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Conservatism Reduction for LPV Control Design Facing Inexact 

Scheduling Parameters Illustrated on Flight Tests 

M. Sato and D. Peaucelle 

 

NOVELTY 

 

 Relevance to the journal aims and scope: Our paper addresses the design problem of 
Linear Parameter-Varying (LPV) output feedback controllers depending on inexact 
scheduling parameters for LPV systems. The topic of LPV controller design is one of the 
hot topics in the last two decades, and the usage of inexact scheduling parameters, i.e. 
robustness against the uncertainties in the provided scheduling parameters, is a natural 
supposition from the view point of practicality. That is, our addressed problem contains 
uncertainties for LPV systems. Thus, our topic fits the scope of the journal. 
Furthermore, we designed flight controllers using our proposed method, and had several 
flight tests to demonstrate conservatism reduction of our method compared to one of the 
existing design methods. The development of design techniques for LPV systems is well 
illustrated. Thus, our objective also fits the aim of the journal.  
 

 Theoretical contributions: We propose a new method for our addressed problem with 
the reverse use of Elimination lemma. Several methods on the same topic have already 
been proposed; however, all of them are merely sufficient conditions for the problem. 
This is because the adopted over-bounding methods for the scheduling parameter 
discrepancies are not necessary and sufficient conditions, but sufficient conditions. On 
this issue, our adopted approach using Elimination lemma theoretically introduces no 
conservatism for the over-bounding. This is a sharp contrast to existing methods.  
 

 Keywords: Linear Parameter-Varying (LPV) system, flight controller, inexact scheduling 
parameter, Elimination lemma. 
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Summary

This paper addresses the design problem of Linear Parameter-Varying (LPV) out-
put feedback controllers which depend on inexact scheduling parameters for LPV
systems. This problem has already been tackled and several methods have been pro-
posed by over-bounding the discrepancies between the actual scheduling parameters
and the provided ones in the derivation of controller design condition. However, all
methods in literature have conservatism in the over-bounding, which is the main issue
addressed in this paper. We therefore propose a new over-bounding for the discrep-
ancies with the reverse use of Elimination lemma, which introduces no conservatism
in theory. The new method is formulated in terms of bilinear matrix inequality which
is not tractable compared to Linear Matrix Inequality (LMI), thus a practical design
procedure composed of line search and iterative algorithm is shown. The effective-
ness of our method is illustrated by an application to flight controller design for the
lateral-directional motions of a research airplane MuPAL-𝛼 and the consequently
conducted flight tests.

KEYWORDS:
Linear Parameter-Varying (LPV) system, flight controller, inexact scheduling parameter, Elimination
lemma

1 INTRODUCTION

The effectiveness of Linear Parameter-Varying (LPV) controllers, which is known as one of the realization of gain-scheduled
control technique, for controlling systems modeled as LPV systems are widely known, and many reports have already been
published1,2,3, etc. Most of them implicitly suppose that exact scheduling parameters are available; however it does not always
hold true in practical systems due to aging effect, finite resolutions, and other unexpected uncertainties of the measurement
equipment of scheduling parameters. For example, airspeed is widely used as one of the scheduling parameters in gain-scheduled
flight controller design4, and Pitot tube is widely used to measure airspeed in aeronautical community; however, it is also well
known that so-called position error always exists due to the effect of aircraft fuselage and thus the precise airspeed cannot be
always measured, as illustrated in5.

The research of designing LPV output feedback controllers depending on inexact scheduling parameters has been one of
the hot research topics in gain-scheduled controller design, and several methods have already been proposed6,7,8,9, etc. On the
uncertainties in the inexactly provided scheduling parameters, particular uncertainties are first supposed6,7, then the supposition

0Abbreviations: LPV, linear parameter-varying; LMI, linear matrix inequality; BMI, bilinear matrix inequality; w.r.t., with respect to; EAS, equivalent airspeed;
L.H.S., left hand side
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has been relaxed10,11. On this issue, it has been established in5 that as long as the design matrix inequalities are given as
parametrically affine, bounded uncertainties in the provided scheduling parameters can be supposed by using the convexity of
design matrix inequalities w.r.t. parameters; viz., it can be supposed that arbitrary uncertainties exist in the provided scheduling
parameters as long as they are bounded and the design matrix inequalities are given as parametrically affine. However, in the
papers above, over-bounding for the discrepancies between the actual scheduling parameters and the provided ones is used to
robustify the LPV controllers against the uncertainties in the provided scheduling parameters, and all the adopted methods in
the papers above are merely sufficient conditions for the over-bounding. In other words, to the best of authors’ knowledge, no
methods which introduce no conservatism in over-bounding the parameter discrepancies have yet been proposed. On the use of
inexact scheduling parameters, switching LPV controllers depending on inexact scheduling parameters have been also proposed
in12 to improve control performance.

Based on the research background above, we propose a new over-bounding for the parameter discrepancies in LPV output
feedback controller design. The new over-bounding theoretically introduces no conservatism with the reverse use of Elimination
lemma13,14,15. Our supposed LPV systems in this paper are slightly relaxed from parametrically affine LPV systems16,17 to
parametrically multi-affine LPV systems without introducing huge numerical complexity in the design process. As a practical
application of our method, we design discrete-time LPV flight controllers for the lateral-directional motions of a research airplane
MuPAL-𝛼 in the same problem setup adopted in5, and confirm that our method produces better LPV controllers than the method
in5 with respect to (w.r.t.) control performance, i.e. model-matching performance. Furthermore, the control performance is
examined in practical environment, i.e. in flight tests, which has not been presented in our conference papers16,17. To enhance
theoretical contributions of this paper, we address the design problem in both continuous-time and discrete-time cases.

Notations: 𝟎 denotes an appropriately dimensional zero matrix, 𝐈 denotes an appropriately dimensional identity matrix (if
necessary, the dimension is denoted by the subscript), ℝ+, ℝ𝑛, ℝ𝑛×𝑚 and 𝕊𝑛

+ respectively denote the sets of positive real scalars,
𝑛-dimensional real vectors, 𝑛 × 𝑚-dimensional real matrices and 𝑛 × 𝑛-dimensional positive definite matrices, the symbol ∗
in a matrix represents an abbreviated asymmetric term, 𝖽𝗂𝖺𝗀

(
𝑋1, … , 𝑋𝑚

)
denotes a block diagonal matrix composed of

𝑋1, … , 𝑋𝑚, and 𝖧𝖾 {𝑋} for a square matrix 𝑋 denotes 𝑋 + 𝑋𝑇 . For a time-varying vector 𝑥, 𝛿[𝑥] denotes 𝑥̇ ∶= 𝑑
𝑑𝑡
𝑥 and

𝑥+ ∶= 𝑥(𝑘 + 1) in continuous-time and discrete-time cases respectively.
The remainder of this paper is structured as follows: Section 2 shows our method for over-bounding Hermitian terms via

Elimination lemma; Section 3 shows the proposed design method for discrete-time LPV output feedback controllers depending
on inexactly provided scheduling parameters; Section 4 shows discrete-time LPV flight controller design using the method in
Section 3 and the verification results by flight tests; and concluding remarks are finally given. The counterpart results in Section 3
for continuous-time case are all given in the appendix.

2 A NEW OVER-BOUNDING FOR HERMITIAN TERMS

In LPV output feedback controller design addressed in the next section, the term containing the scheduling parameter discrep-
ancies is represented as a Hermitian term, and it should be over-bounded by another tractable term to robustify LPV controllers
against the discrepancies. Thus, in this section, a general problem w.r.t. over-bounding is considered, viz., the verification problem
of the following matrix inequalities containing a Hermitian term is considered:

𝑄0 − 𝖧𝖾
{
𝑄1𝑄2

}
≻ 0, (1)

where 𝑄0 ∈ 𝕊𝑛
+, 𝑄1 ∈ ℝ𝑛×𝑙, and 𝑄2 ∈ ℝ𝑙×𝑛 are given.

With use of Elimination lemma13,14,15, we give the following formulation to verify the feasibility.

Lemma 1. 16 The following are both equivalent to (1).

∃𝑅 ∈ ℝ𝑙×𝑙 s.t.
[
𝑄0 𝑄1
∗ 𝟎

]
+ 𝖧𝖾

{[
𝟎
𝐈𝑙

]
𝑅
[
𝑄2 𝐈𝑙

]}
≻ 0 (2)

∃𝑅̃ ∈ ℝ𝑙×𝑙 s.t.
[
𝑄0 ∗
𝑄2 𝟎

]
+ 𝖧𝖾

{[
𝟎
𝐈𝑙

]
𝑅̃
[
𝑄𝑇

1 𝐈𝑙
]}

≻ 0 (3)
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Proof. Note that inequality (1) is equivalently represented as
[
𝐈𝑛 −𝑄𝑇

2

] [𝑄0 𝑄1
∗ 𝟎

] [
𝐈𝑛

−𝑄2

]
≻ 0, and that

[
𝐈𝑛 𝟎

]
=
[
𝟎 𝐈𝑙

]𝑇 ⟂

and
[
𝐈𝑛 −𝑄𝑇

2

]
=

[
𝑄2 𝐈𝑙

]𝑇 ⟂
hold. Then, the existence of 𝑅 satisfying (2) is equivalent to 𝑄0 ∈ 𝕊𝑛

+ and (1) from Elimination
lemma13,14,15. It is thus proved that the feasibility of (1) under 𝑄0 ∈ 𝕊𝑛

+ is equivalent to the existence of 𝑅 such that (2) holds.
As matrix 𝑅 is confirmed to be non-singular from the bottom-right block in inequality (2), the equivalence between (2) and (3)
is straightforwardly confirmed by setting 𝑅̃ = 𝑅−1.

In7 for continuous-time case and in5 for discrete-time case, the following formulation is used to over-bound the term related
to the scheduling parameter discrepancies, i.e. 𝖧𝖾{𝑄1𝑄2} in (1).

Lemma 2. C.f.18 1 If one of either conditions (4) or (5) holds then inequality (1) holds.

∃Υ ∈ 𝕊𝑙
+ s.t.

[
𝑄0 𝑄1 +𝑄𝑇

2Υ
𝑄𝑇

1 + Υ𝑄2 Υ

]
≻ 0 (4)

∃Υ ∈ 𝕊𝑙
+ s.t.

⎡⎢⎢⎣
𝑄0 𝑄1 𝑄𝑇

2Υ
𝑄𝑇

1 Υ 𝟎
Υ𝑄2 𝟎 Υ

⎤⎥⎥⎦ ≻ 0 (5)

As mentioned in18, it has not yet been clarified which condition is less conservative between (4) and (5). We claim that both
conditions are conservative compared to Lemma 1.

Lemma 3. If either (4) or (5) holds, then (2) holds.

Proof. Let us suppose that (4) holds. As Υ ≻ 0 is supposed in the bottom-right block in (4), then the following inequality holds:[
𝑄0 𝑄1 +𝑄𝑇

2Υ
𝑄𝑇

1 + Υ𝑄2 Υ + Υ

]
⪰
[

𝑄0 𝑄1 +𝑄𝑇
2Υ

𝑄𝑇
1 + Υ𝑄2 Υ

]
. Thus, (2) holds with 𝑅 = Υ. Next, let us suppose that (5) holds. Pre-

and post-multiplying
[
𝐈 𝟎 𝟎
𝟎 𝐈 𝐈

]
and its transpose to (5) respectively lead to (2) with 𝑅 = Υ. Thus, the assertion is proved.

In summary, with a slight abuse of mathematical expressions, the following relation holds on the feasibility of (1): Lemma 2
⊆ Lemma 1 ⇔ (1).

Using Lemma 1, we propose a design method of LPV output feedback controllers depending on inexact scheduling parameters,
and show the conservatism reduction compared the methods in7,5.

Remark 1. In9, a similar method to Lemma 1 is used for the design problem of LPV output feedback controllers depending
on inexact scheduling parameters; however, the method uses 𝑟𝐈𝑙 instead of full matrices 𝑅 and 𝑅̃. Thus, the proposed method
inevitably introduces conservatism for over-bounding the discrepancies. □

3 PROPOSED METHOD IN DISCRETE-TIME CASE

We first define our addressed problem, then show our proposed method, and finally give a practical design procedure composed
of line search and iterative algorithm.

3.1 Problem Definition
Let us consider the following LPV system (6).

𝐺(𝜃) ∶
⎡⎢⎢⎣
𝛿[𝑥]
𝑧
𝑦

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝐴(𝜃) 𝐵1(𝜃) 𝐵2
𝐶1(𝜃) 𝐷11(𝜃) 𝐷12
𝐶2 𝐷21 𝟎

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑥
𝑤
𝑢

⎤⎥⎥⎦ , (6)

where 𝜃 =
[
𝜃1 … , 𝜃𝑞

]𝑇 denotes 𝑞 independent measurable scheduling parameters, 𝑥 ∈ ℝ𝑛, 𝑤 ∈ ℝ𝑛𝑤 , 𝑢 ∈ ℝ𝑛𝑢 , 𝑧 ∈ ℝ𝑛𝑧

and 𝑦 ∈ ℝ𝑛𝑦 respectively denote the state with its initial value as zero, the external input, the control input, the performance

1A slightly different version with 𝑄𝑇
1 =

[
Υ1 𝟎

]
and 𝑄2 =

[
𝟎 Υ2

]
is shown in 18.
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output and the measurement output, and parameter-dependent matrices 𝐴(𝜃), 𝐵1(𝜃), 𝐶1(𝜃) and 𝐷11(𝜃) are all supposed to have
compatible dimensions and to be multi-affine w.r.t. scheduling parameters19,20. That is, they are supposed to be represented as∑

𝜃𝛼11 ⋯ 𝜃𝛼𝑞𝑞 𝑍𝛼1⋯𝛼𝑞 , 𝛼𝑖 = {0, 1}, where 𝑍𝛼1⋯𝛼𝑞 is the coefficient matrix. This assumption on parameter-dependency is made to
derive a numerically tractable multi-affine condition.

For all parameters, it is supposed that their variation ranges and their maximum deviations in a single sampling period are all
known in advance. Thus,

(
𝜃𝑖, 𝛿[𝜃𝑖]

)
∈ Λ𝑖 is supposed for 𝑖 = {1, … , 𝑞} with a priori given convex polytopes Λ𝑖 as in21, and

the following is consequently supposed: (𝜃, 𝛿[𝜃]) ∈ Λ𝜃 ∶= Λ1 ×⋯ × Λ𝑞 .
We would like to design a full-order LPV controller, which depends on the provided scheduling parameter vector 𝜃̂, defined

below.
𝐾(𝜃̂) ∶

[
𝛿[𝑥𝐾 ]
𝑢

]
=
[
𝐴𝐾 (𝜃̂) 𝐵𝐾 (𝜃̂)
𝐶𝐾 (𝜃̂) 𝐷𝐾 (𝜃̂)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐾̄(𝜃̂)

[
𝑥𝐾
𝑦

]
, (7)

where 𝑥𝐾 ∈ ℝ𝑛 is the state with its initial value as zero, and 𝜃̂ denotes the provided scheduling parameter vector which is not
always identical to 𝜃. Matrix 𝐾̄(𝜃̂) is supposed to be parametrically multi-affine. This supposition is made to derive a numerically
tractable multi-affine condition. It is also supposed that the uncertainty in 𝜃̂𝑖 is bounded, it is then always possible to make a
convex poytope to cover the admissible region of the pair (𝜃𝑖, 𝜃̂𝑖)10,5. Thus, it is supposed that (𝜃𝑖, 𝜃̂𝑖) ∈ Ξ𝑖 holds with a priori
defined convex polytope Ξ𝑖. Then, (𝜃, 𝜃̂) ∈ Ξ𝜃 ∶= Ξ1 ×⋯ × Ξ𝑞 holds.

The closed-loop system is straightforwardly derived as

𝐺𝑐𝑙(𝜃, 𝜃̂) ∶
[
𝛿[𝑥𝑐𝑙]
𝑧

]
=
[
𝐴𝑐𝑙(𝜃, 𝜃̂) 𝐵𝑐𝑙(𝜃, 𝜃̂)
𝐶𝑐𝑙(𝜃, 𝜃̂) 𝐷𝑐𝑙(𝜃, 𝜃̂)

] [
𝑥𝑐𝑙
𝑤

]
, (8)

where 𝑥𝑐𝑙 =
[
𝑥𝑇 𝑥𝑇𝐾

]𝑇 denotes the state. Matrices 𝐴𝑐𝑙(𝜃, 𝜃̂), etc. are straightforwardly calculated16, and thus they are omitted
here.

We address the following problem.

Problem 1. For given 𝛾 ∈ ℝ+, design an LPV controller 𝐾(𝜃̂) defined in (7) such that the closed-loop system 𝐺𝑐𝑙(𝜃, 𝜃̂) is
stabilized and ‖𝑧‖22 < 𝛾2‖𝑤‖22 is satisfied for all triplets of (𝜃, 𝛿[𝜃], 𝜃̂) in which (𝜃, 𝛿[𝜃]) ∈ Λ𝜃 and (𝜃, 𝜃̂) ∈ Ξ𝜃 hold.

3.2 Design Method
To show our method, we define a parametrically multi-affine matrix set (𝜃, 𝛿[𝜃], 𝜃̂) and a constant matrix set  .

(𝜃, 𝛿[𝜃], 𝜃̂) =
((𝜃),(𝜃, 𝛿[𝜃], 𝜃̂),(𝜃̂)

)
∈ 𝕊2𝑛

+ ×ℝ𝑛×𝑛 ×ℝ(𝑛+𝑛𝑢)×(𝑛+𝑛𝑦)

 = ( , ,) ∈ ℝ𝑛×𝑛 ×ℝ𝑛×𝑛 ×ℝ𝑛×𝑛 (9)

The following is proposed for Problem 1 using (𝜃, 𝛿[𝜃], 𝜃̂) and  .

Theorem 1. For given 𝛾 ∈ ℝ+, suppose that the following condition holds at all combinations of the vertices of Λ𝜃 and Ξ𝜃 .

∃(𝜃, 𝛿[𝜃], 𝜃̂) and  s.t. (10) or (11)

Then, controller 𝐾(𝜃̂) whose state-space matrix 𝐾̄(𝜃̂) is given as (14), in which matrices 𝑈, 𝑉 ∈ ℝ𝑛×𝑛 are nonsingular matrices
satisfying 𝑉 𝑈 +  =  , stabilizes the closed-loop system and ‖𝑧‖22 < 𝛾2‖𝑤‖22 is satisfied for all triplets of (𝜃, 𝛿[𝜃], 𝜃̂) in
which (𝜃, 𝛿[𝜃]) ∈ Λ𝜃 and (𝜃, 𝜃̂) ∈ Ξ𝜃 hold.[

Φ0(𝜃, 𝛿[𝜃], 𝜃̂) ∗
Φ1(𝜃, 𝜃̂)𝑇 𝟎

]
+ 𝖧𝖾

{[
𝟎
𝐈

]
(𝜃, 𝛿[𝜃], 𝜃̂)

[
Φ𝑇

2
𝐈

]𝑇}
≻ 0, (10)

where Φ0(𝜃, 𝛿[𝜃], 𝜃̂) is defined as Φ𝑑
0 (𝜃, 𝛿[𝜃], 𝜃̂) in (12) using (13), and{

Φ1(𝜃, 𝜃̂) =
[
𝟎
[
𝟎
(
𝐴(𝜃) − 𝐴(𝜃̂)

)𝑇 𝑇
]
𝟎 𝟎

]𝑇
,

Φ2 =
[ [

− 𝟎
]
𝟎 𝟎 𝟎

]
.[

Φ0(𝜃, 𝛿[𝜃], 𝜃̂) ∗
Φ2(𝜃, 𝜃̂) 𝟎

]
+ 𝖧𝖾

{[
Φ1
𝐈

]
(𝜃, 𝛿[𝜃], 𝜃̂)

[
𝟎
𝐈

]𝑇}
≻ 0, (11)
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where Φ0(𝜃, 𝛿[𝜃], 𝜃̂) is defined as Φ𝑑
0 (𝜃, 𝛿[𝜃], 𝜃̂) in (12) using (13), and{

Φ1 =
[
𝟎
[
𝟎 𝑇

]
𝟎 𝟎

]𝑇 ,
Φ2(𝜃, 𝜃̂) =

[ [
−
(
𝐴(𝜃) − 𝐴(𝜃̂)

) 𝟎
]
𝟎 𝟎 𝟎

]
.

Φ𝑑
0 (𝜃, 𝛿[𝜃], 𝜃̂) =

⎡⎢⎢⎢⎢⎣
−(𝜃) 𝟎 𝟎 𝟎

𝟎 (𝜃+) 𝟎 Υ𝐵(𝜃, 𝜃̂)
𝟎 𝟎 𝛾2𝐈 Υ𝐷(𝜃, 𝜃̂)
𝟎 ∗ ∗ 𝐈

⎤⎥⎥⎥⎥⎦
+ 𝖧𝖾

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

[ 𝐈 
]

Υ𝐴(𝜃, 𝜃̂)
Υ𝐶 (𝜃, 𝜃̂)

𝟎

⎤⎥⎥⎥⎥⎥⎦
[
𝐈 𝟎 𝟎 𝟎

]⎫⎪⎪⎬⎪⎪⎭
(12)

[
Υ𝐴(𝜃, 𝜃̂) Υ𝐵(𝜃, 𝜃̂)
Υ𝐶 (𝜃, 𝜃̂) Υ𝐷(𝜃, 𝜃̂)

]
=

⎡⎢⎢⎣
𝐴(𝜃) 𝐴(𝜃) 𝐵1(𝜃)

𝟎 𝐴(𝜃) 𝐵1(𝜃)
𝐶1(𝜃) 𝐶1(𝜃) 𝐷11(𝜃)

⎤⎥⎥⎦ +
⎡⎢⎢⎣
𝟎 𝐵2
𝐈 𝟎
𝟎 𝐷12

⎤⎥⎥⎦(𝜃̂)
[
𝐈 𝟎 𝟎
𝟎 𝐶2 𝐷21

]
(13)

𝐾̄(𝜃̂) =
[
𝑉 𝐵2
𝟎 𝐈

]−1 ((𝜃̂) −
[𝐴(𝜃̂) 𝟎

𝟎 𝟎

])[
𝑈 𝟎

𝐶2 𝐈

]−1
(14)

Proof. Since the inequalities (10) and (11) are parametrically multi-affine, if they hold at all combinations of the vertices of Λ𝜃
and Ξ𝜃 , then they also hold for all possible combinations of (𝜃, 𝛿[𝜃], 𝜃̂) in which (𝜃, 𝛿[𝜃]) ∈ Λ𝜃 and (𝜃, 𝜃̂) ∈ Ξ𝜃 hold. Then,
Φ0(𝜃, 𝛿[𝜃], 𝜃̂)−𝖧𝖾

{
Φ1(⋅)Φ2(⋅)

}
≻ 0 holds for all possible combinations of (𝜃, 𝛿[𝜃], 𝜃̂) from Lemma 1. Here Φ1(⋅)Φ2(⋅) denotes

Φ1(𝜃, 𝜃̂)Φ2 or Φ1Φ2(𝜃, 𝜃̂). Note that Φ1(⋅)Φ2(⋅) is given as follows:⎡⎢⎢⎢⎢⎢⎣

𝟎[
𝟎 𝟎 (

𝐴(𝜃̂) − 𝐴(𝜃)
) 𝟎

]
𝟎
𝟎

⎤⎥⎥⎥⎥⎥⎦
[
𝐈 𝟎 𝟎 𝟎

]
.

Then, the assertion is straightforwardly proved by following the same procedure in8,5.

On conservatism of over-bounding of the parameter discrepancies, the following assertion holds.

Theorem 2. Suppose that, in Theorem 1, there exist (𝜃), (𝜃̂) and  such that Φ𝑑
0 (𝜃, 𝛿[𝜃], 𝜃̂) ≻ 0 and Φ𝑑

0 (𝜃, 𝛿[𝜃], 𝜃̂) −
𝖧𝖾

{
Φ1(𝜃, 𝜃̂)Φ2

}
≻ 0 hold. Then, there always exists a matrix-valued function of(𝜃, 𝛿[𝜃], 𝜃̂) satisfying (10). The corresponding

assertion for (11) also holds with a (possibly different) matrix-valued function of (𝜃, 𝛿[𝜃], 𝜃̂).
First, note that Φ0(𝜃, 𝛿[𝜃], 𝜃̂) ≻ 0 is a necessary condition for (10) and (11). Then, Theorem 2 is obvious from Lemma 1,

i.e. Elimination lemma13,14,15, if we accept matrix-valued function (𝜃, 𝛿[𝜃], 𝜃̂) instead of restricting multi-affine matrix(𝜃, 𝛿[𝜃], 𝜃̂). Thus, the proof is omitted.
In other words, under the condition that there exist (𝜃), (𝜃̂) and  such that Φ𝑑

0 (𝜃, 𝛿[𝜃], 𝜃̂) ≻ 0 holds, Theorem 2 does
not introduce any conservatism for the over-bounding of 𝖧𝖾

{
Φ1(𝜃, 𝜃̂)Φ2

}
in the formulation (10). The corresponding property

for (11) holds as well. On the other hand, using multi-affine (𝜃, 𝛿[𝜃], 𝜃̂) obviously introduces conservatism; however, it leads
to multi-affine matrix inequality which is attractive w.r.t. numerical complexity in solving matrix inequalities. Thus, we restrict(𝜃, 𝛿[𝜃], 𝜃̂) to be parametrically multi-affine in Theorem 1.

Remark 2. In5, four formulations using Lemma 2 to address the parameter discrepancies are given for Problem 1, i.e. two
formulations given as (4) and (5), and two factorizations, which are also used in Theorem 1, for  (

𝐴(𝜃̂) − 𝐴(𝜃)
) . However,

they are all more conservative than or equal to Theorem 1, which is due to Lemma 3. □

3.3 Design Procedure
The formulations in Theorem 1 are given in terms of parametrically multi-affine matrix inequalities. Though, they are Bilinear
Matrix Inequalities (BMIs) which are not so tractable compared to Linear Matrix Inequalities (LMIs). Thus, similarly to5, we
show a concrete design procedure for solving them, i.e. combined method composed of line search for (𝜃, 𝛿[𝜃], 𝜃̂) and iterative
algorithm.
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Note that 𝖧𝖾
{(𝜃, 𝛿[𝜃], 𝜃̂)} in (10) and (11) should be positive definite from the requirement that the bottom-right block

should be positive definite. Then, if we set (𝜃, 𝛿[𝜃], 𝜃̂) as 𝑞𝐈 with scalar 𝑞, i.e. line search for (𝜃, 𝛿[𝜃], 𝜃̂), then 𝑞 should be
positive. Bearing this in mind, we show the following algorithm to solve the condition in Theorem 1.

Step 0 Set the iteration number 𝑖 = 0. Matrix (𝜃, 𝛿[𝜃], 𝜃̂) is set as 𝑞𝐈 with positive scalar 𝑞, and conduct line search of 𝑞 using
the a priori defined variations of 𝑞 for optimal 𝛾 by solving the following problem.

min
𝛾,(𝜃),(𝜃̂), , , 𝛾 s.t. (10) or (11)

The value 𝑞∗ which produces the best 𝛾 is chosen and set (𝜃, 𝛿[𝜃], 𝜃̂) = 𝑞∗𝐈. Set the best 𝛾 as 𝛾0. If no solutions are found,
we conclude the problem to be infeasible.

Step 1 Increase the iteration number 𝑖 = 𝑖 + 1. If (10) is solved in the previous step, proceed to (1). Otherwise, proceed to (2).

(1) Solve the following problem with the matrix  being fixed as obtained in the previous step.

min
𝛾,(𝜃),(𝜃̂), , ,(𝜃,𝛿[𝜃],𝜃̂) 𝛾 s.t. (10)

(2) Solve the following problem with the matrix  being fixed as obtained in the previous step.

min
𝛾,(𝜃),(𝜃̂), , ,(𝜃,𝛿[𝜃],𝜃̂) 𝛾 s.t. (11)

Step 2 Solve the following problem with the matrix (𝜃, 𝛿[𝜃], 𝜃̂) being fixed as obtained in the previous step, and set the optimal
𝛾 as 𝛾𝑖.

min
𝛾,(𝜃),(𝜃̂), , , 𝛾 s.t. (10) or (11)

If 𝛾𝑖−1 − 𝛾𝑖 < 𝜂 holds with a predefined threshold 𝜂 ∈ ℝ+, then stop the iteration and the finally obtained solution is the
design result. Otherwise, go back to Step 1.

Remark 3. In the algorithm shown above, all conditions are given in terms of multi-affine LMIs, thus they are easily solved by
using SeDuMi22, SDPT323, etc. In our controller design shown in the next section, we use SDPT3. □

4 LPV FLIGHT CONTROLLER USING INEXACT AIRSPEED

We show LPV flight controller design for the lateral-directional motions of research airplane MuPAL-𝛼 24. In our controller
design, constant scaling matrix is introduced to Theorem 1 for conservatism reduction due to multiple uncertainty blocks. The
corresponding modifications to the design procedure shown in the previous section are necessary and they are given after the
definition of our flight controller design problem.

The problem setup is the same as in conference paper17 and our previous report5, thus we give a simplified description on it.

4.1 LPV Flight Controller Design Setup
MuPAL-𝛼 has been developed as an in-flight simulator25, which has an ability to mimic other aircraft dynamics in flight,
and thus, model-matching and disturbance suppression are imposed as controller design specifications in17,5. The same design
specifications are adopted in this paper. To this end, the block diagram shown in Fig. 1 is set for designing an LPV flight
controller. The definitions of blocks and signals in the figure are given below.

Blocks: 𝐺𝐿∕𝐷(𝑉𝑡𝑟𝑢𝑒), 𝐺𝑎𝑐𝑡(𝑉𝑡𝑟𝑢𝑒), 𝐺𝑑𝑒𝑥 and 𝐾(𝑉𝑝𝑟𝑜𝑣) respectively denote the lateral-directional motions of MuPAL-𝛼 scheduled
by true EAS (Equivalent Air Speed) which is denoted by 𝑉𝑡𝑟𝑢𝑒, the actuator dynamics scheduled by 𝑉𝑡𝑟𝑢𝑒, one step delay model
and the to-be-designed LPV controller scheduled by provided EAS which is denoted by 𝑉𝑝𝑟𝑜𝑣(= 𝑉𝑡𝑟𝑢𝑒+𝛿𝐸𝐴𝑆)with the uncertainty
in the provided EAS data 𝛿𝐸𝐴𝑆 ; 𝑊 , 𝑊𝑔 and 𝑊𝑀 respectively denote the weighting functions for uncertainties related to the
onboard actuators, gust suppression performance and model-matching performance; Δ = 𝖽𝗂𝖺𝗀

(
Δ𝑝𝑒𝑟,Δ𝑔𝑢𝑠𝑡,Δ𝑎,Δ𝑟

)
denotes the

structured uncertainty block composed of 2×2-dimensional model-matching performance block (Δ𝑝𝑒𝑟), 2×2-dimensional gust
suppression performance block (Δ𝑔𝑢𝑠𝑡), and two scalar uncertainty blocks to represent the uncertainties related to the onboard
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FIGURE 1 Block diagram for simultaneous realization of model-matching and gust suppression

aileron and rudder actuators (Δ𝑎 and Δ𝑟); and 𝐿1∕2 and its inverse denote the constant scaling matrix to reduce conservatism
due to the structured uncertainty block Δ. It is supposed that ‖Δ‖ ≤ 1 holds.

Signals: 𝑢𝑐𝑜𝑚, 𝑢𝑝, 𝑧𝑝, 𝑦𝑝 and 𝛿𝐸𝐴𝑆 respectively denote the control command produced by 𝐾(𝑉𝑝𝑟𝑜𝑣), i.e. 𝑢𝑐𝑜𝑚 = [𝛿𝑎𝑐 𝛿𝑟𝑐 ]
𝑇 (𝛿𝑎𝑐

and 𝛿𝑟𝑐 respectively denote aileron and rudder deflection commands), actual control input to MuPAL-𝛼, i.e. 𝑢𝑝 = [𝛿𝑎 𝛿𝑟]𝑇 (𝛿𝑎
and 𝛿𝑟 respectively denote aileron and rudder deflections), plant output to be controlled, i.e. 𝑧𝑝 = [𝑣𝑎 𝜙]𝑇 (𝑣𝑎 and 𝜙 respectively
denote lateral airspeed and roll angle), measurement output, i.e. 𝑦𝑝 = [𝑣𝑎 𝑝 𝜙 𝑟]𝑇 (𝑝 and 𝑟 respectively denote roll and yaw rates)
and uncertainties in the provided EAS; the pair of 𝑤𝑑 and 𝑧𝑐𝑜𝑚 denotes the signals to evaluate the uncertainties related to the
onboard actuators, viz., they respectively denote fictitious external input and weighted 𝑢𝑐𝑜𝑚 to compensate the uncertainties of
the onboard actuators; the pair of [𝑣𝑔 0]𝑇 and 𝑧𝑔 denotes the signals to evaluate gust suppression performance, viz., 𝑣𝑔 and 𝑧𝑔
respectively denote sideway gust and performance output 𝑧𝑝 multiplied by the weighting function 𝑊𝑔; and the pair of 𝑧𝑚 and
𝑧𝑝𝑒𝑟 denotes the signals to evaluate model-matching performance, viz., they respectively denote the model output which is to be
reproduced by MuPAL-𝛼 and performance output 𝑧𝑝 multiplied by the weighting function 𝑊𝑀 . Note that 𝑣𝑔 is augmented as
[𝑣𝑔 0]𝑇 to comply with the size of 𝑧𝑔 .

As the design specifications and the onboard actuator uncertainties (uncertain delay ranging in [0.06, 0.10] [s] in both aileron
and rudder channels) are the same as in5, the following weighting functions which are the same as in5 are used after the
discretization via Euler method with the onboard computer’s sampling period Δ𝑇 = 0.02 [s]: 𝑊𝑀 = 20

𝑇 𝑠𝑠2+𝑇
√
2𝑠+1

𝐈2, 𝑊𝑔 =
0.5

0.1𝑠+1
𝐈2, 𝑊 = 2.5𝑠

𝑠+30
𝐈2, where 𝑇 in 𝑊𝑀 is a tuning design parameter. Small values of 𝑇 widen the frequency range in which

model-matching is realized, thus small 𝑇 is preferable.
We address the following problem with help of Fig. 1.

Problem 2. Design a constant scaling matrix 𝐿 ∈ 𝕊6
+ compatible with the structured uncertainty block Δ, i.e. Δ𝐿 = 𝐿Δ,

and a stabilizing LPV controller 𝐾(𝑉𝑝𝑟𝑜𝑣), which depends on the provided scheduling parameter 𝑉𝑝𝑟𝑜𝑣 corrupted from 𝑉𝑡𝑟𝑢𝑒 with
the bounded uncertainty 𝛿𝐸𝐴𝑆 given by (15), satisfying ‖𝐿−1∕2𝑧‖22 < 𝛾2‖𝐿−1∕2𝑤‖22 with ℝ+ ∋ 𝛾 ≤ 1 for all possible triplets
(𝑉𝑡𝑟𝑢𝑒, 𝑉 +

𝑡𝑟𝑢𝑒, 𝑉𝑝𝑟𝑜𝑣) belonging to a convex polytope whose vertex set is given in (16).

𝛿𝐸𝐴𝑆 ∈ [0.5 − 0.04 × 𝑉𝑡𝑟𝑢𝑒, 1.875 − 0.035 × 𝑉𝑡𝑟𝑢𝑒] (15)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

(54.012, 54.012, 52.352), (54.012, 54.012, 53.997),
(54.012, 54.112, 52.352), (54.012, 54.112, 53.997),
(54.112, 54.012, 52.448), (54.112, 54.012, 54.093),
(99.179, 99.279, 95.712), (99.179, 99.279, 97.583),
(99.279, 99.179, 95.808), (99.279, 99.179, 97.679),
(99.279, 99.279, 95.808), (99.279, 99.279, 97.679)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(16)

The vertex set of (16) means that the supposed EAS range is 𝑉𝑡𝑟𝑢𝑒 ∈ [54.012, 99.279] [m∕s] and the supposed maximum and
minimum deviations of EAS for a single sampling period Δ𝑇 are ±0.1 [m∕s∕sampling].

The problem needs to design an LPV output feedback controller 𝐾(𝑉𝑝𝑟𝑜𝑣) and a scaling matrix 𝐿 as well, thus solving the
problem is not a simple application of Theorem 1; however, the difference is only the introduction of the constant matrix 𝐿.
Thus, the combined method of line search and iterative algorithm, which has already shown in the previous section, can be

applied with the following modifications with (𝜃̂) being partitioned as
[𝐴(𝜃̂) 𝐵(𝜃̂)𝐶 (𝜃̂) 𝐷(𝜃̂)

]
and 𝐿 being set as .

• In matrix inequalities (10) and (11), Φ𝑑
0 (𝜃, 𝛿[𝜃], 𝜃̂) defined in (12) is revised as (17) with a constant scaling matrix  ∈ 𝕊6

+
which is also a decision matrix.

Φ𝑑
0 (𝜃, 𝛿[𝜃], 𝜃̂) =

⎡⎢⎢⎢⎢⎣
−(𝜃) 𝟎 𝟎 𝟎

𝟎 (𝜃+) 𝟎 Υ𝐵(𝜃, 𝜃̂)
𝟎 𝟎 𝛾2 Υ𝐷(𝜃, 𝜃̂)
𝟎 ∗ ∗ −1

⎤⎥⎥⎥⎥⎦
+ 𝖧𝖾

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

[ 𝐈 
]

Υ𝐴(𝜃, 𝜃̂)
Υ𝐶 (𝜃, 𝜃̂)

𝟎

⎤⎥⎥⎥⎥⎥⎦
[
𝐈 𝟎 𝟎 𝟎

]⎫⎪⎪⎬⎪⎪⎭
(17)

• In Step 0, decision matrix  is set as I.

• In (1) in Step 1, the problem is revised as follows:

min
𝛾,(𝜃),𝐴(𝜃̂),𝐵(𝜃̂), , ,(𝜃,𝜃̂),−1

𝛾 s.t. 𝖽𝗂𝖺𝗀
(
𝐈, 𝐈,−1, 𝐈, 𝐈

)
× L.H.S. of (10) × 𝖽𝗂𝖺𝗀

(
𝐈, 𝐈,−1, 𝐈, 𝐈

)
≻ 0,

where 𝑐(𝜃̂), 𝐷(𝜃̂) and  are fixed as ones obtained in the previous step.

• In (2) in Step 1, the problem is revised as follows:

min
𝛾,(𝜃),𝐴(𝜃̂),𝐶 (𝜃̂), , ,(𝜃,𝜃̂), 𝛾 s.t. 𝖽𝗂𝖺𝗀 (𝐈, 𝐈, 𝐈,, 𝐈) × L.H.S. of (11) × 𝖽𝗂𝖺𝗀 (𝐈, 𝐈, 𝐈,, 𝐈) ≻ 0,

where 𝐵(𝜃̂), 𝐷(𝜃̂) and  are fixed as ones obtained in the previous step.

• In Step 2, decision matrix  is fixed as obtained in the previous step.

With the revisions above and ten gridding points over a logarithmic scale in the interval [10−5, 105] for the line search of 𝑞, we
design LPV flight controllers depending on 𝑉𝑝𝑟𝑜𝑣 for various values of 𝑇 in𝑊𝑀 . In our design, the decision matrix(𝜃, 𝛿[𝜃], 𝜃̂) is
set as parametrically affine w.r.t. 𝑉𝑡𝑟𝑢𝑒 and 𝑉𝑝𝑟𝑜𝑣, i.e. (𝜃, 𝜃̂), because controller performance dependence on 𝑉 +

𝑡𝑟𝑢𝑒 in (𝜃, 𝛿[𝜃], 𝜃̂)
is confirmed to be small in a primitive design and this setup reduces numerical complexity in solving LMIs.

4.2 Controller Design and A Posteriori Analysis
We design LPV controllers using Theorem 1 combined with constant scaling matrix 𝐿. For comparison, we design LPV con-
trollers using the method in5, i.e. Theorem 1 in the paper. After designing LPV controllers, we also conduct a posteriori analysis
to calculate 𝛾 satisfying ‖𝐿−1∕2𝑧‖22 < 𝛾2‖𝐿−1∕2𝑤‖22 for all possible triplets (𝑉𝑡𝑟𝑢𝑒, 𝑉 +

𝑡𝑟𝑢𝑒, 𝑉𝑝𝑟𝑜𝑣) belonging to a convex polytope
whose vertex set is given in (16) using Theorem 2 in5. This is because the use of parametrically affine (𝜃, 𝜃̂) in Theorem 1
and Theorem 1 in5 inevitably introduces conservatism (see Theorem 2 and the paragraph beneath in the previous section) and
therefore a posteriori analysis is necessary for precise performance evaluation.

The minimized 𝛾’s with two methods are shown in Tables 1 and 2. In the same tables, the guaranteed 𝛾’s which are obtained
in a posteriori analysis are also shown.
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TABLE 1 Minimized 𝛾’s via Theorem 1 combined with constant scaling matrix and a posteriori analysis

𝑇 7.0 7.5 8.0 8.5 9.0

Design 1.14 1.09 1.06 1.02 1.00
Analysis 1.09 1.03 1.00 0.97 0.95

TABLE 2 Minimized 𝛾’s via method in5 and a posteriori analysis
𝑇 8.5 9.0 9.5 10.0

Design 1.07 (d) 1.03 (b) 1.00 (b) 0.96 (b)
Analysis 1.02 0.99 0.96 0.93

Note that Theorem 1 has two formulations which come from two possible factorizations for  (
𝐴(𝜃̂) − 𝐴(𝜃)

) , and both are
solved to obtain the best controllers. In our design, the best controllers for all 𝑇 in Table 1 are obtained by solving the formulation
(11). Similarly, the method in5 has four formulations (a) ∼ (d), and all formulations are solved to obtain the best controllers.
The choice for the best controllers is indicated in the parentheses in Table 2.

The results in Tables 1 and 2 clearly indicate that the controllers designed by Theorem 1 which is based on Lemma 1 to
compensate 𝛿𝐸𝐴𝑆 in 𝑉𝑝𝑟𝑜𝑣 have better performance than the controllers designed by the design method in5 which is based on
Lemma 2 to compensate 𝛿𝐸𝐴𝑆 in 𝑉𝑝𝑟𝑜𝑣. Thus, conservatism reduction using Lemma 1 compared to using Lemma 2 in LPV
controller design is well illustrated, which is reasonable from Lemma 3.

In a posteriori analysis, it is confirmed that the LPV controller with 𝑇 = 8.0 in Table 1 and the LPV controller with 𝑇 = 9.0 in
Table 2 satisfy 𝛾 ≤ 1. Therefore, these two LPV controllers are implemented to the onboard computer of MuPAL-𝛼 to examine
practical performance.

Figs. 2 and 3 respectively show the Bode plots of the closed-loop system using the LPV controller with 𝑇 = 8.0 in Table 1 and
the LPV controller with 𝑇 = 9.0 in Table 2 for 𝖽𝗂𝖺𝗀

(
𝛿𝑎, 𝛿𝑟

)
= ±𝐈2 and frozen 𝑉𝑡𝑟𝑢𝑒 and 𝛿𝐸𝐴𝑆 . For comparison, the corresponding

Bode plots for open-loop systems are also depicted. Both figures indicate that the designed LPV controllers have good model-
matching and good disturbance suppression for 𝖽𝗂𝖺𝗀

(
𝛿𝑎, 𝛿𝑟

)
= ±𝐈2 and frozen 𝑉𝑡𝑟𝑢𝑒 and 𝛿𝐸𝐴𝑆 , and it is not so easy to find the

difference between the two controllers w.r.t. control performance. However, the former has better model-matching performance
than the latter, viz., control performance is improved. In particular, at 0.6 [rad∕s], phase delay from 𝑧𝑚(1) to 𝑣𝑎 is decreased
from about 35 [deg] in Fig. 3 to less than 30 [deg] in Fig. 2, and phase delay from 𝑧𝑚(2) to 𝜙 is similarly decreased from over
30 [deg] in Fig. 3 to about 25 [deg] in Fig. 2.

These figures indicate that the model-matching in gain characteristics is realized up to around 1.5 [rad∕s] using the designed
two LPV controllers; however, phase delay becomes so large as the frequency increases. Thus, roughly speaking, the motions
whose frequencies are less than 0.6 [rad∕s] are expected to be reproduced as MuPAL-𝛼’s motions in 𝑣𝑎 and 𝜙.

4.3 Practical Performance in Flight
We conducted flight tests to compare control performance of the implemented two LPV controllers. The flight data were obtained
in two days (Feb. 9th and 19th in 2018) for unbiased results. Furthermore, the experiments were conducted one after another
with very short breaks in both two flights to equalize the flight conditions as much as possible.

We show one pair of disturbance suppression check results (Figs. 4 and 5), and two pairs of model-matching performance
check results under disturbance (Figs. 6 and 7, and Figs. 8 and 9). Note that flight tests inevitably suffer wind gust, thus we
cannot have flight tests focusing purely on model-matching performance check. Thus, flight tests in Figs. 6 ∼ 9 are the results for
checking model-matching performance under disturbance. The command signals 𝑧𝑚(1) and 𝑧𝑚(2) in Figs. 6∼ 9 respectively have
the peak gains at 0.57 and 0.44 [rad∕s]. These frequencies are less than the estimated upper limit to achieve model-matching,
but not so far from the limit. Thus, the commands in flight tests are suitable to compare control performance.

It is not so easy to see the difference of the two LPV flight controllers w.r.t. control performance in those figures. In order to
see the difference, Tables 3, 4 and 5 summarize control performance of the implemented two LPV controllers in exposed flight
tests. In those tables, Δ𝑣𝑎 and Δ𝜙 respectively denote 𝑧𝑚(1) − 𝑣𝑎 and 𝑧𝑚(2) − 𝜙, e.g. the discrepancies between commands and
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TABLE 3 Performance comparison of controllers in Figs. 4 and 5

Controller via Controller via
Theorem 1 with 𝐿 method in5

duration time (𝑇𝑒𝑣𝑎𝑙 [s]) 205.28 199.24
∫ 𝑇𝑒𝑣𝑎𝑙
0 |Δ𝑣𝑎|2𝑑𝑡

𝑇𝑒𝑣𝑎𝑙
[(m∕s)2] 0.106 0.203

∫ 𝑇𝑒𝑣𝑎𝑙
0 |Δ𝜙|2𝑑𝑡

𝑇𝑒𝑣𝑎𝑙
[(deg)2] 0.057 0.081

TABLE 4 Performance comparison of controllers in Figs. 6 and 7
Controller via Controller via

Theorem 1 with 𝐿 method in5

duration time (𝑇𝑒𝑣𝑎𝑙 [s]) 173.25 175.03
∫ 𝑇𝑒𝑣𝑎𝑙
0 |Δ𝑣𝑎|2𝑑𝑡

𝑇𝑒𝑣𝑎𝑙
[(m∕s)2] 0.740 0.885

∫ 𝑇𝑒𝑣𝑎𝑙
0 |Δ𝜙|2𝑑𝑡

𝑇𝑒𝑣𝑎𝑙
[(deg)2] 7.571 10.755

TABLE 5 Performance comparison of controllers in Figs. 8 and 9
Controller via Controller via

Theorem 1 with 𝐿 method in5

duration time (𝑇𝑒𝑣𝑎𝑙 [s]) 182.67 185.93
∫ 𝑇𝑒𝑣𝑎𝑙
0 |Δ𝑣𝑎|2𝑑𝑡

𝑇𝑒𝑣𝑎𝑙
[(m∕s)2] 0.523 0.660

∫ 𝑇𝑒𝑣𝑎𝑙
0 |Δ𝜙|2𝑑𝑡

𝑇𝑒𝑣𝑎𝑙
[(deg)2] 4.160 6.164

the controlled outputs of MuPAL-𝛼. The tables clearly illustrate that the LPV controller designed using Theorem 1 has better
performance than the LPV controller designed using the method in5 w.r.t. disturbance suppression as well as model-matching
under disturbance.

5 CONCLUSIONS

This paper addresses the design problem of Linear Parameter-Varying (LPV) output feedback controllers depending on inexactly
provided scheduling parameters for LPV systems. For this problem, under some mild assumptions for the state-space matrices
of LPV systems, we derive a design condition in terms of multi-affine matrix inequality in which the discrepancies between the
actual and the provided scheduling parameters are over-bounded by using Elimination lemma. The derived condition theoreti-
cally introduces no conservatism in addressing the parameter discrepancies, which is a sharp contrast to existing methods and
consequently means that our proposed method is no more conservative than existing methods; however, the design condition is
given as multi-affine Bilinear Matrix Inequality (BMI) which is not tractable compared to multi-affine Linear Matrix Inequal-
ity (LMI). We thus show a design procedure composed of line search and iterative algorithm, in which only multi-affine LMIs
should be solved.

As a practical application of our method, we address LPV flight controller design for the lateral-directional motions of a
research airplane MuPAL-𝛼 which has been developed as an in-flight simulator, and design LPV flight controllers using our
proposed method and a previously proposed method. In controller design and a posteriori analysis, it is confirmed that the
LPV controllers designed by our method have better control performance than the LPV controllers designed by the previously
proposed method. Furthermore, in experiments under practical environment, i.e. in flight tests, control performance improvement
of the LPV controller designed by our method compared to the LPV controller designed by the previously proposed method is
confirmed. We thus illustrate the effectiveness of our proposed method in theory as well as in practical performance.
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APPENDIX

A PROPOSED METHOD IN CONTINUOUS-TIME CASE

In the appendix, the counterpart results in Section 3 for continuous-time case are shown.
Similarly to the discrete-time case, we consider LPV controller (7) for LPV system (6). For all parameters, it is supposed that

their variation ranges and their derivative ranges are all known in advance, and thus (𝜃𝑖, 𝛿[𝜃𝑖]) ∈ Λ𝑖 is supposed for 𝑖 = {1,… , 𝑞}
with a priori given convex polytopes Λ𝑖. Then, (𝜃, 𝛿[𝜃]) ∈ Λ𝜃 ∶= Λ1 ×⋯ ×Λ𝑞 holds. Other suppositions are all the same as in
discrete-time case.

Then, the following is proposed for Problem 1 using (𝜃, 𝛿[𝜃], 𝜃̂) and  defined in (9).

Theorem 3. For given 𝛾 ∈ ℝ+, suppose that the following condition holds at all combinations of the vertices of Λ𝜃 and Ξ𝜃 .

∃𝛼 ∈ ℝ+,(𝜃, 𝜃̂) and  s.t. (10) or (11)

In (10), Φ0(𝜃, 𝛿[𝜃], 𝜃̂) is defined as Φ𝑐
0(𝜃, 𝛿[𝜃], 𝜃̂) in (A1) using (13) and{
Φ1(𝜃, 𝜃̂) =

[
𝟎
[
𝟎
(
𝐴(𝜃) − 𝐴(𝜃̂)

)𝑇 𝑇
]
𝟎 𝟎

]𝑇
,

Φ2 =
[ [

𝛼 𝟎
] [ 𝟎

]
𝟎 𝟎

]
.

In (11), Φ0(𝜃, 𝛿[𝜃], 𝜃̂) is defined as Φ𝑐
0(𝜃, 𝛿[𝜃], 𝜃̂) in (A1) using (13) and{

Φ1 =
[
𝟎
[
𝟎 𝑇

]
𝟎 𝟎

]𝑇 ,
Φ2(𝜃, 𝜃̂) =

[ [
𝛼
(
𝐴(𝜃) − 𝐴(𝜃̂)

) 𝟎
] [ (

𝐴(𝜃) − 𝐴(𝜃̂)
) 𝟎

]
𝟎 𝟎

]
.

Then, controller 𝐾(𝜃̂) whose state-space matrix 𝐾̄(𝜃̂) is given as (14), in which matrices 𝑈, 𝑉 ∈ ℝ𝑛×𝑛 are nonsingular matrices
satisfying 𝑉 𝑈 +  =  , stabilizes the closed-loop system and ‖𝑧‖22 < 𝛾2‖𝑤‖22 is satisfied for all triplets of (𝜃, 𝛿[𝜃], 𝜃̂) in
which (𝜃, 𝛿[𝜃]) ∈ Λ𝜃 and (𝜃, 𝜃̂) ∈ Ξ𝜃 hold.

Φ𝑐
0(𝜃, 𝜃̇, 𝜃̂) = −

⎡⎢⎢⎢⎢⎣
𝟎 (𝜃) 𝟎 𝟎
∗ −̇(𝜃) 𝟎 Υ𝐵(𝜃, 𝜃̂)
𝟎 𝟎 −𝛾2𝐈 Υ𝐷(𝜃, 𝜃̂)
𝟎 ∗ ∗ −𝐈

⎤⎥⎥⎥⎥⎦
− 𝖧𝖾

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
−
[ 𝐈 

]
Υ𝐴(𝜃, 𝜃̂)
Υ𝐶 (𝜃, 𝜃̂)

𝟎

⎤⎥⎥⎥⎥⎥⎦
[
𝛼𝐈 𝐈 𝟎 𝟎

]⎫⎪⎪⎬⎪⎪⎭
(A1)

A brief proof is given below

Proof. Note that Φ1(⋅)Φ2(⋅) is given as follows:⎡⎢⎢⎢⎢⎢⎣

𝟎[
𝟎 𝟎 (

𝐴(𝜃) − 𝐴(𝜃̂)
) 𝟎

]
𝟎
𝟎

⎤⎥⎥⎥⎥⎥⎦
[
𝛼𝐈 𝐈 𝟎 𝟎

]
.
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Then, by following the same procedure as in26, the following inequality with𝑃 (𝜃) = 𝑇 −𝑇(𝜃)𝑇 −1 and𝐻 = 𝑇 −𝑇
[ 𝐈 

]
𝑇 −1

with 𝑇 =
[
𝐈 𝑇

𝟎 𝑉 𝑇

]
is derived from Φ0(𝜃, 𝛿[𝜃], 𝜃̂) − 𝖧𝖾{Φ1(⋅)Φ2(⋅)} ≻ 0:

⎡⎢⎢⎢⎢⎣
𝟎 𝑃 (𝜃) 𝟎 𝟎
∗ −𝑃̇ (𝜃) 𝟎 𝐵𝑐𝑙(𝜃, 𝜃̂)
𝟎 𝟎 −𝛾2𝐈 𝐷𝑐𝑙(𝜃, 𝜃̂)
𝟎 ∗ ∗ −𝐈

⎤⎥⎥⎥⎥⎦
+ 𝖧𝖾

{[
−𝐈 𝐴𝑐𝑙(𝜃, 𝜃̂)𝑇 𝐶𝑐𝑙(𝜃, 𝜃̂)𝑇 𝟎

]𝑇 𝐻
[
𝛼𝐈 𝐈 𝟎 𝟎

]}
≺ 0.

Then, the assertion is proved by following the same argument in dilated LMI technique summarized in27.

Remark 4. In contrast to Theorem 1, the formulation in Theorem 3 has a single line search parameter 𝛼. Thus, if we apply
the design procedure in Section 3, the line search for 𝛼 should be conducted at each step. Thus, the numerical complexity in
designing continuous-time LPV controllers is so huge, similarly to9. Furthermore, if the implemented computers are digital
computers, the online discretization of the state-space matrices of continuous-time LPV controllers should be also conducted by
using Euler method, trapezoidal approximation28, etc. Due to these reasons, in our previous report5 and this paper, we directly
design discrete-time LPV controllers for the discretized lateral-directional motion model of MuPAL-𝛼. □

On conservatism for over-bounding the parameter discrepancies, a similar assertion as in Theorem 2 also holds for continuous-
time case.

Theorem 4. Suppose that, in Theorem 3, there exist 𝛼, (𝜃), (𝜃̂) and  such that Φ𝑐
0(𝜃, 𝛿[𝜃], 𝜃̂) ≻ 0 and Φ𝑐

0(𝜃, 𝛿[𝜃], 𝜃̂) −
𝖧𝖾

{
Φ1(𝜃, 𝜃̂)Φ2

}
≻ 0 hold. Then, there always exists a matrix-valued function of(𝜃, 𝛿[𝜃], 𝜃̂) satisfying (10). The corresponding

assertion for (11) also holds with a (possibly different) matrix-valued function of (𝜃, 𝛿[𝜃], 𝜃̂).
Due to the same reason of Theorem 2, the proof is omitted.
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FIGURE 2 Bode plots from [𝑣𝑔 𝑧𝑇𝑚]
𝑇 to 𝑧𝑝 using LPV controller with 𝑇 = 8.0 in Table 1
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FIGURE 3 Bode plots from [𝑣𝑔 𝑧𝑇𝑚]
𝑇 to 𝑧𝑝 using LPV controller with 𝑇 = 9.0 in Table 2
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FIGURE 5 Flight test result with LPV controller via Theorem 1 in5 with 𝑇 = 9.0 for disturbance suppression check
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FIGURE 6 Flight test result with LPV controller via Theorem 1 with 𝑇 = 8.0 for model-matching under disturbance
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FIGURE 7 Flight test result with LPV controller via Theorem 1 in5 with 𝑇 = 9.0 for model-matching under disturbance
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FIGURE 8 Flight test result with LPV controller via Theorem 1 with 𝑇 = 8.0 for model-matching under disturbance
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FIGURE 9 Flight test result with LPV controller via Theorem 1 in5 with 𝑇 = 9.0 for model-matching under disturbance
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