rough pose estimation

Some methods require the use of other algorithms for initialization or learning, [START_REF] Yu | Headfusion: 360 • head pose tracking combining 3d morphable model and 3d reconstruction[END_REF][START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF]. Our proposal requires a rough estimation of the pose, or rough pose estimation, that is computed by combining three HPE systems that have a good accuracy/CPU-cost ratio: Kazemi et al. [START_REF] Kazemi | One millisecond face alignment with an ensemble of regression trees[END_REF] 2D face detector, Fanelli et al. [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF] depth based and Li et al. [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF] RGB-D based method.

These proposals complement each other and provide a first good estimate on which we rely to create a more robust method. Kazemi et al. [START_REF] Kazemi | One millisecond face alignment with an ensemble of regression trees[END_REF] proposal is a fast-facial feature detector and is part of a public library, DLib from [START_REF] King | Dlib-ml: A machine learning toolkit[END_REF]. Fanelli et al. [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF] approach has over 200 cites and has been included as a module for the Robot Operating System (ROS) library. Li et al. [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF] method brings more accurate results that Fanelli for far-reaching orientations.

The work of [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF] consists of two independent parts (computed in parallel): (1) a head pose tracking framework based on ICP and (2) a 3D model update system. This method is based on facial features that cannot handle well large head rotations and therefore the accuracy decreases when the 2D face landmark detector fails. Therefore, we propose a simple but reliable 3D feature, see in Fig. 3.2.1, that provides additional information for feature-based systems, i.e. [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF].

Let's assume q t-1 = {x, y, z} as the 3D position of nose tip estimated from previous frame and θ t-1 as the head orientation, red sphere and blue line in Fig. 3.2.1-b respectively. Assuming a slow movement of the target, the next nose point q t should be close to previous estimation, we can find this new nose by analyzing the neighboring of q t-1 in the current target' point cloud ψ t-1 :

N t = {p ∈ ψ t : ||p -q t-1 || < r},
where r = 0.2m is the searching radio. In other words, N t are the neighboring points of q t-1 and one of those is a good candidate to be the next nose tip (q t ∈ U t ), see yellow area of Fig. 3.2.1-d. From previous pose estimation, we define as nose the furthest point in the orientation θ t-1 :

Pt = arg min p∈Nt {υ(p, q t-1 , θ t-1 )},
where υ(•) computes the distance between point p and a line segment defined through q t-1 and θ t-1 . qt is shown as the blue sphere in Fig. 3.2.1-e.

In [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF], the author includes the 3D eye positions, detected with Viola and Jones [START_REF] Viola | Robust real-time face detection[END_REF] algorithm and projected through the depth image, as a weighted factor in the ICP algorithm. We do the same with this nose feature qt , the correspondences between qt and a 3D template model have a weight of 40, as indicated in [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF], and the rests are set to one. This process guides the template to zones with high probability of been the target's face, Fig. 3.2.1-f shows the final estimation. This feature enhances the accuracy of the original proposal, thus we use this nose-based framework in the KF learning. Like other person-specific methods [START_REF] Ghiass | Highly accurate and fully automatic head pose estimation from a low quality consumer-level rgb-d sensor[END_REF], we must learn the appearance of each new target, but the process is worth it because, as detailed below, it improves the accuracy of the estimations.

Automatic frame selection

In some application context, e.g. driver assistance, we can take some time to perform the KF learning before starting the vehicle without any danger. Here, robust estimates of head pose are essential because inaccurate or missed detections can cause accidents. This could be difficult to achieve due to target behavior is sometimes complex with random or abrupt movements. We develop our proposal considering that the KFs can handle well these scenarios providing high quality results. Therefore, we consider justifiable to take a little time in order to learn a robust person-specific set of KFs.

First, we estimate the rough pose as described in Sec. 3.2.1 where the methods (Kazemi, Fanelli and Li) propose each one a HPE P * = {q * , θ * } where q = {x, y, z} is nose location and θ is head orientation. Thus, we have at frame t three pose estimation candidates C t = {P Kazemi , P Li , P F anelli }. In the best-case scenario all the methods converge to a similar point, i.e. mean of the three poses Pt = {q t , θT } have a small variance V ar(C t ). If this is the case, we add Pt to the set of Key-Frame pose S KF . Otherwise, we select a pose according to the qualities of the methods. Kazemi is highly accurate with frontal view targets, Fanelli can detect poses even with rapid motion and Li works better with heads that exhibit large orientation (looking to right/left, full profile). Therefore, we privilege these techniques according to each situation: Descriptor computation So far, the descriptions D α and D β are calculated in the foreground and, therefore, may include irrelevant non-face features. To remove spurious information, we simply rely in the rough estimate P KF t that defines the position of the 3D face model. We use this knowledge to filter out the points far enough from the template. Let us assume q M as the nose position of the model zone and L 2 (d, p) as the Euclidean distance (norm L 2 ) between 3D points. Then, we filter the points according to a threshold th e as follows:

P KF t =                    Pt if V ar(C t ) < th v P Kazemi if ||q t -q Kazemi,t || < th d and θ o < th θ P Li if ||q t -q Li,t || < th d and θ o > th θ P F anelli if ||q t -q F anelli,t || < th
Dα = {d α j ∈ D α : L 2 (p α j , q M ) < th e } (7) Dβ = {d β j ∈ D β : L 2 (p β j , q M ) < th e } (8) 
Frame selection The accuracy of the estimation is related to the number of Key-Frames. More KFs improve the results, but computational cost is also increased. We keep the number low by discretizing the orientation space through spherical coordinates discretized at 20 degrees. An example is shown in Fig. 3 where a yellow polygon depicts the discretized orientation.

Once an estimate is close to the center of the discretized area, we keep the pose P KF t and compute the descriptors DKF t = { Dα , Dβ } around it. We change the color of the visited areas to green in such a way that the user can observe the missing orientations (Fig. 3). Sometimes an area is visited more than once, in this case we keep the best KF based on a fitting score (given by pose estimation algorithms) and number of descriptors. Finally, the KF set is defined as follows:

S KF = {P KF k , DKF k } ∀ k = {1 . . . K}. (9) 
In this learning process, target should move its head at normal speed performing only head rotations, as recorded in BIWI and ICT-3DHP datasets. We consider around of 30 -40 KF, covering most of the orientation space, and 100 SURF/FPFH descriptors. The set S KF can be used as it is, however we can enhance the pose estimation of each KF by applying an optimization step.

Key-Frame pose optimization

The KFs provide rich information of the pose and appearance of the target. An automatic learning method provides a good initial estimation, but small errors in the set of KF limit the quality of new estimates. Moreover, it could include spurious frames (un-consistent estimate), red circle in Fig. 4. Therefore, we can overcome those issues by applying an optimization process that provides a global and simultaneous consistency between all KFs and the 3D face model.

To achieve this we need to minimize the error between the 3D face model and all KFs. Let's assume M as the template model in a reference position (origin of 3D world with not rotation) and K k as the point cloud of the k-th KF. We need to process only the points corresponding to the face. This position is known from the estimated poses P KF k and therefore we filter the points p of K k keeping only those around 20 cm of the pose estimation, i.e.

H k = {p ∈ K k : L 2 (p, p KF k ) < 0.2m}.
Hence, the goal is to find the transformation parameters τ k = {R k , t k } that minimize two aspect: (1) the local error between the paired points of the human face model M and the KF point cloud H k , and (2) the global error between the rest of the KF facial point cloud H * ,

P k = {(h, p) : h ∈ H k , p ∈ M },
Q ik = {(h i , h k ) : h ∈ H i , h k ∈ H k }.
This can be achieved by minimizing the following cost function:

arg min τ K k=1 1 |P k | (h,p)∈P k ||p -T(h, τ k )|| 2 + K i =k λ i |Q k | (hi,h k )∈Q ik ||T(h k , τ k ) -T(h i , τ i )|| 2 , (10) 
where T(•) apply the geometric transformation of a point h with respect to τ * , |•| is the cardinality and τ = {τ 1 . . . τ K } is set of all transformations. The variable λ i weights the contribution of the i-th KF (H i ) to evaluate and is derived from the percentage of paired points between the face model M and the i-th KF point cloud:

λ i = |P i | |M | ∪ |H i | .
We can observe that λ i is close to zero when the number of paired points(P i ) is small, meaning this is KF is not a good match to work with because it is desalinated or is a spurious frame. At each iteration we remove the KFs with a low weight λ i < 0.25 because we cannot guaranty that those are a real part of the face or point cloud coming from bad estimates. We optimize the Eq. 10 following an iterative scheme such as ICP. First, we select a KF k and perform the optimization, and we repeat this process with the rest until convergence. Fig. 4 shows the KFs (projected to a reference frame) before and after optimization, from which the target's face can be seen more clearly. Finally, we recalculate the poses and filter 3D points of the model. with mustache or beard, causing a bias in the estimate. We can overcome this issue by adjusting the model according to the refined 3D point clouds. Let's assume Ĥ as the union of all 3D mesh projected in the reference position:

Ĥ = K k=1 T(H k , τ k ),
This point cloud Ĥ is seen as a scattered data and though an interpolation algorithm based on Delaunay triangulation [START_REF] Amidror | Scattered data interpolation methods for electronic imaging systems: a survey[END_REF], we create a mesh F = Delaunay( Ĥ) that describes the facial surface of the target. Then, the new model M is estimated from the paired vertex (M i , F i ) by minimizing the cost function:

i∈M || M i -F i || 2 + γ |N i | j∈Ni || M i -M j || 2 , (11) 
where N i are the neighboring vertex of M i and γ weights the similarity of the original model. This Eq. updates the points of M with respect to F allowing the generic template to evolve in a model M more similar to the target.

Online Head Pose estimation

In this section we present our original framework that exploits the characteristics of the KFs, in comparison with other existing approaches. We have a set S KF with appearance and shape descriptors (associated to 3D points) and a robust pose estimation. As mentioned above, descriptors are computed only on the area around the 3D model, so we have Dk = {d 1 , . . . , d η k } for each k KF. We apply a similar process for the current frame.

Pose estimation

Initialization For a new frame t, we first compute the descriptors following the steps as mentioned in section 3.1.2, sampling over the whole foreground images because we don't know the location of the target. Thus, we have extracted the descriptors D t = {D α t , D β t }. Although in some cases it may not be necessary to use both types of descriptors, the use of both allows to compensate any problem that the other has, for example drastic changes in the lighting affect SURF. 

arg min k 1 ρ k j dist( f (j) k , f (j) t ), (12) 
where dist computes the distance between two features and ρ k is the number of correspondences. After optimization, we set the k-th KF as the best candidate for the current t frame, i.e. S KF b = S KF k . Finding the best KF is a timeconsuming process, but our proposal achieves real-time results by considering the previous estimation. We evaluate first those KFs close to the last estimated pose and we accept it as the best frame if the number of correspondences is enough (i.e. > 20). This selection reduces considerably the computational cost.

Nevertheless, the correspondences between D t and Db could be inconsistent due to the symmetry of the face (i.e. eyes) or matching between different parts with similar appearance (i.e. mustache and eyebrow). Coherent matches must share similar geometrical characteristics such as distance and orientation in 3D coordinates.

Descriptor filtering Let's assume M * b,t as the correct match set between D b and D t and p as a vector containing the 3D position of both appearance (D α ) and shape (D β ) descriptors. We compute the mean and variance between the KF points p * b and current frame p * t in terms of distance and orientation, then we remove atypical points as follows:

M b,t = {m b,t ∈ M * b,t : M ah(m b,t , µ d , σ d ) < th m and M ah(m b,t , µ θ , σ θ ) < th m }, (13) 
where M ah(•) calculates Mahalanobis distance, th m < 1. is its associated threshold, µ * and σ * are the mean and variance, respectively, of: [START_REF] Sheikhi | Combining dynamic head pose-gaze mapping with the robot conversational state for attention recognition in human-robot interactions[END_REF] 

) 14 
where ω j is the confidence weight of the matched pair, calculated based on the distance between their corresponding features as follows:

ωj = exp -dist(f (j) k , f (j) t ) 2 σ 1 .
Thus, reliable features contribute more in the estimate of the transformation τt . This pose is enhanced by considering additional information such as occlusion of current frame. Now, let's assume M t as the model M after applying this rigid transformation. We improve the pose by aligning now the points p m of the model M t with the corresponding p t points of the current frame, which is done by minimizing the next point-to-plane cost function:

arg min Rt,tt j ω j (R t n (j) m ) T (R t p (j) m + t t -p (j) t ) 2 , (15) 
where n

(j)
m is the normal surface of point p (j)

m . The weight ω j encodes the affinity between correspondences based on their normals, distance and orientation with respect to the camera. We formulate it as follows:

ω j = c 1 ω 1 j + c 2 ω 2 j + c 3 ω 3 j , s.t. c 1 + c 2 + c 3 = 1,
where

ω 1 j = exp ang(n (j) m , n (j) t ) σ a1 , ( 16 
)
ω 2 j = exp ang(n (j) m , o j ) σ a2 , ( 17 
)
ω 3 j = exp L 2 (p (j) m , p (j) t ) σ a3 , ( 18 
)
ang(a 1 , a 2 ) = acos a 1 • a 2 ||a 1 || ||a 2 || . ( 19 
)
Eq. 16 measures the angle between the normals of points p (j) m and p (j) t respectively. Eq. 17 considers that the model itself could occlude some correspondences, which happens when the normal of the point p (j) m and its orientation with respect to the camera (i.e. a normal vector centered at p (j) m pointing to the camera) o j have a large angle. Finally Eq. 18 weights the correspondences according to their distances.

Sometimes it is not possible to find a suitable KF for a given frame, i.e. the number of matches is not enough. In this case, we use the last KF-based estimation as a temporal KF and thus we continue the pose estimation without interruptions.

We optimize the Eq. 10, 14 and 15 through an ICP scheme with classic termination criteria, i.e. maximum number of iteration [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF] and mean square error in terms of translation and rotation. Thus, we obtain the final pose P t = {p t , θ t }, which corresponds to the nose tip and orientation, respectively, of the model after the transformation τ t = {R t , t t }.

Key-Frame updating

Our system does not require a to learn all the 50 discretized orientation in order to be launched, but it benefits the more KFs there are. Therefore, the online system begins when it has 20 frames, then new KFs could be added from the current estimates of our proposal. This is done by checking the current estimated pose P t , if the orientation θ t does not have a KF associated in discretized space, we include it in the set following the considerations of Section 3.2.2. Otherwise we compare the fitness score of current frame with the closest KF. The score checks the average distance between the model and point cloud, the number of descriptors and the feature distance and we keep the one with more descriptors and smaller distance. The optimization described in Section 3.2.3 is carried out when enough KFs have been added or modified, i.e. 5 frames. Since this operation is performed in parallel and only when necessary, no additional time is added to the online estimate.

Experimental evaluations

We evaluate our KF-based proposal, Fanelli's method and Li' approach with the variant of the 3D nose feature, see Section 3.2.1, on two public benchmarks: ICT-3DHP dataset [START_REF] Baltrušaitis | 3d constrained local model for rigid and non-rigid facial tracking[END_REF] and BIWI Kinect Head Pose Database [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF]. Also, we create a more realistic dataset with complex behaviors that challenge these pose estimation frameworks.

Datasets

BIWI Kinect Head Pose Database [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF] is a baseline for evaluating HPE algorithms. It consists of 24 sequences with 20 persons of different gender, age and facial characteristics. It has over 15K RGB-D images aiming to frame-byframe detection and not tracking because there are many sequences with some missed frames. Each sequence has a single target rotating him/her head, with a range of ±75 and ±60 degrees for yaw and pitch respectively, slowly with a neutral expression. Head pose annotations are estimated using a tracking system. ICT-3DHP Dataset is proposed in [START_REF] Baltrušaitis | 3d constrained local model for rigid and non-rigid facial tracking[END_REF]. It is divided into 10 sequences containing about 14k RGB-D frames with both color and depth images. The targets perform a similar head motion as in BIWI dataset, but some targets present facial expressions, self-occlusion (e.g. hair) and small change of position. The ground-truth is generated through a Polhemus FASTRAK flock of birds tracker, which is a commercial system that estimate head pose from sensors located over a white sport cap.

Our ICU-Head Pose Dataset consists of 4 sequences each with a unique person, see Fig. 5. The targets have different facial morphology and features, i.e. glasses, mustaches or beards. The sequences are created to test the performance of HPE algorithms under challenging scenarios. Therefore, targets perform complex behaviors including change of head position, large range head orientation, self-occlusions, fast motion and facial deformation.

We collect the sequences with a Microsoft Kinect v1 under controlled conditions with a resolution of 640 × 480. The ground-truth is automatically annotated through a commercial Motion Caption (MoCap) system with a total of 6 marks (reflective spheres) fixed over a bicycle helmet using metallic bars of 10cm, see Fig. 6. The MoCap detects these markers as a rigid object and estimates the location and orientation of the helmet, and therefore the target's head, with high precision.

Each target performs a different set of behaviors with unique characteristics such as speed. A summary of the sequences is presented in Tab. 1. The details of each sequence are the following: In Seq1 the target performs simple actions at slow speed. It presents small range over the head orientation with a complexity similar to the public BIWI and ICT-3DHP datasets. We rate Seq2 as medium difficulty because it presents a large orientation range and fast motions. Also, the target changes its head position several times, approaching and moving away to the camera. Seq3 and Seq4 are the most challenging of the whole set. In Seq3 the target performs extreme head orientation and multiple self-occlusion. Finally, Seq4 depicts fast head movements in orientation and position. Throughout the article, we show several examples using our dataset.

Evaluation criteria

We evaluate the performance of the HPE algorithms through standard metrics such as Missed Detection, Euler Angles Error (roll, pitch and yaw) and Mean Angular Error. A head pose is labeled as missed detection whether the estimation algorithm does not converge to a solution, according to the termination criteria, or the proposed pose has an error of more than 45 degrees. We learn the KFs for each sequence using the system described in Section 3.2.2 and those frames are not considered in the evaluation step.

We evaluate and report the results of 3 proposals: (1) Fanelli method [START_REF] Fanelli | Random forests for real time 3d face analysis[END_REF], using the open source code, (2) an implementation of Li proposal [START_REF] Li | Real-time head pose tracking with online face template reconstruction[END_REF] and (3) Li Nose that includes our nose-based feature in the approach of Li. We analyze different parts of our proposal separately creating 3 variants, an overview is shown in Tab. 2. Recall that KFv1 is our a basic version, published in [START_REF] Madrigal | 3d head pose estimation enhanced through surf-based key-frames[END_REF], which only uses the SURF descriptors.

We only report the results with respect to the orientation because an incorrect position estimate is reflected in the orientation error as well.

Results

First, we analyze the BIWI dataset, the Fig. 9 reports the Mean Error in all sequences per proposal and Fig. 8 shows the Missed Detection percentage. The mean error in the Libased approaches (red and green columns) is almost the same but number of missed detection has decreased substantially when we incorporate the nose feature (green column). The last three columns (purple and cyan) depict the results of our proposal. The performance, in both accuracy and detection rate, is improved after we apply the optimization process over the KFs. Also, Tab. 3 reports the results and compares them against other methods in the state of the art. Our proposal has the best accuracy in terms of pitch and yaw meanwhile Venturelli's approach [START_REF] Venturelli | From depth data to head pose estimation: A siamese approach[END_REF] has a similar performance for roll. Nevertheless, the variance of our KFv3 proposal is smaller in all cases, making this approach more stable. Similarly, we evaluate the proposals with the ICT-3DHP dataset and we show the results in Fig. 10 and11. The mean error is almost the same for both Li approach and KFv1 proposal, but we can observe that the optimized approach KFv3 is more accurate with a missed detection rate of less than 0.5%. We compare our results with other approaches in Tab. 4. KFv3 method gives the best results, with a smaller variance of all the techniques, meaning it is more stable.

Fig. 12-13 and Tab. 5 show the results using our dataset. Fanelli approach has the biggest error, Li-based proposals have a similar Mean Error around 8 • and KF-based approaches have the smallest error. By observing Fig. 12, we point out a great improvement with respect to missed detection because our KF-based approach handles better fast motions and occlusions. In Fig. 7 we see a qualitative example for Seq3 where, for a given frame, we estimate the pose depicted with a blue line and the 3D template model in green. We observe that Fanelli and Li have limitations detecting the pose meanwhile our approach can detect a sufficient part of the face to infer a correct pose.

From all the results, we observe that Fanelli's approach has the bigger error in most of the cases. This is because it is difficult to find the point of the nose when the face is in full profile, which makes the nose barely distinguishable. A better training could improve this aspect but that requires more pre-processing.

In general, Li's basic approach has a better performance than Fanelli's, but in our dataset Li's proposal has problem detecting the pose. Fig. 14 shows more detailed results of each sequence. We can observe how sequences 1 and 2 have a performance similar to those of the previous public datasets, nonetheless in sequences 3 and 4 the missed detection rate of Li is higher than the rest. These sequences present fast motion with both targets wearing glasses, therefore the images are blurred and, in some occasions, the light is reflected in the glasses. This makes it difficult for the 2D face landmark detector to find the eyes, forcing Li's proposal to use ICP without any additional information. If we compare the red and green column, we observe an improvement, meaning that the addition of the 3D nose feature overcomes the aforementioned problems.

In Figs. 15 and 16 we analyze the results in terms of missed detection. These Figs. are 2D histograms of the discretized orientation for pitch and yaw. When a frame is labeled as missed detection, we use the ground-truth and increase a counter of the corresponding pose. The histograms are normalized considering the number of frames, so each cell (for a specific orientation) depicts the percentage of missed detections. The histogram center, highlighted with the green and blue arrows, represents a target in frontal view (looking to the camera). Following over x axis means the head is moving from left to right (blue arrow) or from up to down with the y axis. In Fig. 15 we report the results of sequence 14 of BIWI dataset where we can observe how Fanelli's proposal (left image) cannot detect well a pose at full profile. In other words, it has problems to handle a target looking up on the right. The rest of the proposals (Li, Li with nose feature and KFv3) perform well in this sequence. Fig. 16 shows other case but with BIWI dataset using the sequence 24. Both approaches based on Li (first two images at the left) do not detect well the head when it is looking a little to the upper right corner. The third figure shows the results with our KF-based method without optimization (KFv1). Most of the undetected frames happen when the target is looking upward. On the contrary, this does not happen with the KFv3 because it improves the detection rate in that orientation.

The previous results show how our approach improves the HPE performance under challenging scenarios. In some cases, other proposals provide a little more accurate result, but in all cases the KF-based approach is more stable, it does not require a specific architecture (i.e. GPUs) with a reasonable computation time. This makes the approach more reliable and robust.

Discussion

Our learning step uses the output of two state-of-the-art HPE methods, e.g. Fanelli and Li, but several proposals in Tables 3 and4 outperform them. The intuitive question is why we privilege those instead of more accurate proposals. This can be answered by observing Tab. 6 that summaries some features of the most relevant approaches. The proposals of Ahn, Saeed and Venturelli [START_REF] Ahn | Real-time head orientation from a monocular camera using deep neural network[END_REF][START_REF] Saeed | Boosted human head pose estimation using kinect camera[END_REF][START_REF] Venturelli | From depth data to head pose estimation: A siamese approach[END_REF] are more accurate and faster, but they require the use a GPU card. This makes them more expensive and complex to use in embedded systems. The other proposals, e.g. [START_REF] Papazov | Real-time 3d head pose and facial landmark estimation from depth images using triangular surface patch features[END_REF][START_REF] Yang | Face pose estimation with combined 2d and 3d hog features[END_REF][START_REF] Yu | Headfusion: 360 • head pose tracking combining 3d morphable model and 3d reconstruction[END_REF], require more computational time with high variance in their estimate, i.e. [START_REF] Papazov | Real-time 3d head pose and facial landmark estimation from depth images using triangular surface patch features[END_REF] has a variance of 16 and 9.6 degrees for yaw and pitch respectively.

Our proposal has a computational cost of ≈ 10 fps, which is reasonable for most applications. One characteristic is that most of our proposal is highly parallelized, so we can improve calculation times if necessary.

When comparing the results of each dataset, we observe that in the simplest sequences our proposal obtains results with equivalent precision. Also, the results with the most complex sequences (i.e. ICU dataset) show that our proposal has a better performance both in accuracy and missed detection percentage.

If we compare the three versions of KF, we observe how the versions with global optimization (KFv2 and KFv3), described in the Section 3.2.3, improves the stability of the performance in comparison with the KFv1. The accuracy is further improved in KFv3 by including: (1) the descriptor distance as weighting factors in the optimization process and (2) an adaptive model to the target's face.

We give a qualitative evaluation of the tested methods in Tab. 7, based on our personal experience. Here we grade them according to our impression in each aspect as follows: (+) low, (++) good and (+++) excellent.

As show in the first row, Li does not handle well fast motions. In this case, blurry images affect directly two appearance-based aspects of the proposal: the 2D (eye) landmark detector and the Color-based k-means, which remove no-face correspondences of the ICP algorithm. This makes it unstable in fast situation and therefore it gives a low detection rate. In the other hand, it can detect poses in a wide range of orientations with a good precision.

Li's proposal improves when more features are available. The inclusion of the nose feature enhances the accuracy of the estimations and reduce the missed detection rate. This is because the 3D feature is based on depth information, which is not much affected by blurry images. In general, the orientation range and accuracy are better than the classic implementation but still needs more improvement. Fanelli's approach deals better with fast motions because depth information is not distorted by movement. In contrast, it has a more restricted detection range due to the nose tip, the key element of Fanelli method, is undistinguished at images of full profile. In other words, there is not enough evidence to distinguish the nose tip from the edge of the face. The rest of the time, it has no problem detecting a pose in short time and this is why Li used this method to initialize its proposal. Nevertheless, the accuracy of the results is low.

In most of the fast motions, our proposal could find enough features to estimate the pose. Also, it estimates the pose even with targets at full profile (i.e. looking to the left of right) with an excellent orientation range. From these two aspects, it has less problems detecting the target most of the time with competitive results to those in the state of the art.

From the results, we observe how the use of KF-based approach improves the estimation, and those are enhanced by applying the global optimization process. The inclusion of the descriptor weights (KFv3) helps to estimate more robustly the pose because it reduces the importance of weak correspondences, which may not be good match (great distance between descriptors), and prioritizes strong matches.

Conclusion and future work

This paper has presented a framework for HPE based on Key-Frames, which includes information of appearance, shape head pose hypothesis. This includes an original offline learning proposal consists of two stages: (1) an automatic KF learning step and (2) an original post-processing step that minimize globally the error between KFs and the 3D face model, enhancing the accuracy and consistency of the KF set. We evaluated this person specific approach in two public benchmarks and we have shown that the use of the KF provides robust estimates for a wide range of orientations in reasonable time. Also, we presented a more challenging dataset with complex behaviors that includes self-occlusions, fast motion, change of the head position and extreme head orientation. The results in this dataset showed that our approach can estimate a pose even in complex situations, contrarily to other approaches. At the same time, we have shown that our proposal is more stable than others and with a gain in precision as the complexity of the datasets increases.

We have compared against several works and considered classic benchmarks datasets. Regarding the benchmarked datasets, the results have shown how the KF-based approach, learned from weaker estimation algorithms, provides good performance and how those are enhanced after optimization. Furthermore, our approach maintains a competitive CPU cost with respect to other applications.

A natural investigation track is to relax the offline stage (to leave a mostly online system) by learning only a couple of KFs of the target, with neutral pose and looking into the camera direction. Then, we perform our pose estimation algorithm where we learn more KFs as soon as new estimates are available. The set of KF is updated as described in Section 3.3.2. 

Figure 2

 2 Figure 2 Estimation of nose feature using previous pose.

  d and s < th s , where th d = 5cm and th θ = 45 o are the pose and orientation thresholds, θ o is the existing angle between camera origin and target pose and th v = 0.5 is the variance threshold. We define s = || Pt -P KF t-1 || as the angular speed between two consecutive pose estimations with th s = 1rad/s as speed threshold.

Figure 3

 3 Figure 3 Key-Frame learning process. Each figure represents the same target observed from three views. The discretized orientation is depicted as the region of the sphere. The color indicates visited areas (green) from regions without an associated pose (yellow). The set of points in red is the 3D model of the estimated pose. Target orientation at current frame is shown with the blue line.

Figure 4

 4 Figure 4 Three views of the point cloud of all KFs projected to a common frame before (top) and after optimization (bottom).

  Key-Frame selection We need to find the KF S KF b = {P b , D b } that matches better with the current frame. Let's assume f is a vector with the feature part of the SURF D α and D β FPFH descriptors. Then, for paired features {f (j) k , f (j) t } (KF and current frame respectively), we compare D t against each KF descriptor DKF k as follows:

Figure 5

 5 Figure 5 Example of the 4 sequences of our dataset. The images show the 3D point cloud (on the left) and the RGB image (on the right) for each sequence.

Figure 6

 6 Figure 6 Helmet used for the acquisition of the ground-truth.

Figure 7

 7 Figure 7 Qualitative results. Head pose estimated by 4 different proposals using the same frame.
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 8 Figure 8 Mean of the results on the BIWI dataset. Percentage of missed detections.
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 10 Figure 10 Mean of the results on the ICT dataset. Percentage of missed detections.

Figure 12

 12 Figure 12 Mean of the results on the ICU dataset. Percentage of missed detections.

Figure 14

 14 Figure[START_REF] Czupry Ński | High accuracy head pose tracking survey[END_REF] Results of ICU sequences using: (blue) Fanelli, (red) Li simple approach, (green) Li proposal including of nose detection heuristic, and (purple) our descriptor-based method without and with optimization (cyan). The first row shows the mean angular error and the second the missed detection. For clarity, each graphic only shows two sequences.

Figure 15 2D

 15 Figure 15 2D Histogram of the missed detection distribution on sequence BIWI 14. Results using: (a) Fanelli, (b) Li approach, (c) Li proposal including of nose detection heuristic, and (d) our descriptor-based method, KFv3.

Figure 16 2D

 16 Figure 16 2D Histogram of the missed detection distribution on sequence BIWI 24. Results using: (a) Li approach, (b) Li proposal including of nose detection heuristic, and (c) our KF-based method without optimization (KFv1) and (d) our KFv3 proposals.

  Initial poseWe use the points p of the correspondences M b,t to compute a rigid transformation from D b to D t in order to get an initial head pose P b . The relative transformation τt = { Rt , tt } is estimated by minimizing the cost function:

	arg min Rt, tt j	ωj || Rt	p(j) b + tt -	p(j) t || 2 ,	(

Euclidean distance between p * b and p * t , and (2) orientation of p * b with respect p * t .

Table 1

 1 Description of our own head pose sequences.

	Seq	Frames	Rot. Range	Mean Speed
			(degrees)	(rad/s)
	Seq1	1890	±60 yaw ±40 pitch	0.94
	Seq2	1083	±80 yaw [+30, -65] pitch	0.83
	Seq3	1535	±80 yaw ±45 pitch	2.3
	Seq4	1929	±80 yaw [+20, -80] pitch	2.51

Table 2

 2 Evaluation of our proposal considering the different elements.

		Descriptors	Global	3D Model	Weighted
	Variants	SURF	FPFH	optimization (Eq. 10)	Update (Eq. 11)	ICP (Eq. 15)
	KFv1	YES	NO	NO	NO	NO
	KFv2	YES	NO	YES	YES	NO
	kFv3	YES	YES	YES	YES	YES

  Mean of the results on the BIWI dataset. Mean orientation error (in degrees).

		10											9.30										
		9	8.50																8.40				
		8							7.40														
		7																						Fanelli
	Error in degrees	4 5 6 3 2	4.77	4.66	4.15	2.75	2.13		3.70	3.60	3.29	2.50	2.12	5.50	5.30	4.30	3.21	2.28	4.66	4.52	3.91	2.82	2.18	Li Linose KFv1 KFv2 KFv3
		1																					
		0																					
				Roll					Pitch				Yaw				Mean		
	Figure 9 Method					Yaw	Pitch			Roll	Mean				
		2.5%	Fanelli et al. [4] (*) 15.36%														
					2.07%																	
	Missed Detection Percentage	0.5% 1.0% 1.5% 2.0%				1.34%	0.82%	0.50% 0.43%													
		0.0%																					
							Mean															

  Mean of the results on the ICT dataset. Mean orientation error (in degrees).

		16						14.83																		
		14																								
	Error in Degrees	12 6 8 10 4	7.03	4.71	4.74	5.93	5.09	4.33	5.44	5.10	6.01	4.74	3.88	10.80	8.30	8.31	8.13	5.40	4.19	10.89	6.15	6.05	6.69	5.07	4.14	Fanelli Li Linose KFv1 KFv2 KFv3
		2																								
		0																								
					Roll				Pitch					Yaw					Mean			
	Figure 11 Method					Yaw	Pitch		Roll	Mean				
					Fanelli et al. [4] (6.9		7.06		10.48	8.15					
					Venturelli et al. [26] (+)		9.8±10.1	4.5±4.6		4.4±4.5	6.23 ± 6.4			
					KFv1					8.															

*) 10.80 ± 7.8 14.83 ± 9.4 7.03 ± 8.5 10.89 ± 8.1 Li et al.[10](*) 8.3 ± 8.0 5.44 ± 4.3 4.71 ± 5.2 6.15 ± 5.85 Li Nose (*) 8.31 ± 7.3 5.10 ± 5.2 4.74 ± 5.4 6.05 ± 5.92 Saeed et al. [27] (+) 5.1 ± 5.4 4.9 ± 5.3 4.4 ± 4.6 4.8 ± 5.1 Baltrušaitis et al. [29](+) 13 ± 8.7 6.01 ± 5.8 5.93 ± 5.2 6.69 ± 6.49 KFv2 5.40 ± 6.4 4.74 ± 4.1 5.09 ± 5.7 5.07 ± 5.44 KFv3 4.19 ± 4.8 3.88 ± 4.2 4.33 ± 4.9 4.14 ± 4.47

Table 4

 4 Results

		14%		
			12.4%	
		12%	11.2%	
	Missed Detection Percentage	4% 6% 8% 10%	8.0%	3.6% 3.3%
		2%		1.5%
		0%		
			Mean

on ICT-3DHP dataset in Euler angles. (*) Estimation that we calculated. (+) Results taken from author's papers.

Table 5

 5 Mean of the results on the ICU dataset. Mean orientation error (in degrees). Results on ICU dataset in Euler angles. (*) Estimation that we calculated.

		20	18.29																						
		18					16.19																		
	Error in Degrees	16 8 10 12 14 6 4	13.59	12.20	9.48	9.08	3.74	6.21	6.23	6.23	6.17	4.08	8.02	4.65	4.31	4.02	3.83	3.88	14.17	8.15	7.58	6.58	6.36	3.90	Fanelli Li Li nose KFv1 Kfv2 KFv3
		2																							
		0																							
				Roll				Yaw					Pitch					Mean			
	Figure 13 Method			Yaw		Pitch			Roll		Mean					
						Fanelli et al. [4] (*) 16.19± 8.5	8.02 ± 4.6	18.29 ± 12.1	14.17 ± 8.4				
						Li et al. [10](*)		6.21± 6.9	4.65 ± 2.6	13.59 ± 6.7	8.15 ± 5.4				
						Li Nose (*)		6.23 ± 6.6	4.31 ± 2.1	12.20 ± 4.8	7.58 ± 4.5				
						KFv1		6.23± 6.1	4.02± 2.66	9.48± 8.47	6.58± 6.2				
						Kfv2		6.17± 5.5	3.83 ± 1.9		9.08 ± 4.1	6.36 ± 3.8				
						KFv3		4.08± 4.6	3.88± 2.1		3.74± 3.6	3.90 ± 3.5				
	Method					Time		Architecture													
						(ms per frame)																	
	Kazemi et al. [6](*)			12.0 ± 1			CPU														
	Fanelli et al. [4](*)			20.1 ± 2			CPU														
	Li et al. [10](*)				62.4 ± 5			CPU														
	Li Nose(*)				64.2 ± 5			CPU														
	KFv3 (*)					89.9 ± 10			CPU														
	Papazov et al. [12](+)		122			CPU														
	Yang et al. [28](+)			∼ 100			CPU														
	Yu et al. [9](+)				∼ 250			CPU														
	Ahn et al. [24](+)			0.98			GPU														
	Venturelli et al. [26](+)		10			GPU														
	Saeed et al. [27](+)			> 45			GPU														

Table 6

 6 Evaluation of computational cost of each pose proposals. (*) Time that we calculated. (+) Results taken from author' papers.

Table 7

 7 Evaluation summary of each head pose estimator.

	Method	Fast	Orient. Detection	Precision
		motion	range	rate	
	Li et al. [10]	+	++	+	++
	Li Nose	++	++	++	++
	Fanelli et al. [4]	+++	+	+++	+
	KFv3	++	+++	+++	++
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