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Conservatism reduction for linear parameter-varying control design facing inexact scheduling parameters illustrated on flight tests

INTRODUCTION

The effectiveness of Linear Parameter-Varying (LPV) controllers, which is known as one of the realization of gain-scheduled control technique, for controlling systems modeled as LPV systems are widely known, and many reports have already been published [START_REF]Control of Linear Parameter Varying Systems with Applications[END_REF][START_REF] Sename | Robust Control and Linear Parameter Varying Approaches[END_REF][START_REF] Hoffmann | A Survey of Linear Parameter-Varying Control Applications Validated by Experiments or High-Fidelity Simulations[END_REF] , etc. Most of them implicitly suppose that exact scheduling parameters are available; however it does not always hold true in practical systems due to aging effect, finite resolutions, and other unexpected uncertainties of the measurement equipment of scheduling parameters. For example, airspeed is widely used as one of the scheduling parameters in gain-scheduled flight controller design [START_REF] Stevens | Aircraft Control and Simulation[END_REF] , and Pitot tube is widely used to measure airspeed in aeronautical community; however, it is also well known that so-called position error always exists due to the effect of aircraft fuselage and thus the precise airspeed cannot be always measured, as illustrated in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] .

The research of designing LPV output feedback controllers depending on inexact scheduling parameters has been one of the hot research topics in gain-scheduled controller design, and several methods have already been proposed [START_REF] Daafouz | On Inexact LPV Control Design of Continuous-Time Polytopic Systems[END_REF][START_REF] Sato | Gain-Scheduled Output-Feedback Controllers Using Inexact Scheduling Parameters for Continuous-Time LPV Systems[END_REF][START_REF] Sato | Gain-Scheduled Flight Controller Using Bounded Inexact Scheduling Parameters[END_REF][START_REF] Sadeghzadeh | Gain-Scheduled Continuous-Time Control Using Polytope-Bounded Inexact Scheduling Parameters[END_REF] , etc. On the uncertainties in the inexactly provided scheduling parameters, particular uncertainties are first supposed [START_REF] Daafouz | On Inexact LPV Control Design of Continuous-Time Polytopic Systems[END_REF][START_REF] Sato | Gain-Scheduled Output-Feedback Controllers Using Inexact Scheduling Parameters for Continuous-Time LPV Systems[END_REF] , then the supposition has been relaxed [START_REF] Sato | Gain-Scheduled Output Feedback Controllers for Discrete-Time LPV Systems Using Bounded Inexact Scheduling Parameters[END_REF][START_REF] Lacerda | A New Approach to Handle Additive and Multiplicative Uncertainties in the Measurement for 𝐻 ∞ LPV Filtering[END_REF] . On this issue, it has been established in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] that as long as the design matrix inequalities are given as parametrically affine, bounded uncertainties in the provided scheduling parameters can be supposed by using the convexity of design matrix inequalities w.r.t. parameters; viz., it can be supposed that arbitrary uncertainties exist in the provided scheduling parameters as long as they are bounded and the design matrix inequalities are given as parametrically affine. However, in the papers above, over-bounding for the discrepancies between the actual scheduling parameters and the provided ones is used to robustify the LPV controllers against the uncertainties in the provided scheduling parameters, and all the adopted methods in the papers above are merely sufficient conditions for the over-bounding. In other words, to the best of authors' knowledge, no methods which introduce no conservatism in over-bounding the parameter discrepancies have yet been proposed. On the use of inexact scheduling parameters, switching LPV controllers depending on inexact scheduling parameters have been also proposed in [START_REF] Zhao | Switching LPV Controller Design Under Uncertain Scheduling Parameters[END_REF] to improve control performance.

Based on the research background above, we propose a new over-bounding for the parameter discrepancies in LPV output feedback controller design. The new over-bounding theoretically introduces no conservatism with the reverse use of Elimination lemma [START_REF] Gahinet | A Linear Matrix Inequality Approach to 𝐻 ∞ Control[END_REF][START_REF] Iwasaki | All Controllers for the General 𝐻 ∞ Control Problem: LMI Existence Conditions and State Space Formulas[END_REF][START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF] . Our supposed LPV systems in this paper are slightly relaxed from parametrically affine LPV systems [START_REF] Sato | A New Method for Gain-Scheduled Output Feedback Controller Design Using Inexact Scheduling Parameters[END_REF][START_REF] Sato | Robust Gain-Scheduled Flight Controller via A New Formulation for Over-Bounding Scheduling Parameter Errors[END_REF] to parametrically multi-affine LPV systems without introducing huge numerical complexity in the design process. As a practical application of our method, we design discrete-time LPV flight controllers for the lateral-directional motions of a research airplane MuPAL-𝛼 in the same problem setup adopted in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] , and confirm that our method produces better LPV controllers than the method in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] with respect to (w.r.t.) control performance, i.e. model-matching performance. Furthermore, the control performance is examined in practical environment, i.e. in flight tests, which has not been presented in our conference papers [START_REF] Sato | A New Method for Gain-Scheduled Output Feedback Controller Design Using Inexact Scheduling Parameters[END_REF][START_REF] Sato | Robust Gain-Scheduled Flight Controller via A New Formulation for Over-Bounding Scheduling Parameter Errors[END_REF] . To enhance theoretical contributions of this paper, we address the design problem in both continuous-time and discrete-time cases.

Notations: 𝟎 denotes an appropriately dimensional zero matrix, 𝐈 denotes an appropriately dimensional identity matrix (if necessary, the dimension is denoted by the subscript), ℝ + , ℝ 𝑛 , ℝ 𝑛×𝑚 and 𝕊 𝑛 + respectively denote the sets of positive real scalars, 𝑛-dimensional real vectors, 𝑛 × 𝑚-dimensional real matrices and 𝑛 × 𝑛-dimensional positive definite matrices, the symbol * in a matrix represents an abbreviated asymmetric term, 𝖽𝗂𝖺𝗀 ( 𝑋 1 , … , 𝑋 𝑚 ) denotes a block diagonal matrix composed of 𝑋 1 , … , 𝑋 𝑚 , and 𝖧𝖾 {𝑋} for a square matrix 𝑋 denotes 𝑋 + 𝑋 𝑇 . For a time-varying vector 𝑥, 𝛿 [𝑥] denotes ẋ ∶= 𝑑 𝑑𝑡 𝑥 and 𝑥 + ∶= 𝑥(𝑘 + 1) in continuous-time and discrete-time cases respectively.

The remainder of this paper is structured as follows: Section 2 shows our method for over-bounding Hermitian terms via Elimination lemma; Section 3 shows the proposed design method for discrete-time LPV output feedback controllers depending on inexactly provided scheduling parameters; Section 4 shows discrete-time LPV flight controller design using the method in Section 3 and the verification results by flight tests; and concluding remarks are finally given. The counterpart results in Section 3 for continuous-time case are all given in the appendix.

A NEW OVER-BOUNDING FOR HERMITIAN TERMS

In LPV output feedback controller design addressed in the next section, the term containing the scheduling parameter discrepancies is represented as a Hermitian term, and it should be over-bounded by another tractable term to robustify LPV controllers against the discrepancies. Thus, in this section, a general problem w.r.t. over-bounding is considered, viz., the verification problem of the following matrix inequalities containing a Hermitian term is considered:

𝑄 0 -𝖧𝖾 { 𝑄 1 𝑄 2 } ≻ 0, (1) 
where 𝑄 0 ∈ 𝕊 𝑛 + , 𝑄 1 ∈ ℝ 𝑛×𝑙 , and 𝑄 2 ∈ ℝ 𝑙×𝑛 are given. With use of Elimination lemma [START_REF] Gahinet | A Linear Matrix Inequality Approach to 𝐻 ∞ Control[END_REF][START_REF] Iwasaki | All Controllers for the General 𝐻 ∞ Control Problem: LMI Existence Conditions and State Space Formulas[END_REF][START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF] , we give the following formulation to verify the feasibility. Lemma 1. [START_REF] Sato | A New Method for Gain-Scheduled Output Feedback Controller Design Using Inexact Scheduling Parameters[END_REF] The following are both equivalent to (1). Proof. Note that inequality (1) is equivalently represented as

∃𝑅 ∈ ℝ 𝑙×𝑙 s.t. [ 𝑄 0 𝑄 1 * 𝟎 ] + 𝖧𝖾 {[ 𝟎 𝐈 𝑙 ] 𝑅 [ 𝑄 2 𝐈 𝑙 ] } ≻ 0 (2) ∃ R ∈ ℝ 𝑙×𝑙 s.t. [ 𝑄 0 * 𝑄 2 𝟎 ] + 𝖧𝖾 {[ 𝟎 𝐈 𝑙 ] R [ 𝑄 𝑇 1 𝐈 𝑙 ] } ≻ 0 (3) 
[ 𝐈 𝑛 -𝑄 𝑇 2 ] [ 𝑄 0 𝑄 1 * 𝟎 ] [ 𝐈 𝑛 -𝑄 2 ]
≻ 0, and that

[ 𝐈 𝑛 𝟎 ] = [ 𝟎 𝐈 𝑙 ] 𝑇 ⟂ and [ 𝐈 𝑛 -𝑄 𝑇 2 ] = [ 𝑄 2 𝐈 𝑙 ] 𝑇 ⟂ hold.
Then, the existence of 𝑅 satisfying (2) is equivalent to 𝑄 0 ∈ 𝕊 𝑛 + and (1) from Elimination lemma [START_REF] Gahinet | A Linear Matrix Inequality Approach to 𝐻 ∞ Control[END_REF][START_REF] Iwasaki | All Controllers for the General 𝐻 ∞ Control Problem: LMI Existence Conditions and State Space Formulas[END_REF][START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF] . It is thus proved that the feasibility of (1) under 𝑄 0 ∈ 𝕊 𝑛 + is equivalent to the existence of 𝑅 such that (2) holds. As matrix 𝑅 is confirmed to be non-singular from the bottom-right block in inequality (2), the equivalence between (2) and ( 3) is straightforwardly confirmed by setting R = 𝑅 -1 .

In [START_REF] Sato | Gain-Scheduled Output-Feedback Controllers Using Inexact Scheduling Parameters for Continuous-Time LPV Systems[END_REF] for continuous-time case and in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] for discrete-time case, the following formulation is used to over-bound the term related to the scheduling parameter discrepancies, i.e. 𝖧𝖾{𝑄 1 𝑄 2 } in (1). Lemma 2. C.f. 18 1 If one of either conditions (4) or (5) holds then inequality (1) holds.

∃Υ ∈ 𝕊 𝑙

+ s.t.

[ 𝑄 0 𝑄 1 + 𝑄 𝑇 2 Υ 𝑄 𝑇 1 + Υ𝑄 2 Υ ] ≻ 0 (4) ∃Υ ∈ 𝕊 𝑙 + s.t. ⎡ ⎢ ⎢ ⎣ 𝑄 0 𝑄 1 𝑄 𝑇 2 Υ 𝑄 𝑇 1 Υ 𝟎 Υ𝑄 2 𝟎 Υ ⎤ ⎥ ⎥ ⎦ ≻ 0 (5) 
As mentioned in [START_REF] Sato | Control of Linear Parameter Varying Systems with Applicationsch. Chapter 8: Gain-Scheduled Output-Feedback Controllers with Good Implementability and Robustness[END_REF] , it has not yet been clarified which condition is less conservative between (4) and (5). We claim that both conditions are conservative compared to Lemma 1.

Lemma 3.

If either (4) or (5) holds, then (2) holds.

Proof. Let us suppose that (4) holds. As Υ ≻ 0 is supposed in the bottom-right block in (4), then the following inequality holds:

[ 𝑄 0 𝑄 1 + 𝑄 𝑇 2 Υ 𝑄 𝑇 1 + Υ𝑄 2 Υ + Υ ] ⪰ [ 𝑄 0 𝑄 1 + 𝑄 𝑇 2 Υ 𝑄 𝑇 1 + Υ𝑄 2 Υ
] . Thus, (2) holds with 𝑅 = Υ. Next, let us suppose that (5) holds. Preand post-multiplying

[

𝐈 𝟎 𝟎 𝟎 𝐈 𝐈

] and its transpose to (5) respectively lead to (2) with 𝑅 = Υ. Thus, the assertion is proved.

In summary, with a slight abuse of mathematical expressions, the following relation holds on the feasibility of (1): Lemma 2 ⊆ Lemma 1 ⇔ (1).

Using Lemma 1, we propose a design method of LPV output feedback controllers depending on inexact scheduling parameters, and show the conservatism reduction compared the methods in [START_REF] Sato | Gain-Scheduled Output-Feedback Controllers Using Inexact Scheduling Parameters for Continuous-Time LPV Systems[END_REF][START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] .

Remark 1. In 9 , a similar method to Lemma 1 is used for the design problem of LPV output feedback controllers depending on inexact scheduling parameters; however, the method uses 𝑟𝐈 𝑙 instead of full matrices 𝑅 and R. Thus, the proposed method inevitably introduces conservatism for over-bounding the discrepancies. □

PROPOSED METHOD IN DISCRETE-TIME CASE

We first define our addressed problem, then show our proposed method, and finally give a practical design procedure composed of line search and iterative algorithm.

Problem Definition

Let us consider the following LPV system (6).

𝐺(𝜃) ∶ ⎡ ⎢ ⎢ ⎣ 𝛿[𝑥] 𝑧 𝑦 ⎤ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎣ 𝐴(𝜃) 𝐵 1 (𝜃) 𝐵 2 𝐶 1 (𝜃) 𝐷 11 (𝜃) 𝐷 12 𝐶 2 𝐷 21 𝟎 ⎤ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎣ 𝑥 𝑤 𝑢 ⎤ ⎥ ⎥ ⎦ , ( 6 
)
where

𝜃 = [ 𝜃 1 … , 𝜃 𝑞 ] 𝑇 denotes 𝑞 independent measurable scheduling parameters, 𝑥 ∈ ℝ 𝑛 , 𝑤 ∈ ℝ 𝑛 𝑤 , 𝑢 ∈ ℝ 𝑛 𝑢 , 𝑧 ∈ ℝ 𝑛 𝑧
and 𝑦 ∈ ℝ 𝑛 𝑦 respectively denote the state with its initial value as zero, the external input, the control input, the performance For all parameters, it is supposed that their variation ranges and their maximum deviations in a single sampling period are all known in advance. Thus, ( 𝜃 𝑖 , 𝛿[𝜃 𝑖 ] ) ∈ Λ 𝑖 is supposed for 𝑖 = {1, … , 𝑞} with a priori given convex polytopes Λ 𝑖 as in [START_REF] De Caigny | Gain-Scheduled Dynamic Output-Feedback Control for Discrete-Time LPV Systems[END_REF] , and the following is consequently supposed:

(𝜃, 𝛿[𝜃]) ∈ Λ 𝜃 ∶= Λ 1 × ⋯ × Λ 𝑞 .
We would like to design a full-order LPV controller, which depends on the provided scheduling parameter vector θ, defined below.

𝐾( θ) ∶ [ 𝛿[𝑥 𝐾 ] 𝑢 ] = [ 𝐴 𝐾 ( θ) 𝐵 𝐾 ( θ) 𝐶 𝐾 ( θ) 𝐷 𝐾 ( θ) ] ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞ ⏟ K( θ) [ 𝑥 𝐾 𝑦 ] , (7) 
where 𝑥 𝐾 ∈ ℝ 𝑛 is the state with its initial value as zero, and θ denotes the provided scheduling parameter vector which is not always identical to 𝜃. Matrix K( θ) is supposed to be parametrically multi-affine. This supposition is made to derive a numerically tractable multi-affine condition. It is also supposed that the uncertainty in θ𝑖 is bounded, it is then always possible to make a convex poytope to cover the admissible region of the pair (𝜃 𝑖 , θ𝑖 ) [START_REF] Sato | Gain-Scheduled Output Feedback Controllers for Discrete-Time LPV Systems Using Bounded Inexact Scheduling Parameters[END_REF][START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] . Thus, it is supposed that (𝜃 𝑖 , θ𝑖 ) ∈ Ξ 𝑖 holds with a priori defined convex polytope Ξ 𝑖 . Then, (𝜃, θ) ∈ Ξ 𝜃 ∶= Ξ 1 × ⋯ × Ξ 𝑞 holds. The closed-loop system is straightforwardly derived as

𝐺 𝑐𝑙 (𝜃, θ) ∶ [ 𝛿[𝑥 𝑐𝑙 ] 𝑧 ] = [ 𝐴 𝑐𝑙 (𝜃, θ) 𝐵 𝑐𝑙 (𝜃, θ) 𝐶 𝑐𝑙 (𝜃, θ) 𝐷 𝑐𝑙 (𝜃, θ) ] [ 𝑥 𝑐𝑙 𝑤 ] , (8) 
where

𝑥 𝑐𝑙 = [ 𝑥 𝑇 𝑥 𝑇 𝐾
] 𝑇 denotes the state. Matrices 𝐴 𝑐𝑙 (𝜃, θ), etc. are straightforwardly calculated [START_REF] Sato | A New Method for Gain-Scheduled Output Feedback Controller Design Using Inexact Scheduling Parameters[END_REF] , and thus they are omitted here.

We address the following problem.

Problem 1. For given 𝛾 ∈ ℝ + , design an LPV controller 𝐾( θ) defined in (7) such that the closed-loop system 𝐺 𝑐𝑙 (𝜃, θ) is stabilized and ‖𝑧‖ 2 2 < 𝛾 2 ‖𝑤‖ 2 2 is satisfied for all triplets of (𝜃, 𝛿[𝜃], θ) in which (𝜃, 𝛿[𝜃]) ∈ Λ 𝜃 and (𝜃, θ) ∈ Ξ 𝜃 hold.

Design Method

To show our method, we define a parametrically multi-affine matrix set (𝜃, 𝛿[𝜃], θ) and a constant matrix set  .

(𝜃, 𝛿[𝜃], θ) = ( (𝜃), (𝜃, 𝛿[𝜃], θ), ( θ) ) ∈ 𝕊 2𝑛 + × ℝ 𝑛×𝑛 × ℝ (𝑛+𝑛 𝑢 )×(𝑛+𝑛 𝑦 )  = (, , ) ∈ ℝ 𝑛×𝑛 × ℝ 𝑛×𝑛 × ℝ 𝑛×𝑛 (9)
The following is proposed for Problem 1 using (𝜃, 𝛿[𝜃], θ) and  .

Theorem 1. For given 𝛾 ∈ ℝ + , suppose that the following condition holds at all combinations of the vertices of Λ 𝜃 and Ξ 𝜃 .

∃(𝜃, 𝛿[𝜃]

, θ) and  s.t. (10) or (11) Then, controller 𝐾( θ) whose state-space matrix K( θ) is given as (14), in which matrices 𝑈 , 𝑉 ∈ ℝ 𝑛×𝑛 are nonsingular matrices satisfying 𝑉 𝑈 +  = , stabilizes the closed-loop system and ‖𝑧‖ 2 2 < 𝛾 2 ‖𝑤‖ 2 2 is satisfied for all triplets of (𝜃,

𝛿[𝜃], θ) in which (𝜃, 𝛿[𝜃]) ∈ Λ 𝜃 and (𝜃, θ) ∈ Ξ 𝜃 hold. [ Φ 0 (𝜃, 𝛿[𝜃], θ) * Φ 1 (𝜃, θ) 𝑇 𝟎 ] + 𝖧𝖾 { [ 𝟎 𝐈 ] (𝜃, 𝛿[𝜃], θ) [ Φ 𝑇 2 𝐈 ] 𝑇 } ≻ 0, (10) 
where Φ 0 (𝜃, 𝛿[𝜃], θ) is defined as Φ 𝑑 0 (𝜃, 𝛿[𝜃], θ) in ( 12) using ( 13), and where Φ 0 (𝜃, 𝛿[𝜃], θ) is defined as Φ 𝑑 0 (𝜃, 𝛿[𝜃], θ) in ( 12) using ( 13), and

{ Φ 1 (𝜃, θ) = [ 𝟎 [ 𝟎 ( 𝐴(𝜃) -𝐴( θ) ) 𝑇  𝑇 ] 𝟎 𝟎 ] 𝑇 , Φ 2 = [ [ - 𝟎 ] 𝟎 𝟎 𝟎 ] . [ Φ 0 (𝜃, 𝛿[𝜃], θ) * Φ 2 (𝜃, θ) 𝟎 ] + 𝖧𝖾 { [ Φ 1 𝐈 ] (𝜃, 𝛿[𝜃], θ) [ 𝟎 𝐈 ] 𝑇 } ≻ 0, (11) 
{ Φ 1 = [ 𝟎 [ 𝟎  𝑇 ] 𝟎 𝟎 ] 𝑇 , Φ 2 (𝜃, θ) = [ [ - ( 𝐴(𝜃) -𝐴( θ) )  𝟎 ] 𝟎 𝟎 𝟎 ] . Φ 𝑑 0 (𝜃, 𝛿[𝜃], θ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ -(𝜃) 𝟎 𝟎 𝟎 𝟎 (𝜃 + ) 𝟎 Υ 𝐵 (𝜃, θ) 𝟎 𝟎 𝛾 2 𝐈 Υ 𝐷 (𝜃, θ) 𝟎 * * 𝐈 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + 𝖧𝖾 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ [  𝐈   ] Υ 𝐴 (𝜃, θ) Υ 𝐶 (𝜃, θ) 𝟎 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ [ 𝐈 𝟎 𝟎 𝟎 ] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (12) 
[ Υ 𝐴 (𝜃, θ) Υ 𝐵 (𝜃, θ) Υ 𝐶 (𝜃, θ) Υ 𝐷 (𝜃, θ) ] = ⎡ ⎢ ⎢ ⎣ 𝐴(𝜃) 𝐴(𝜃) 𝐵 1 (𝜃) 𝟎 𝐴(𝜃) 𝐵 1 (𝜃) 𝐶 1 (𝜃) 𝐶 1 (𝜃) 𝐷 11 (𝜃) ⎤ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎢ ⎣ 𝟎 𝐵 2 𝐈 𝟎 𝟎 𝐷 12 ⎤ ⎥ ⎥ ⎦ ( θ) [ 𝐈 𝟎 𝟎 𝟎 𝐶 2 𝐷 21 ] (13) 
K( θ) = [ 𝑉 𝐵 2 𝟎 𝐈 ] -1 ( ( θ) - [ 𝐴( θ) 𝟎 𝟎 𝟎 ]) [ 𝑈 𝟎 𝐶 2  𝐈 ] -1 (14)
Proof. Since the inequalities ( 10) and ( 11) are parametrically multi-affine, if they hold at all combinations of the vertices of Λ 𝜃 and Ξ 𝜃 , then they also hold for all possible combinations of (𝜃,

𝛿[𝜃], θ) in which (𝜃, 𝛿[𝜃]) ∈ Λ 𝜃 and (𝜃, θ) ∈ Ξ 𝜃 hold. Then, Φ 0 (𝜃, 𝛿[𝜃], θ) -𝖧𝖾 { Φ 1 (⋅)Φ 2 (⋅) } ≻ 0 holds for all possible combinations of (𝜃, 𝛿[𝜃], θ) from Lemma 1. Here Φ 1 (⋅)Φ 2 (⋅) denotes Φ 1 (𝜃, θ)Φ 2 or Φ 1 Φ 2 (𝜃, θ). Note that Φ 1 (⋅)Φ 2 (⋅) is given as follows: ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝟎 [ 𝟎 𝟎  ( 𝐴( θ) -𝐴(𝜃) )  𝟎 ] 𝟎 𝟎 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ [ 𝐈 𝟎 𝟎 𝟎 ] .
Then, the assertion is straightforwardly proved by following the same procedure in [START_REF] Sato | Gain-Scheduled Flight Controller Using Bounded Inexact Scheduling Parameters[END_REF][START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] .

On conservatism of over-bounding of the parameter discrepancies, the following assertion holds.

Theorem 2. Suppose that, in Theorem 1, there exist (𝜃), ( θ) and  such that

Φ 𝑑 0 (𝜃, 𝛿[𝜃], θ) ≻ 0 and Φ 𝑑 0 (𝜃, 𝛿[𝜃], θ) - 𝖧𝖾 { Φ 1 (𝜃, θ)Φ 2 } ≻ 0 hold.
Then, there always exists a matrix-valued function of (𝜃, 𝛿[𝜃], θ) satisfying (10). The corresponding assertion for (11) also holds with a (possibly different) matrix-valued function of (𝜃, 𝛿[𝜃], θ).

First, note that Φ 0 (𝜃, 𝛿[𝜃], θ) ≻ 0 is a necessary condition for (10) and (11). Then, Theorem 2 is obvious from Lemma 1, i.e. Elimination lemma [START_REF] Gahinet | A Linear Matrix Inequality Approach to 𝐻 ∞ Control[END_REF][START_REF] Iwasaki | All Controllers for the General 𝐻 ∞ Control Problem: LMI Existence Conditions and State Space Formulas[END_REF][START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF] , if we accept matrix-valued function (𝜃, 𝛿[𝜃], θ) instead of restricting multi-affine matrix (𝜃, 𝛿[𝜃], θ). Thus, the proof is omitted.

In other words, under the condition that there exist (𝜃), ( θ) and  such that Φ 𝑑 0 (𝜃, 𝛿[𝜃], θ) ≻ 0 holds, Theorem 2 does not introduce any conservatism for the over-bounding of 𝖧𝖾 { Φ 1 (𝜃, θ)Φ 2 } in the formulation (10). The corresponding property for (11) holds as well. On the other hand, using multi-affine (𝜃, 𝛿[𝜃], θ) obviously introduces conservatism; however, it leads to multi-affine matrix inequality which is attractive w.r.t. numerical complexity in solving matrix inequalities. Thus, we restrict (𝜃, 𝛿[𝜃], θ) to be parametrically multi-affine in Theorem 1.

Remark 2. In 5 , four formulations using Lemma 2 to address the parameter discrepancies are given for Problem 1, i.e. two formulations given as ( 4) and ( 5), and two factorizations, which are also used in Theorem 1, for  ( 𝐴( θ) -𝐴(𝜃) ) . However, they are all more conservative than or equal to Theorem 1, which is due to Lemma 3. □

Design Procedure

The formulations in Theorem 1 are given in terms of parametrically multi-affine matrix inequalities. Though, they are Bilinear Matrix Inequalities (BMIs) which are not so tractable compared to Linear Matrix Inequalities (LMIs). Thus, similarly to [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] 10) and ( 11) should be positive definite from the requirement that the bottom-right block should be positive definite. Then, if we set (𝜃, 𝛿[𝜃], θ) as 𝑞𝐈 with scalar 𝑞, i.e. line search for (𝜃, 𝛿[𝜃], θ), then 𝑞 should be positive. Bearing this in mind, we show the following algorithm to solve the condition in Theorem 1.

Step 0 Set the iteration number 𝑖 = 0. Matrix (𝜃, 𝛿[𝜃], θ) is set as 𝑞𝐈 with positive scalar 𝑞, and conduct line search of 𝑞 using the a priori defined variations of 𝑞 for optimal 𝛾 by solving the following problem. The value 𝑞 * which produces the best 𝛾 is chosen and set (𝜃, 𝛿[𝜃], θ) = 𝑞 * 𝐈. Set the best 𝛾 as 𝛾 0 . If no solutions are found, we conclude the problem to be infeasible.

Step 1 Increase the iteration number 𝑖 = 𝑖 + 1. If (10) is solved in the previous step, proceed to (1). Otherwise, proceed to (2).

(1) Solve the following problem with the matrix  being fixed as obtained in the previous step.

min

𝛾,(𝜃),( θ),,,(𝜃,𝛿[𝜃], θ) 𝛾 s.t. ( 10 
)
(2) Solve the following problem with the matrix  being fixed as obtained in the previous step.

min

𝛾,(𝜃),( θ),,,(𝜃,𝛿[𝜃], θ) 𝛾 s.t. ( 11 
)
Step 2 Solve the following problem with the matrix (𝜃, 𝛿[𝜃], θ) being fixed as obtained in the previous step, and set the optimal 𝛾 as 𝛾 𝑖 . min

𝛾,(𝜃),( θ),,, 𝛾 s.t. (10) or (11) 
If 𝛾 𝑖-1 -𝛾 𝑖 < 𝜂 holds with a predefined threshold 𝜂 ∈ ℝ + , then stop the iteration and the finally obtained solution is the design result. Otherwise, go back to Step 1.

Remark 3. In the algorithm shown above, all conditions are given in terms of multi-affine LMIs, thus they are easily solved by using SeDuMi 22 , SDPT3 [START_REF] Toh | SDPT3 -A Matlab software package for semidefinite programming, Version 1.3[END_REF] , etc. In our controller design shown in the next section, we use SDPT3. □

LPV FLIGHT CONTROLLER USING INEXACT AIRSPEED

We show LPV flight controller design for the lateral-directional motions of research airplane MuPAL-𝛼 [START_REF] Masui | Development of a New In-Flight Simulator MuPAL-𝛼[END_REF] . In our controller design, constant scaling matrix is introduced to Theorem 1 for conservatism reduction due to multiple uncertainty blocks. The corresponding modifications to the design procedure shown in the previous section are necessary and they are given after the definition of our flight controller design problem. The problem setup is the same as in conference paper [START_REF] Sato | Robust Gain-Scheduled Flight Controller via A New Formulation for Over-Bounding Scheduling Parameter Errors[END_REF] and our previous report [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] , thus we give a simplified description on it.

LPV Flight Controller Design Setup

MuPAL-𝛼 has been developed as an in-flight simulator [START_REF] Hamel | In-Flight Simulators and Fly-by-Wire/Light Demonstrators[END_REF] , which has an ability to mimic other aircraft dynamics in flight, and thus, model-matching and disturbance suppression are imposed as controller design specifications in [START_REF] Sato | Robust Gain-Scheduled Flight Controller via A New Formulation for Over-Bounding Scheduling Parameter Errors[END_REF][START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] . The same design specifications are adopted in this paper. To this end, the block diagram shown in Fig. 1 As the design specifications and the onboard actuator uncertainties (uncertain delay ranging in [0.06, 0.10] [s] in both aileron and rudder channels) are the same as in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] , the following weighting functions which are the same as in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] are used after the discretization via Euler method with the onboard computer's sampling period Δ𝑇 = 0.02 [s]:

(V true ) zp V true V prov δ EAS K(V prov ) W g + + + - yp zm ucom zper G L/D (V true ) up G dex wd G(V true ) [vg 0] T W zcom [ ∆ per ∆ gust [ ∆ a ∆ r ] ] W M zg L 1/2 L -1/2 w z - FIGURE 1 
𝑊 𝑀 = 20 𝑇 𝑠 𝑠 2 +𝑇 √ 2𝑠+1 𝐈 2 , 𝑊 𝑔 = 0.5 0.1𝑠+1 𝐈 2 , 𝑊 = 2.5𝑠 𝑠+30 𝐈 2 ,
where 𝑇 in 𝑊 𝑀 is a tuning design parameter. Small values of 𝑇 widen the frequency range in which model-matching is realized, thus small 𝑇 is preferable.

We address the following problem with help of Fig. 1.

Problem 2. Design a constant scaling matrix 𝐿 ∈ 𝕊 6 + compatible with the structured uncertainty block Δ, i.e. Δ𝐿 = 𝐿Δ, and a stabilizing LPV controller 𝐾(𝑉 𝑝𝑟𝑜𝑣 ), which depends on the provided scheduling parameter 𝑉 𝑝𝑟𝑜𝑣 corrupted from 𝑉 𝑡𝑟𝑢𝑒 with the bounded uncertainty 𝛿 𝐸𝐴𝑆 given by ( 15), satisfying ‖𝐿 -1∕2 𝑧‖ [START_REF] Sename | Robust Control and Linear Parameter Varying Approaches[END_REF] 2 < 𝛾 

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ (16) 
The vertex set of ( 16) means that the supposed EAS range is 𝑉 𝑡𝑟𝑢𝑒 ∈ [54.012, 99.279] [m∕s] and the supposed maximum and minimum deviations of EAS for a single sampling period Δ𝑇 are ±0. 1 [m∕s∕sampling].

The problem needs to design an LPV output feedback controller 𝐾(𝑉 𝑝𝑟𝑜𝑣 ) and a scaling matrix 𝐿 as well, thus solving the problem is not a simple application of Theorem 1; however, the difference is only the introduction of the constant matrix 𝐿. Thus, the combined method of line search and iterative algorithm, which has already shown in the previous section, can be applied with the following modifications with ( θ) being partitioned as

[  𝐴 ( θ)  𝐵 ( θ)  𝐶 ( θ)  𝐷 ( θ) ]
and 𝐿 being set as .

• In matrix inequalities (10) and ( 11), Φ 𝑑 0 (𝜃, 𝛿[𝜃], θ) defined in ( 12) is revised as (17) with a constant scaling matrix  ∈ 𝕊 6 + which is also a decision matrix.

Φ 𝑑 0 (𝜃, 𝛿[𝜃], θ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ -(𝜃) 𝟎 𝟎 𝟎 𝟎 (𝜃 + ) 𝟎 Υ 𝐵 (𝜃, θ) 𝟎 𝟎 𝛾 2  Υ 𝐷 (𝜃, θ) 𝟎 * *  -1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + 𝖧𝖾 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ [  𝐈   ] Υ 𝐴 (𝜃, θ) Υ 𝐶 (𝜃, θ) 𝟎 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ [ 𝐈 𝟎 𝟎 𝟎 ] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (17) 
• In Step 0, decision matrix  is set as I.

• In (1) in Step 1, the problem is revised as follows:

min 𝛾,(𝜃), 𝐴 ( θ), 𝐵 ( θ),,,(𝜃, θ), -1 𝛾 s.t. 𝖽𝗂𝖺𝗀 ( 𝐈, 𝐈,  -1 , 𝐈, 𝐈 ) × L.H.S. of (10) × 𝖽𝗂𝖺𝗀 ( 𝐈, 𝐈,  -1 , 𝐈, 𝐈 ) ≻ 0,
where  𝑐 ( θ),  𝐷 ( θ) and  are fixed as ones obtained in the previous step.

• In (2) in Step 1, the problem is revised as follows: where  𝐵 ( θ),  𝐷 ( θ) and  are fixed as ones obtained in the previous step.

• In Step 2, decision matrix  is fixed as obtained in the previous step.

With the revisions above and ten gridding points over a logarithmic scale in the interval [10 -5 , 10 5 ] for the line search of 𝑞, we design LPV flight controllers depending on 𝑉 𝑝𝑟𝑜𝑣 for various values of 𝑇 in 𝑊 𝑀 . In our design, the decision matrix (𝜃, 𝛿[𝜃], θ) is set as parametrically affine w.r.t. 𝑉 𝑡𝑟𝑢𝑒 and 𝑉 𝑝𝑟𝑜𝑣 , i.e. (𝜃, θ), because controller performance dependence on 𝑉 + 𝑡𝑟𝑢𝑒 in (𝜃, 𝛿[𝜃], θ) is confirmed to be small in a primitive design and this setup reduces numerical complexity in solving LMIs.

Controller Design and A Posteriori Analysis

We design LPV controllers using Theorem 1 combined with constant scaling matrix 𝐿. For comparison, we design LPV controllers using the method in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] , i.e. Theorem 1 in the paper. After designing LPV controllers, we also conduct a posteriori analysis to calculate 𝛾 satisfying ‖𝐿 -1∕2 𝑧‖ [START_REF] Sename | Robust Control and Linear Parameter Varying Approaches[END_REF] 2 < 𝛾 2 ‖𝐿 -1∕2 𝑤‖ 2 2 for all possible triplets (𝑉 𝑡𝑟𝑢𝑒 , 𝑉 + 𝑡𝑟𝑢𝑒 , 𝑉 𝑝𝑟𝑜𝑣 ) belonging to a convex polytope whose vertex set is given in ( 16) using Theorem 2 in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] . This is because the use of parametrically affine (𝜃, θ) in Theorem 1 and Theorem 1 in 5 inevitably introduces conservatism (see Theorem 2 and the paragraph beneath in the previous section) and therefore a posteriori analysis is necessary for precise performance evaluation.

The minimized 𝛾's with two methods are shown in Tables 1 and2. In the same tables, the guaranteed 𝛾's which are obtained in a posteriori analysis are also shown. (11). Similarly, the method in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] has four formulations (a) ∼ (d), and all formulations are solved to obtain the best controllers. The choice for the best controllers is indicated in the parentheses in Table 2.

The results in Tables 1 and2 clearly indicate that the controllers designed by Theorem 1 which is based on Lemma 1 to compensate 𝛿 𝐸𝐴𝑆 in 𝑉 𝑝𝑟𝑜𝑣 have better performance than the controllers designed by the design method in [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] which is based on Lemma 2 to compensate 𝛿 𝐸𝐴𝑆 in 𝑉 𝑝𝑟𝑜𝑣 . Thus, conservatism reduction using Lemma 1 compared to using Lemma 2 in LPV controller design is well illustrated, which is reasonable from Lemma 3.

In a posteriori analysis, it is confirmed that the LPV controller with 𝑇 = 8.0 in Table 1 and the LPV controller with 𝑇 = 9.0 in Table 2 satisfy 𝛾 ≤ 1. Therefore, these two LPV controllers are implemented to the onboard computer of MuPAL-𝛼 to examine practical performance.

Figs. 2 and 3 respectively show the Bode plots of the closed-loop system using the LPV controller with 𝑇 = 8.0 in Table 1 and the LPV controller with 𝑇 = 9.0 in Table 2 = ±𝐈 2 and frozen 𝑉 𝑡𝑟𝑢𝑒 and 𝛿 𝐸𝐴𝑆 , and it is not so easy to find the difference between the two controllers w.r.t. control performance. However, the former has better model-matching performance than the latter, viz., control performance is improved. In particular, at 0.6 [rad∕s], phase delay from 𝑧 𝑚 (1) to 𝑣 𝑎 is decreased from about 35 [deg] in Fig. 3 to less than 30 [deg] in Fig. 2, and phase delay from 𝑧 𝑚 (2) to 𝜙 is similarly decreased from over 30 [deg] in Fig. 3 to about 25 [deg] in Fig. 2.

These figures indicate that the model-matching in gain characteristics is realized up to around 1.5 [rad∕s] using the designed two LPV controllers; however, phase delay becomes so large as the frequency increases. Thus, roughly speaking, the motions whose frequencies are less than 0.6 [rad∕s] are expected to be reproduced as MuPAL-𝛼's motions in 𝑣 𝑎 and 𝜙.

Practical Performance in Flight

We conducted flight tests to compare control performance of the implemented two LPV controllers. The flight data were obtained in two days (Feb. 9th and 19th in 2018) for unbiased results. Furthermore, the experiments were conducted one after another with very short breaks in both two flights to equalize the flight conditions as much as possible.

We show one pair of disturbance suppression check results (Figs. 4 and5), and two pairs of model-matching performance check results under disturbance (Figs. 6 and7, and Figs. 8 and9). Note that flight tests inevitably suffer wind gust, thus we cannot have flight tests focusing purely on model-matching performance check. Thus, flight tests in Figs. 6 ∼ 9 are the results for checking model-matching performance under disturbance. The command signals 𝑧 𝑚 (1) and 𝑧 𝑚 (2) in Figs. 6 ∼ 9 respectively have the peak gains at 0.57 and 0.44 [rad∕s]. These frequencies are less than the estimated upper limit to achieve model-matching, but not so far from the limit. Thus, the commands in flight tests are suitable to compare control performance.

It is not so easy to see the difference of the two LPV flight controllers w.r.t. control performance in those figures. In order to see the difference, Tables 3, 4 and 5 summarize control performance of the implemented two LPV controllers in exposed flight tests. In those tables, Δ𝑣 𝑎 and Δ𝜙 respectively denote 𝑧 𝑚 (1) -𝑣 𝑎 and 𝑧 𝑚 (2) -𝜙, e.g. the discrepancies between commands and 

∫ 𝑇 𝑒𝑣𝑎𝑙 0 |Δ𝑣 𝑎 | 2 𝑑𝑡 𝑇 𝑒𝑣𝑎𝑙 [(m∕s) 2 ] 0.523 0.660 ∫ 𝑇 𝑒𝑣𝑎𝑙 0 |Δ𝜙| 2 𝑑𝑡 𝑇 𝑒𝑣𝑎𝑙 [ (deg) 2 ] 4.160 6.164 
the controlled outputs of MuPAL-𝛼. The tables clearly illustrate that the LPV controller designed using Theorem 1 has better performance than the LPV controller designed using the method in 5 w.r.t. disturbance suppression as well as model-matching under disturbance.

CONCLUSIONS

This paper addresses the design problem of Linear Parameter-Varying (LPV) output feedback controllers depending on inexactly provided scheduling parameters for LPV systems. For this problem, under some mild assumptions for the state-space matrices of LPV systems, we derive a design condition in terms of multi-affine matrix inequality in which the discrepancies between the actual and the provided scheduling parameters are over-bounded by using Elimination lemma. The derived condition theoretically introduces no conservatism in addressing the parameter discrepancies, which is a sharp contrast to existing methods and consequently means that our proposed method is no more conservative than existing methods; however, the design condition is given as multi-affine Bilinear Matrix Inequality (BMI) which is not tractable compared to multi-affine Linear Matrix Inequality (LMI). We thus show a design procedure composed of line search and iterative algorithm, in which only multi-affine LMIs should be solved. As a practical application of our method, we address LPV flight controller design for the lateral-directional motions of a research airplane MuPAL-𝛼 which has been developed as an in-flight simulator, and design LPV flight controllers using our proposed method and a previously proposed method. In controller design and a posteriori analysis, it is confirmed that the LPV controllers designed by our method have better control performance than the LPV controllers designed by the previously proposed method. Furthermore, in experiments under practical environment, i.e. in flight tests, control performance improvement of the LPV controller designed by our method compared to the LPV controller designed by the previously proposed method is confirmed. We thus illustrate the effectiveness of our proposed method in theory as well as in practical performance. 

APPENDIX A PROPOSED METHOD IN CONTINUOUS-TIME CASE

In the appendix, the counterpart results in Section 3 for continuous-time case are shown.

Similarly to the discrete-time case, we consider LPV controller (7) for LPV system (6). For all parameters, it is supposed that their variation ranges and their derivative ranges are all known in advance, and thus (𝜃 𝑖 , 𝛿[𝜃 𝑖 ]) ∈ Λ 𝑖 is supposed for 𝑖 = {1, … , 𝑞} with a priori given convex polytopes Λ 𝑖 . Then, (𝜃, 𝛿[𝜃]) ∈ Λ 𝜃 ∶= Λ 1 × ⋯ × Λ 𝑞 holds. Other suppositions are all the same as in discrete-time case.

Then, the following is proposed for Problem 1 using (𝜃, 𝛿[𝜃], θ) and  defined in (9).

Theorem 3. For given 𝛾 ∈ ℝ + , suppose that the following condition holds at all combinations of the vertices of Λ 𝜃 and Ξ 𝜃 .

∃𝛼 ∈ ℝ + , (𝜃, θ) and  s.t. (10) or (11) In (10), Φ 0 (𝜃, 𝛿[𝜃], θ) is defined as Φ 𝑐 0 (𝜃, 𝛿[𝜃], θ) in (A1) using ( 13) and

{ Φ 1 (𝜃, θ) = [ 𝟎 [ 𝟎 ( 𝐴(𝜃) -𝐴( θ) ) 𝑇  𝑇 ] 𝟎 𝟎 ] 𝑇 , Φ 2 = [ [ 𝛼 𝟎 ] [  𝟎 ] 𝟎 𝟎 ] .
In (11), Φ 0 (𝜃, 𝛿[𝜃], θ) is defined as Φ 𝑐 0 (𝜃, 𝛿[𝜃], θ) in (A1) using ( 13) and

{ Φ 1 = [ 𝟎 [ 𝟎  𝑇 ] 𝟎 𝟎 ] 𝑇 , Φ 2 (𝜃, θ) = [ [ 𝛼 ( 𝐴(𝜃) -𝐴( θ) )  𝟎 ] [ ( 𝐴(𝜃) -𝐴( θ) )  𝟎 ] 𝟎 𝟎 ] .
Then, controller 𝐾( θ) whose state-space matrix K( θ) is given as (14), in which matrices 𝑈 , 𝑉 ∈ ℝ 𝑛×𝑛 are nonsingular matrices satisfying 𝑉 𝑈 +  = , stabilizes the closed-loop system and ‖𝑧‖ 2 2 < 𝛾 2 ‖𝑤‖ 2 2 is satisfied for all triplets of (𝜃, 𝛿[𝜃], θ) in which (𝜃, 𝛿[𝜃]) ∈ Λ 𝜃 and (𝜃, θ) ∈ Ξ 𝜃 hold.

Φ 𝑐 0 (𝜃, θ, θ) = - ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝟎 (𝜃) 𝟎 𝟎 * -(𝜃) 𝟎 Υ 𝐵 (𝜃, θ) 𝟎 𝟎 -𝛾 2 𝐈 Υ 𝐷 (𝜃, θ) 𝟎 * * -𝐈 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ -𝖧𝖾 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ - [  𝐈   ] Υ 𝐴 (𝜃, θ) Υ 𝐶 (𝜃, θ) 𝟎 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ [ 𝛼𝐈 𝐈 𝟎 𝟎 ] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (A1)
A brief proof is given below

Proof. Note that Φ 1 (⋅)Φ 2 (⋅) is given as follows: Then, by following the same procedure as in [START_REF] De Oliveira | Extended 𝐻 2 and 𝐻 ∞ Norm Characterizations and Controller Parametrizations for Discrete-Time Systems[END_REF] , the following inequality with 𝑃 (𝜃) = 𝑇 -𝑇 (𝜃)𝑇 -1 and 𝐻 = 𝑇 -𝑇

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝟎 [ 𝟎 𝟎  ( 𝐴(𝜃) -𝐴( θ) )  𝟎 ] 𝟎 𝟎 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ [ 𝛼𝐈 𝐈
[  𝐈   ] 𝑇 -1 with 𝑇 = [ 𝐈  𝑇 𝟎 𝑉 𝑇 ] is derived from Φ 0 (𝜃, 𝛿[𝜃], θ) -𝖧𝖾{Φ 1 (⋅)Φ 2 (⋅)} ≻ 0: ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝟎 𝑃 (𝜃) 𝟎 𝟎 * -Ṗ (𝜃) 𝟎 𝐵 𝑐𝑙 (𝜃, θ) 𝟎 𝟎 -𝛾 2 𝐈 𝐷 𝑐𝑙 (𝜃, θ) 𝟎 * * -𝐈 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + 𝖧𝖾 { [ -𝐈 𝐴 𝑐𝑙 (𝜃, θ) 𝑇 𝐶 𝑐𝑙 (𝜃, θ) 𝑇 𝟎 ] 𝑇 𝐻 [ 𝛼𝐈 𝐈 𝟎 𝟎 ] } ≺ 0.
Then, the assertion is proved by following the same argument in dilated LMI technique summarized in [START_REF] Pipeleers | Extended LMI Characterizations for Stability and Performance of Linear Systems[END_REF] .

Remark 4. In contrast to Theorem 1, the formulation in Theorem 3 has a single line search parameter 𝛼. Thus, if we apply the design procedure in Section 3, the line search for 𝛼 should be conducted at each step. Thus, the numerical complexity in designing continuous-time LPV controllers is so huge, similarly to [START_REF] Sadeghzadeh | Gain-Scheduled Continuous-Time Control Using Polytope-Bounded Inexact Scheduling Parameters[END_REF] . Furthermore, if the implemented computers are digital computers, the online discretization of the state-space matrices of continuous-time LPV controllers should be also conducted by using Euler method, trapezoidal approximation [START_REF] Apkarian | On the Discretization of LMI-Synthesized Linear Parameter-Varying Controllers[END_REF] , etc. Due to these reasons, in our previous report [START_REF] Sato | Gain-Scheduled Flight Controller for an In-Flight Simulator[END_REF] and this paper, we directly design discrete-time LPV controllers for the discretized lateral-directional motion model of MuPAL-𝛼. □

On conservatism for over-bounding the parameter discrepancies, a similar assertion as in Theorem 2 also holds for continuoustime case. 

  min𝛾,(𝜃),( θ),,, 𝛾 s.t.(10) or(11) 

  min 𝛾,(𝜃), 𝐴 ( θ), 𝐶 ( θ),,,(𝜃, θ), 𝛾 s.t. 𝖽𝗂𝖺𝗀 (𝐈, 𝐈, 𝐈, , 𝐈) × L.H.S. of (11) × 𝖽𝗂𝖺𝗀 (𝐈, 𝐈, 𝐈, , 𝐈) ≻ 0,

  How to cite this article: M. Sato and D. Peaucelle (20??), Conservatism Reduction for LPV Control Design Facing Inexact Scheduling Parameters Illustrated on Flight Tests, Int. J. Robust and Nonlinear Control, 20??;??:?-?.

Theorem 4 .

 4 Suppose that, in Theorem 3, there exist 𝛼, (𝜃), ( θ) and  such thatΦ 𝑐 0 (𝜃, 𝛿[𝜃], θ) ≻ 0 and Φ 𝑐 0 (𝜃, 𝛿[𝜃], θ) -𝖧𝖾 { Φ 1 (𝜃, θ)Φ 2 } ≻ 0 hold.Then, there always exists a matrix-valued function of (𝜃, 𝛿[𝜃], θ) satisfying(10). The corresponding assertion for (11) also holds with a (possibly different) matrix-valued function of (𝜃, 𝛿[𝜃], θ).Due to the same reason of Theorem 2, the proof is omitted.
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 415666789 FIGURE 4 Flight test result with LPV controller via Theorem 1 with 𝑇 = 8.0 for disturbance suppression check

  ⋯𝛼 𝑞 , 𝛼 𝑖 = {0, 1}, where 𝑍 𝛼 1 ⋯𝛼 𝑞 is the coefficient matrix. This assumption on parameter-dependency is made to derive a numerically tractable multi-affine condition.

	output and the measurement output, and parameter-dependent matrices 𝐴(𝜃), 𝐵 1 (𝜃), 𝐶 1 (𝜃) and 𝐷 11 (𝜃) are all supposed to have
	compatible dimensions and to be multi-affine w.r.t. scheduling parameters 19,20 . That is, they are supposed to be represented as ∑ 𝜃 𝛼 1 1 ⋯ 𝜃 𝛼 𝑞 𝑞 𝑍 𝛼 1
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	1 A slightly different version with 𝑄 𝑇 1 =	[	Υ 1 𝟎 ]	and 𝑄 2 =	[	𝟎 Υ 2	]	is shown in 18 .

  is set for designing an LPV flight controller. The definitions of blocks and signals in the figure are given below.Blocks: 𝐺 𝐿∕𝐷 (𝑉 𝑡𝑟𝑢𝑒 ), 𝐺 𝑎𝑐𝑡 (𝑉 𝑡𝑟𝑢𝑒 ), 𝐺 𝑑𝑒𝑥 and 𝐾(𝑉 𝑝𝑟𝑜𝑣 ) respectively denote the lateral-directional motions of MuPAL-𝛼 scheduled by true EAS (Equivalent Air Speed) which is denoted by 𝑉 𝑡𝑟𝑢𝑒 , the actuator dynamics scheduled by 𝑉 𝑡𝑟𝑢𝑒 , one step delay model and the to-be-designed LPV controller scheduled by provided EAS which is denoted by 𝑉 𝑝𝑟𝑜𝑣 (= 𝑉 𝑡𝑟𝑢𝑒 +𝛿 𝐸𝐴𝑆 ) with the uncertainty in the provided EAS data 𝛿 𝐸𝐴𝑆 ; 𝑊 , 𝑊 𝑔 and 𝑊 𝑀 respectively denote the weighting functions for uncertainties related to the onboard actuators, gust suppression performance and model-matching performance; Δ = 𝖽𝗂𝖺𝗀 ( Δ 𝑝𝑒𝑟 , Δ 𝑔𝑢𝑠𝑡 , Δ 𝑎 , Δ 𝑟 ) denotes the structured uncertainty block composed of 2 × 2-dimensional model-matching performance block (Δ 𝑝𝑒𝑟 ), 2 × 2-dimensional gust suppression performance block (Δ 𝑔𝑢𝑠𝑡 ), and two scalar uncertainty blocks to represent the uncertainties related to the onboard
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  Block diagram for simultaneous realization of model-matching and gust suppression aileron and rudder actuators (Δ 𝑎 and Δ 𝑟 ); and 𝐿 1∕2 and its inverse denote the constant scaling matrix to reduce conservatism due to the structured uncertainty block Δ. It is supposed that ‖Δ‖ ≤ 1 holds. Signals: 𝑢 𝑐𝑜𝑚 , 𝑢 𝑝 , 𝑧 𝑝 , 𝑦 𝑝 and 𝛿 𝐸𝐴𝑆 respectively denote the control command produced by 𝐾(𝑉 𝑝𝑟𝑜𝑣 ), i.e. 𝑢 𝑐𝑜𝑚 = [𝛿 𝑎 𝑐 𝛿 𝑟 𝑐 ] 𝑇 (𝛿 𝑎 𝑐 and 𝛿 𝑟 𝑐 respectively denote aileron and rudder deflection commands), actual control input to MuPAL-𝛼, i.e. 𝑢 𝑝 = [𝛿 𝑎 𝛿 𝑟 ] 𝑇 (𝛿 𝑎 and 𝛿 𝑟 respectively denote aileron and rudder deflections), plant output to be controlled, i.e. 𝑧 𝑝 = [𝑣 𝑎 𝜙] 𝑇 (𝑣 𝑎 and 𝜙 respectively denote lateral airspeed and roll angle), measurement output, i.e. 𝑦 𝑝 = [𝑣 𝑎 𝑝 𝜙 𝑟]𝑇 (𝑝 and 𝑟 respectively denote roll and yaw rates) and uncertainties in the provided EAS; the pair of 𝑤 𝑑 and 𝑧 𝑐𝑜𝑚 denotes the signals to evaluate the uncertainties related to the onboard actuators, viz., they respectively denote fictitious external input and weighted 𝑢 𝑐𝑜𝑚 to compensate the uncertainties of the onboard actuators; the pair of [𝑣 𝑔 0] 𝑇 and 𝑧 𝑔 denotes the signals to evaluate gust suppression performance, viz., 𝑣 𝑔 and 𝑧 𝑔 respectively denote sideway gust and performance output 𝑧 𝑝 multiplied by the weighting function 𝑊 𝑔 ; and the pair of 𝑧 𝑚 and 𝑧 𝑝𝑒𝑟 denotes the signals to evaluate model-matching performance, viz., they respectively denote the model output which is to be reproduced by MuPAL-𝛼 and performance output 𝑧 𝑝 multiplied by the weighting function 𝑊 𝑀 . Note that 𝑣 𝑔 is augmented as [𝑣 𝑔 0] 𝑇 to comply with the size of 𝑧 𝑔 .

  2 ‖𝐿 -1∕2 𝑤‖ 2 2 with ℝ + ∋ 𝛾 ≤ 1 for all possible triplets (𝑉 𝑡𝑟𝑢𝑒 , 𝑉 + 𝑡𝑟𝑢𝑒 , 𝑉 𝑝𝑟𝑜𝑣 ) belonging to a convex polytope whose vertex set is given in(16).
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𝛿 𝐸𝐴𝑆 ∈ [0.5 -0.04 × 𝑉 𝑡𝑟𝑢𝑒 , 1.875 -0.035 × 𝑉 𝑡𝑟𝑢𝑒 ]

TABLE 1

 1 Minimized 𝛾's via Theorem 1 combined with constant scaling matrix and a posteriori analysis the best controllers. In our design, the best controllers for all 𝑇 in Table1are obtained by solving the formulation

	𝑇	7.0	7.5	8.0	8.5	9.0
	Design	1.14 1.09 1.06 1.02 1.00
	Analysis	1.09 1.03 1.00 0.97 0.95
	TABLE 2 Minimized 𝛾's via method in 5 and a posteriori analysis
	𝑇	8.5	9.0		9.5	10.0
	Design	1.07 (d) 1.03 (b) 1.00 (b) 0.96 (b)
	Analysis	1.02	0.99		0.96	0.93
	Note that Theorem 1 has two formulations which come from two possible factorizations for 	( 𝐴( θ) -𝐴(𝜃) )	, and both are
	solved to obtain					

  for 𝖽𝗂𝖺𝗀 ( 𝛿 𝑎 , 𝛿 𝑟 ) = ±𝐈 2 and frozen 𝑉 𝑡𝑟𝑢𝑒 and 𝛿 𝐸𝐴𝑆 . For comparison, the corresponding Bode plots for open-loop systems are also depicted. Both figures indicate that the designed LPV controllers have good modelmatching and good disturbance suppression for 𝖽𝗂𝖺𝗀 ( 𝛿 𝑎 , 𝛿 𝑟 )

TABLE 3

 3 Performance comparison of controllers in Figs.4 and 5

		Controller via	Controller via
		Theorem 1 with 𝐿	method in 5
	duration time (𝑇 𝑒𝑣𝑎𝑙 [s]) ∫ 𝑇 𝑒𝑣𝑎𝑙 0 |Δ𝑣 𝑎 | 2 𝑑𝑡 [(m∕s) 2 ] 𝑇 𝑒𝑣𝑎𝑙 ∫ 𝑇 𝑒𝑣𝑎𝑙 0 |Δ𝜙| 2 𝑑𝑡 𝑇 𝑒𝑣𝑎𝑙 [(deg) 2 ]	205.28 0.106 0.057	199.24 0.203 0.081
	TABLE 4 Performance comparison of controllers in Figs. 6 and 7
		Controller via	Controller via
		Theorem 1 with 𝐿	method in 5
	duration time (𝑇 𝑒𝑣𝑎𝑙 [s]) ∫ 𝑇 𝑒𝑣𝑎𝑙 0 |Δ𝑣 𝑎 | 2 𝑑𝑡 [(m∕s) 2 ] 𝑇 𝑒𝑣𝑎𝑙 ∫ 𝑇 𝑒𝑣𝑎𝑙 0 |Δ𝜙| 2 𝑑𝑡 𝑇 𝑒𝑣𝑎𝑙 [(deg) 2 ]	173.25 0.740 7.571	175.03 0.885 10.755
	TABLE 5 Performance comparison of controllers in Figs. 8 and 9
		Controller via	Controller via
		Theorem 1 with 𝐿	method in 5
	duration time (𝑇 𝑒𝑣𝑎𝑙 [s])	182.67	185.93
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