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Abstract. Data generated by sets of sensors can be used to perform
predictive maintenance on industrial systems. However, these sensors
may suffer faults that corrupt the data. Because the knowledge of sensor
faults is usually not available for training, it is necessary to develop an
agnostic method to learn and detect these faults. According to these
industrial requirements, the contribution of this paper is twofold: 1) an
unsupervised method based on the successive application of specialized
anomaly detection methods; 2) an agnostic evaluation method using a
supervised model, where the data labels come from the unsupervised
process. This approach is demonstrated on two public datasets and on a
real industrial dataset.

Keywords: Anomaly detection ·Machine learning · Agnostic evaluation
· Industrial applications.

1 Introduction

Nowadays, industrial systems are equipped with sets of sensors that perform
different physical measures on the parts of the system. These measures are linked
to the instant they are observed and form time series that can be used in various
ways and give precious information about the behaviour of the system over time.
An interesting use of these data is predictive maintenance that aims to anticipate
breakdowns with the study of irregularities in data [1]. However, faulty sensors
may generate irrelevant irregularities that disturb the analysis of data, leading
to misinterpretations. For this reason, sensor faults must be detected so that the
impact of faulty data on the predictive maintenance process is limited.

We chose to train anomaly detection models on selected training datasets.
Yet, available datasets are usually not labelled, which means that we do not
know if an observation is normal or generated by a faulty sensor. On top of
that, for the same company, there are different systems with different operating
contexts. Thus, we wish to build a solution that can be generalized to most
industrial systems.
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The contribution of this paper is twofold. We propose: 1) an unsupervised
method, named SuMeRI (Successive Methods Run Iteratively), that performs
anomaly detection on unlabelled datasets. It is based on applying successively
different anomaly detection methods that detect different kinds of anomalies.
Each method is applied iteratively on data where anomalies are removed at
each iteration; 2) an agnostic evaluation method based on consistency checking,
named CC-Eval (Consistency Checking Evaluation), that measures the similarity
of the results of the unsupervised learned model with those of a supervised model
learned with the training dataset labelled according to the unsupervised model
(cf. Figure 1).

The paper is organized as follows. Section 2 provides a state of the art of the
field of anomaly detection and positions our contribution. Section 3 presents the
two methods, SuMeRI and CC-Eval. In Section 4, some results obtained with
public datasets and real case study datasets are provided to validate our ap-
proach. To conclude, Section 5 includes a discussion of the results and directions
for future works.

2 Related work on Anomaly Detection

Various communities have been interested in anomaly detection, starting with
statisticians in the end of the 19th century with the works of Edgeworth [2],
followed by control scientists interested in fault detection and isolation, i.e. the
FDI community [3], and later by artificial intelligence scientists that proposed
paradigms for diagnosis reasoning, i.e. the DX community [4]. Many of these
latter works are based on the existence of a model built from physical knowl-
edge [5][6][7]. However, the complexity of today’s systems which makes it difficult
to build models and the growing interest in data-based methods have led to the
development of many machine learning methods. This paper is interested in
these methods.

A commonly accepted definition of anomaly, or outlier, is the one from
Hawkins that defines an anomaly as “an observation which deviates so much
from the other observations as to arouse suspicions that it was generated by a
different mechanism” [8]. A survey published by Chandola et al. in 2009 [9] acts
as a reference in the domain and provides all the required elements to approach
the field. This survey introduces three kinds of anomalies:

– point anomalies defined as pointwise observations that appear abnormal
compared to the rest of the dataset,

– contextual anomalies defined as pointwise observations that appear abnormal
with respect to the context in which they occur,

– collective anomalies defined as collections of observations that are solely
abnormal if studied together.

While point anomalies are the most frequent and the most trivial to detect,
collective anomalies are nonetheless common in time series and this makes their
detection important in industrial context with sensor data.
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The survey by Chandola [9] also divides the methods according to the avail-
ability of data labels during the training phase. Learning methods using entirely
labelled datasets, for which labels indicate for each instance if it is normal or
abnormal, are called supervised and usually refer to the classification problem.
But the cases where the knowledge about the labels is available are quite un-
common, and this is why semi-supervised methods are preferred. In this later
case, models are learned from training datasets in which only one specific class
is present, usually normal data. The methods of the last type are known as
unsupervised and they do not use any knowledge a priori. Because of this, unsu-
pervised techniques are more generalizable than supervised or semi-supervised.
However, unsupervised methods often make the assumption that abnormal data
are very few in the training set and that it is possible to apply a sufficiently
robust semi-supervised method without being disturbed by outliers.

There are two types of outputs for anomaly detection methods: a decision or
a score. The decision is mostly used in a supervised context and only gives the
predicted class of each instance. The score is defined as the degree of abnormality
(or, in some cases, normality) of an instance, in a range that is defined by the
method itself. Then, one usually defines a threshold on this score to make a
decision.

As described in the introduction, the detection of faulty sensors needs to be
done in an unsupervised context. Studies about unsupervised anomaly detection
are common because of the wide applicability of such methods, especially those
based on the famous nearest neighbor method [10][11][12]. Because of the large
amount of methods that claim to be the best in response to specific needs and
the lack of labelled data to evaluate the learned models, numerous comparative
studies have been done to help selecting the one that fits the best a defined
context [13][14][15].

However, authors of these studies hardly give the datasets that are used to get
their results nor they indicate how they parameterize the algorithms that they
compare. Even if they provide such information, their analyzes focus solely on a
specific experimental context or dataset, and the results can not be generalized
to other contexts, as proved by the differences in the results of the different
works. Some comparative works try to be more generalizable using a wide variety
of datasets and evaluation metrics [16], but it is still difficult to know if their
results can be applied in a general context, in particular for the detection of
sensors faults. Eventually, it is not possible to compare the proposed algorithms
on our real case study datasets because the metrics computed to perform the
comparison require the availability of validation data.

For this reason, we developed SuMeRI to apply different methods successively
and CC-Eval to give a first sight on an evaluation of the model in a fully unsu-
pervised way, bypassing the lack of validation data. Applying different methods
offers the opportunity to detect different kinds of anomalies (point, contextual
and collective), the only requirement to use a method in SuMeRI being the avail-
ability of a score output. Interestingly, SuMeRI can be used in an univariate or
a multivariate setup, which is important to distinguish an anomaly caused by
a faulty sensor from an anomaly affecting the system components. To make it
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more robust to anomalies in the training set, SuMeRI runs each method iter-
atively, so the training set is cleaned from the most outlying instances at each
iteration until a fixed stopping point. It returns an unsupervised model able to
compute an anomaly score on data and decide which instances are abnormal,
this decision being based on a learned threshold on the score. To evaluate the
model returned by SuMeRI, we propose CC-Eval that uses a supervised method
on the dataset labelled by the unsupervised SuMeRI model. CC-Eval measures
the consistency of the SuMeRI model by comparing its results to those of the su-
pervised model learned on the training dataset labelled according to the SuMeRI
model. The rational under this idea is that the greater the consistency, the more
likely it is that SuMeRI’s results follow a well-founded rule. The whole process
is represented in Figure 1.

Unsupervised Model
Itera�ve Process

(SuMeRI)

Supervised Classi�er

Unlabelled Dataset

Test SetTrain Set

Labelled Train Set

Supervised Model

Consistency Checking

(CC-Eval)

Anomaly Detec�on

Anomaly Detec�on

Fig. 1: Architecture of the proposed solution.

3 Unsupervised anomaly detection and agnostic
evaluation

3.1 Successive Methods Run Iteratively (SuMeRI) approach

Methods for anomaly detection that do not require labelled data usually need to
estimate the anomaly rate in the training set. Yet, this information is unknown
in most cases and fixing a too high or low rate leads to a high false positive or
high false negative rate respectively. On the other hand, anomalies may be of
different types, which may require different anomaly detection methods. That
is why we developed the SuMeRI approach that applies specialized anomaly
detection methods in successive phases and runs each method iteratively on
data that are increasingly free of anomalies. The complete SuMeRI algorithm is
given by Algorithm 1.

Iterative process Each iteration detects the current most outlying instances
and removes them from the training set so that the next iteration trains a new
model from a ”cleaner” data set. This requires an anomaly score to decide which
samples are the most outlying ones and a stopping condition to stop the itera-
tions so that over fitting is avoided. The SuMeRI approach can hence use any
anomaly detection method that meets the two following conditions:
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– it computes an anomaly score si for each data instance i and discriminates
anomalous instances from normal ones, hence defining a threshold l1,

– it allows one to define a measure to evaluate the quality of the model over
the iterations.

The ”most outlying instances” are identified by a score above the threshold l2
defined by:

l2 = argmax
si∈Sout

( min
sj 6=si

(|si − sj |)) (1)

Let us define Sin (Sout) as the set of scores associated to normal (outlier) in-
stances and assume that scores are scaled in [−1, 1] at the end of each iteration.

The heuristic used to stop the iterations at each phase is based on the score
distribution. Removing the most outlying instances at each iteration shifts the
threshold l1 towards greater score values. It also results in increasing the kurtosis,
i.e. the tailedness, of the normal score distribution and decreasing the kurtosis
of the outlier score distribution. The desired model is the one where the outliers
detected by the model and the inliers have similar kurtosis. In practice, we
compare the maximal distance between nearest neighbors score values for outliers
and for inliers and stop when the condition of Equation (2) is satisfied:

dmax(Sout) = max
si∈Sout

( min
sj 6=si

(|si− sj |)) ≤ dmax(Sin) = max
si∈Sin

( min
sj 6=si

(|si− sj |)) (2)

Algorithm 1 SuMeRI algorithm

Input: data,methods . methods contains One-Class SVM and Linear Regression

1: data← scale(data)
2: l← length(methods)
3: models← list[length← l] . One model learned per method
4: for i← 1, l do
5: method← methods[i]
6: stopping condition← False
7: while stopping condition 6= True do . Each loop on a method is a phase
8: models[i]← learn model(method, data)
9: score← compute score(model, data)

10: stopping condition← stopping decision(score)
11: data← normal data(data, score)
12: end while
13: end for
14: return models

Successive phases The successive phases in SuMeRI apply different methods
to detect different anomaly types; point, contextual, and collective. As mentioned
in Section 2, many unsupervised methods make the assumption that there is a
non-significant proportion of outliers in the dataset. These methods are thus close
to semi-supervised methods, which assume that the training set is representative
of normality, thanks to robustness to possible outliers. Because each phase of
SuMeRI removes the detected outliers from the training set, SuMeRI allows the
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use of these methods for the last phases. Nevertheless, unsupervised methods
able to learn without assumption on the anomaly rate in the training dataset
should be used in the first phases.

3.2 Agnostic evaluation based on consistency checking (CC-Eval)

To evaluate the performances of anomaly detection models, one commonly uses
metrics such as the receiver operating characteristic (ROC) and the precision-
recall (PR) curves, using their area under the curve (AUC) and average precision
(AP) to be compared between different methods [13]. However, these metrics
require labelled data to be used which are not available in our case. An unsu-
pervised solution has been suggested to evaluate methods without the use of
labelled data [17], but the consistency of its results in comparison with the ROC
and PR curves seems to depend on the datasets.

Thus, we propose a solution to overcome this issue and introduce CC-Eval.
The purpose of CC-Eval is twofold: 1) check if there is a learnable logic behind
the obtained results, and 2) check if the iterative learning has not gone too far
in the search for anomalies, leading to overfitting and high false positive rates.

To achieve this, the datasets are divided into a training set and a testing set
(cf. Figure 1), representing 90% and 10% of the whole dataset respectively. To
avoid temporal discontinuity in the data that could have an impact on learned
models, the splitting is done by blocks from the tails of the dataset. SuMeRI is
then applied on the learning set and the whole dataset is labelled by applying the
learned model, considering three classes: normal instances, point anomalies and
contextual anomalies. Using the learned labels as the ground truth, a supervised
classifier is used to learn the classification of data taking for characteristics the
real value and contextual values defined earlier. The learned classifier is then
used to predict the classes for the test set.

Here, the consistency is defined as the logic of the discrimination learned
between inliers and outliers. The assumption behind this method is that a su-
pervised classifier is efficient if there is consistency in the classes to learn. Thus,
the consistency is evaluated with the area under the ROC curve (ROC-AUC)
which quantifies how well the model is able to distinguish the different classes.
Because there are more than two classes, it is required to compute an aggrega-
tion on the different ROC curves. We propose to compute the ROC-AUC as the
mean of four different approaches:

– macro average with one-vs-rest approach,
– weighted average with one-vs-rest approach,
– macro average with one-vs-one approach,
– weighted average with one-vs-one approach.

The macro average approaches do not take into account the imbalance in classes
while the weighted average approaches do. The one-vs-rest approaches compute
the mean of the ROC-AUC for each class against all the others (A vs B&C,
B vs A&C, C vs A&B). The one-vs-one approaches compute the mean of the
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ROC-AUC for each binary combination of classes, excluding the data in the
other classes (A vs B, A vs C, B vs C).

In this context, the main issue with the classification problem is that the
classes are imbalanced. Usually, there are far more instances in the normal class
than instances in the outlier classes, and the most populated class for outliers
varies depending on the dataset. Nevertheless, studies have been made to resolve
this issue, using for the most of them sampling strategies to reduce the gap
between the size of the classes or cost-sensitive learning to reduce the effects of
these gaps [18]. Four different classifying methods have been considered which
use ensemble of classifiers trained on different samples generated by random
under-sampling: 1) EasyEnsemble [19], 2) Bagging predictors [20], 3) Random
Forest [21] and 4) RUSBoost [22].

To decide which method to use, we generate ten different models by applying
the iterative solution with different parameters on a multivariate labelled public
dataset. Then, we compute the ROC-AUC using the known labels on these ten
models and establish a ground truth ranking among them based on the results.
The best classifier is defined as the one that gives the closest ranking to the
ground truth. This experience showed that the EasyEnsemble classifier with
an under-sampling on the majority class gives the best results, closely followed
by the RandomForest classifier with the same sampling strategy. Both of these
methods will be used in the following section.

4 Experimental results

For our experiments, we used the implementation of One-Class SVM and Linear
Regression from scikit-learn, a Python library for Machine Learning, in SuMeRI.
The ROC-AUC approaches are also implemented in this library. The classifiers
used in CC-Eval are from the imbalanced-learn Python library with the names
EasyEnsembleClassifier and BalancedRandomForestClassifier.

With the chosen configuration, SuMeRI only requires three parameters. The
first one is the proportion of anomalies to compute the models, it should be low
enough to drop only few anomalies at each step. It is used as the nu parameter for
the scikit-learn implementation of One-Class SVM and also to fix the separation
between anomalies and normal instances during the second phase. The second
one is the kernel function used for the kernel trick in One-Class SVM. The last
one is the window size on which are computed the contextual metrics.

4.1 SuMeRI setting

In our setting, we want to detect point anomalies and contextual anomalies.
Hence our SuMeRI setting includes two phases:

– The first phase uses the One-Class SVM method. Leveraging the kernel trick,
the One-Class SVM method learns a non linear separation between normal
and anomalous classes. Then, the anomaly score is computed as the signed
distance of each instance from the separation.
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– The second phase is a prediction method. For each instance, we use its con-
text as explanatory variables to predict its value. We define the context of
an instance temporally with statistical metrics on the previous and follow-
ing instances in a defined window. These metrics are the minimum, the first
quartile, the median, the third quartile, the maximum, the mean, the stan-
dard deviation, and the mean squared error. The score is then computed
based on the prediction error, as the Euclidean distance between the pre-
dicted value and the real value, with a standardization to be comparable
with the score of the first phase. Two methods have been considered for this
prediction: Linear Regression and Neural Networks. The later gives slightly
better results but at a high computational cost, that is why we have opted
for the former.

4.2 Public Datasets

SuMeRI and CC-Eval, presented in Section 3, have been tested on two pub-
lic datasets. The first one is from the Numenta Anomaly Benchmark [23] and
it measures the temperature on a machine with known system failures in the
dataset. The second contains the Http requests in the KDD Cup 1999 dataset,
used for The Third International Knowledge Discovery and Data Mining Tools
Competition, as it is presented in the ODDS library [24].

The machine temperature dataset is close to our industrial application do-
main. It is univariate and contains 22695 instances with three known anomalies:
two being linked to a breakdown and a third one that appears as a hint for the
occurrence of the second breakdown. The SuMeRI model is learned with the
linear kernel, an anomaly rate fixed at 0.001 and a window of size 20, which
means that we consider ten periods before and after each instance to compute
the contextual metrics. The SuMeRI results are shown in Figure 2 where the
three green areas represent the actual anomaly positions.

Fig. 2: Results of SuMeRI for the machine temperature dataset. Green areas
represent the true anomalies, the left one is the first known anomaly, the middle
one is the third and the right one is the second. Outliers detected by the first
phase are represented with red crosses and those detected by the second phase
with blue circles.
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The first iterative phase with One-Class SVM converges after three iterations
and is able to detect the outliers in the left and right green areas that correspond
to the two big failures. There is still one false positive due to the fact that
the iterations stopped one step too late. The second phase converges after six
iterations. Because of the use of statistical metrics in a window around each point
for the prediction, anomalies are found where the signal has rapid variations. This
phase is able to detect anomalies in the three green areas. Let us notice that
only the HTM method makes the same detection [23], but it rises more false
positives than true positives. The results of CC-Eval are given in Table 1.

Table 1: CC-Eval results for the model learned on the machine temperature
dataset. The ROC-AUC are computed with different multi-class and average
strategies for the chosen classification methods. The last column is the mean of
the four previous ones.

one-vs-one one-vs-rest
mean

macro weighted macro weighted
EasyEnsemble 0.9915 0.9879 0.9881 0.9794 0.9867
BalancedRandomForest 0.9800 0.9733 0.9678 0.9865 0.9769

The Http dataset contains three variables and is entirely labelled. Among
its 567498 instances, there are 2211 anomalies (0.4%) that have to be detected.
However, the information on the cause of the anomalies is unknown and this
example does not match our application domain, but proves the applicability
of the presented solution for multivariate datasets. SuMeRI is applied with the
linear kernel, a window of size 20 and an anomaly rate fixed at 0.0001. The results
of both phases in comparison with the known labels are shown in Table 2. The
first phase converges since the first iteration. The iterative process is not of great
use in this case, but the stopping condition occurs at the right iteration according
to the results. The second phase converges after three iterations and only detects
11 outliers in the remaining dataset. Its performances are poor in comparison
with those from the first iteration with only one true positive. Because we know
the labels for this dataset, it is possible to compute the ROC AUC of the model
which is equal to 0.9989. We can also compute this score for each phase. The
ROC AUC for the model learned during the first phase is equal to 0.9970 for
the whole dataset while it is equal to 0.9959 for the model learned during the
second phase on the data that are negatively labelled by the first phase (0.4354
when applied on the whole dataset, because the instances labelled positively by
the first phase are not detected as outliers, which means the true positive rate is
very low). The results of CC-Eval are given in Table 3 and are a bit lower than
the true ones.

For these two public datasets, the results of CC-Eval are quite good and seem
to be consistent with the model performances.

4.3 Real Case Study Datasets

SuMeRI and CC-Eval also have been applied on a real case study dataset where
labels were not available but where some anomalies were known, as in the ma-
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Table 2: Results of SuMeRI for the machine temperature dataset.
Phase 1 Phase 2 Total

True Positives (rate) 2202 (99.593%) 1 (11.111%) 2203 (99.638%)
True Negatives (rate) 565241 (99.992%) 565231 (99.998%) 565231 (99.990%)
False Positives (rate) 46 (0.008%) 10 (0.002%) 56 (0.010%)
False Negatives (rate) 9 (0.407%) 8 (88.889%) 8 (0.362%)

Table 3: CC-Eval results for the model learned on the http dataset, computed
as for Table 1.

one-vs-one one-vs-rest
mean

macro weighted macro weighted
EasyEnsemble 0.9331 0.8999 0.9611 0.9944 0.9471
BalancedRandomForest 0.9836 0.9754 0.9777 0.9986 0.9838

chine temperature dataset used in the previous subsection. This dataset is also
univariate and constituted of temperature measurements in a building that is
equipped with an intelligent auto-regulating system. This dataset is one of the
kind that is targeted by this solution, as a timeserie with changing in the oper-
ating mode which makes it difficult to model.

(a) First anomaly to detect (b) Second anomaly to detect

Fig. 3: Results of SuMeRI for the building temperature dataset. The X-axis rep-
resents a number of seconds since the first observation. The first anomaly is well
detected by the first phase (red crosses). The second anomaly is not detected by
the One-Class SVM phase which consider these values as a normal cluster, but
the offset is detected by the second phase (blue circles).

The dataset contains 446581 instances sampled every 15 seconds and there
are two areas where we want to detect anomalies. The first one is a provoked
growth in temperature with the heat of the sensor, the second one is a treatment
issue on the signal with an added offset. The rbf kernel for the SVM method
has been used in SuMeRI with an anomaly rate of 0.0001 and a window of
size 20. The results are shown in Figure 3. The offset is not detected by the
first phase because it is considered as a second normal cluster which causes
the score, computed based on the distance to the learned separation, to be
the same as the more normal values for the real normal cluster. However, the
instances where the changes happened are detected as anomalous by the second
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phase. The Table 4 displays the results of CC-Eval, which are quiet weak for the
EasyEnsembleClassifier in comparison with the results for the public datasets.
This is consistent with the fact that the learned model does not perform as well.

Table 4: CC-Eval results for the model learned on the building temperature
dataset, computed as for Table 1 and Table 3.

one-vs-one one-vs-rest
mean

macro weighted macro weighted
EasyEnsemble 0.8333 0.7500 0.6686 0.4927 0.6817
BalancedRandomForest 0.9997 0.9996 0.9998 0.9999 0.9998

5 Conclusions and Future Works

In this paper, an approach for anomaly detection in unlabelled industrial datasets
has been proposed. The approach, called SuMeRI, is based on applying successive
specialized anomaly detection methods in an iterative way. The methods admis-
sible in SuMeRI should meet two requirements: the availability of an anomaly
score and the ability to measure the quality of the model. The results presented
in this paper are obtained with the application of two methods, one specialized
in detecting point anomalies and the other in contextual anomalies. Because it is
difficult to evaluate the results for unlabelled datasets, an agnostic consistency
checking method named CC-Eval has been proposed.

Future works will focus on the improvement of SuMeRI in the following
directions:

– Instantiate SuMeRI with more than two successive methods while still lim-
iting the number of hyper-parameters to be tuned. This could be done with
the use of ensemble methods.

– Include a specialized method for collective anomalies.
– Make explicit and explain automatically the rules underlying the consistency

found by CC-Eval.
– Give a better evaluation of the whole solution and compare it to state-of-

the-art methods.
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