
HAL Id: hal-03089427
https://laas.hal.science/hal-03089427v1

Submitted on 28 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dead-end free single state multi-estimators for DES -the
2-estimator case

Camille Coquand, Xavier Pucel, Stéphanie Roussel, Louise Travé-Massuyès

To cite this version:
Camille Coquand, Xavier Pucel, Stéphanie Roussel, Louise Travé-Massuyès. Dead-end free single
state multi-estimators for DES -the 2-estimator case. 31st International Workshop on Principles of
Diagnosis (DX-2020), Sep 2020, Nashville, Tennessee, United States. �hal-03089427�

https://laas.hal.science/hal-03089427v1
https://hal.archives-ouvertes.fr

Dead-end free single state multi-estimators for DES – the 2-estimator case

Camille Coquand1,2, Xavier Pucel1, Stéphanie Roussel1, Louise Travé-Massuyès2
1ONERA, Université de Toulouse, France

e-mail: firstname.lastname@onera.fr
2LAAS-CNRS, Université de Toulouse, France

e-mail: louise@laas.fr

Abstract
Knowledge of the system state is key in au-
tonomous decision making frameworks. To meet
the run-time requirements and memory limita-
tions that apply in this context, we propose an in-
cremental estimation strategy that limits the num-
ber of estimates at each time step while still guar-
anteeing that dead-ends are not encountered. As
this is not always achievable with a single-state
estimator, we increase the number of estimators
by defining the new notion of multi-estimation.
In this paper, we consider discrete event systems
and analyse the case of 2-estimation, i.e. taking
two single-state estimators to form a 2-estimator.
We first present a necessary condition for a 2-
estimator being dead-end free and then derive a
necessary and sufficient condition, both illustrated
by experiments.

1 Introduction
Estimating the current state of an autonomous system is an
essential task because of its impact on the strategy adopted
by the autonomous system to fulfil its mission. For instance,
when a drone is diagnosed with a critical fault, the associ-
ated strategy is to switch to a crash mode. With a precise
estimation of the system state, it is possible to introduce
degraded operational modes in which the system progres-
sively loses performance as faults occur. State estimation
is performed by a dedicated component called estimator, or
diagnoser.

In this work, we assume that the system is modelled as
a discrete event system (DES), for which [Sampath et al.,
1995] describes the construction of a diagnoser as a finite
state machine (FSM) and defines the property of diagnos-
ability (cf. [Grastien and Zanella, 2019] for a recent sur-
vey). [Shu et al., 2007] investigates the notion of detectabil-
ity and the construction of an observer that can be used as a
diagnoser when the system is detectable. Recently, [Dague
et al., 2019] relaxes diagnosability by proposing manifesta-
bility that defines the weakest requirements on faults and
observations for having a chance to identify on line fault
occurrences.

When the system is partially observable, the number of
possible states of the system at a given time can be ex-
tremely large. Even with symbolic representation tech-
niques [Torta and Torasso, 2007], the limited capacity of
autonomous systems in terms of memory requires to reduce

the number of states returned by the estimator. In this work,
we follow the idea of [Bouziat et al., 2018] and adopt the
strategy to keep only one state estimate at each time step.
This estimation strategy brings promising results in terms
of computation time [Bouziat et al., 2018] and it signif-
icantly facilitates the task of the decision module. How-
ever it can lead to the estimator encountering dead-ends be-
cause a wrong estimate may be inconsistent with future ob-
servations. Note that using probabilistic diagnosers, as in
many works [Fabre and Jezequel, 2010], does not solve the
problem, the only solution being to backtrack [Kurien and
Nayak, 2000], which is not compatible with real time con-
straints. We prefer the approach of [Bouziat et al., 2019]
that provides the conditions for a system to be single-state
trackable (SST) and a dead-end free estimator synthesis pro-
cedure for such systems.

Because many real autonomous systems are not SST, this
work proposes to extend this property to a larger class of
systems. To do so, we propose to keep the idea of single
state estimate but we increase the number of estimators, in
defining the new notion of multi-estimation. In this paper,
we analyse the case of two single-state estimators to form
an estimator qualified as 2-estimator, hence proposing a 2-
estimation strategy. The 2-estimation strategy still adapts to
memory limitations by keeping no more than two estimates
at each time step. Decision making must then include an
arbitration process but it remains quite manageable.

As in [Roussel et al., 2020], we model the system as a
non-deterministic Moore machine, and the estimators as de-
terministic ones. We retrace our work by first presenting a
necessary condition for a 2-estimator being dead-end free
and then derive a necessary and sufficient condition.

The paper is organised as follows. In Section 2 , we
recall the formal context of the study of [Roussel et al.,
2020] on which this work is based. In Section 3, we define
2-estimation and characterize dead-end free 2-estimators.
Then we propose conditions to ensure dead-end free 2-
estimators: Section 4 presents a necessary condition, then
Section 5 presents a necessary and sufficient condition. Be-
fore concluding in Section 7, we illustrate the conditions
with a set of experimental results in Section 6.

2 Systems and estimators formal framework
In this section, we recall the formal framework used in
[Roussel et al., 2020] to represent partially observable dis-
crete event systems and estimators that return and keep in
memory only one diagnosis at each time step. We also re-
call the dead-end issues raised by this type of estimators.

s0
a

s1

b

s3
c

s4

d

s2

b

s5
e

M̂1

M̂2

Figure 1: System M and two estimators M̂1 and M̂2.

2.1 System and language of a system
We model the discrete system dynamics as a Moore Ma-
chine with no input alphabet, and whose output alphabet
consists in the observations.

Definition 1 (System). A system M is defined by a 5-tuple
(S, s0, O,∆, obs) consisting of the following:

• a finite set of states S;

• an initial state s0 ∈ S;

• a finite set of observations O (output alphabet of the
Moore machine);

• a transition relation ∆ ⊆ S2;

• an observation function obs : S → O mapping each
state to its output.

Without loss of generality, we consider that all the states
of the system are reachable from the initial state s0.

For a system M , we define candsM as the function from
S × O to 2S such that for all states s in S, for all o
in O, candsM (s, o) represents the set of successors of s
that have observation o in M . Formally, ∀s ∈ S,∀o ∈
O, candsM (s, o) = {t ∈ S|(s, t) ∈ ∆ and obs(t) = o}.

A system M is deterministic if and only if for every
(s, o) ∈ S ×O, we have #candsM (s, o) ≤ 1.

Notation A state sequence seq is a list s0 ·s1 · . . . ·sn−1 ∈
S∗ where each si is a state in S; |seq | = n is the length
of the sequence and seq [i] = si is the ith state in the se-
quence; last(seq) designates the last state of seq ; if s is a
state, seq · s is the sequence of length |seq| + 1 that be-
gins with seq and ends with s. Similarly, we define an ob-
servation sequence seqobs ∈ O∗, and extend the function
obs to state sequences: if seq is a state sequence, obs(seq)
represents the observation sequence seqobs such that for all
i < |seq |, seqobs [i] = obs(seq [i]).

Definition 2 (Language, observation language). The lan-
guage associated with a system M = (S, s0, O,∆, obs)
is the set of state sequences accepted by the system and
starting with s0. Formally L(M) = {seq ∈ S∗|seq [0] =
s0 and for i ∈ [1..|seq |[, (seq [i− 1], seq [i]) ∈ ∆}.

The observation language is the language accepted
by the system projected on the observations. Formally,
Lobs(M) = {obs(seq)|seq ∈ L(M)}.

Example 1. Let us consider the toy system M illustrated on
Figure 1. Its set of states is S = {s0, s1, s2, s3, s4, s5} with
s0 the initial state. All arrows represent transitions in ∆:
for instance (s0, s1),(s2, s5), and (s4, s4) belong to ∆. The
set of observations is O = {a, b, c, d, e}. The observation
associated with each state is indicated in the lower part of
the circle: for instance, obs(s0) = a, obs(s3) = c and

obs(s2) = b.
The language of M is the set of sequences accepted by M .
For instance, s0, s0 · s2 · s5, and s0 · s1 · s3 · s4 · s4 · s4
are sequences of L(M). Their corresponding observation
sequences are a, a · b · e and a · b · c · d · d · d and all belong
to Lobs(M).
Because this system is partially observable, the observation
b does not allow to distinguish s1 and s2.

2.2 Estimator and estimation function
Let us define what we call an estimation strategy and the
resulting estimator for a system.

Definition 3 (Estimation strategy). An incremen-
tal single-state estimation strategy for a system
M = (S, s0, O,∆, obs) is a function estim : S × O → S
such that for all s in S, for all o such that candsM (s, o) 6= ∅,
estim(s, o) represents the estimated state of the system at
time step n when the estimated state at time step n − 1 is s
and when o is observed at time step n.

We impose the estimation strategy to be consistent both
across time, i.e. estim is a function, and with the system
behaviour, i.e. estim(s, o) belongs to candsM (s, o).

Definition 4 (Estimated sequence). Let M be a system,
seqobs be an observation sequence in Lobs(M) and estim
an estimation strategy for M . The estimated sequence for
seqobs is the state sequence ŝeq ∈ L(M) such that ŝeq [0] =
s0 and for all i in [1..|seqobs |[, ŝeq [i] = estim(ŝeq [i −
1], seqobs [i]).

An estimation strategy estim for a system M =

(S, s0, O,∆, obs) can be represented by a 5-tuple M̂ =

(Ŝ, s0, O, ∆̂, obs), called an estimator, composed of the
states and transitions of the system reachable with estim .

Definition 5 (Estimator). Let M = (S, s0, O,∆, obs) be
a system and estim an estimation strategy. The estimator
induced by estim is a system M̂ = (Ŝ, s0, O, ∆̂, obs) such
that:

• Ŝ ⊆ S is the set of states that belong to some estimated
sequence for the given estimation strategy;

• ∀(ŝ, t̂) ∈ Ŝ2, (ŝ, t̂) ∈ ∆̂ if and only if t̂ =

estim(ŝ, obs(t̂)).

By construction, an estimator is a deterministic system.

Example 2. Two estimators M̂1 and M̂2 are illustrated on
Figure 1. They respectively correspond to estimation strate-
gies estim1 and estim2 such that estim1(s0, b) = s1 and
estim2(s0, b) = s2.

2.3 Dead-end free estimator
As an estimator can be seen as a specific system, we can
use Definition 2 to define its language and its observation
language. Note that, by construction, if M̂ is an estimator
of M , then L(M̂) ⊆ L(M) and Lobs(M̂) ⊆ Lobs(M).

Since an estimator only keeps in memory one state can-
didate for diagnosis, this candidate might not be the correct
one, i.e. the estimated state is not the one in which the sys-
tem really is. In such situations, if the system produces an
observation that is not compatible with the estimated state,
the estimator cannot explain the observation. We call such a
scenario a dead-end.

Definition 6 (Dead-end). A dead-end for an estimator M̂
of a system M is an observation sequence that belongs to
Lobs(M) but does not belong to Lobs(M̂).

An estimator M̂ without any dead-end is dead-end free.
In this case, we have Lobs(M) = Lobs(M̂).

Example 3. Let us consider the estimators illustrated on
Figure 1. The observation sequences a · b · d and a · b · c are
dead-ends for M̂1 and M̂2 respectively.

We generalize the simulation as defined in [Roussel et al.,
2020] to a relation between any two systems that share the
same set of observations. Informally, a system M1 simulates
another system M2 if, at each time step, M1 can exhibit the
same set of future behaviours as M2.

Definition 7 (Simulation for two systems). Let M1 =
(S1, init1, O,∆1, obs1) and M2 = (S2, init2, O,∆2,
obs2) be two systems. M2 simulates M1 denoted M1 ≺M2

if and only if there exists a relation R ⊆ S1 × S2 such that:

(init1, init2) ∈ R (1)
∀(s1, s2) ∈ R, obs1(s1) = obs2(s2) (2)
∀(s1, s2) ∈ R,∀t1 ∈ S1 s.t. (s1, t1) ∈ ∆1,

∃t2 ∈ S2 s.t. (s2, t2) ∈ ∆2 and (t1, t2) ∈ R (3)

In [Roussel et al., 2020], the authors show that the equal-
ity of observation languages between a system and an esti-
mator is equivalent to the existence of a simulation relation
between them. The existence of such a relation can be com-
puted polynomially ([Shukla et al., 1996]).

Proposition 1 ([Roussel et al., 2020]). Let M be a sys-
tem and M̂ an estimator for M . M̂ is dead-end free, i.e.
Lobs(M) = Lobs(M̂), if and only if M̂ simulates M .

Example 4. From the example illustrated on Figure 1, there
is no simulation relation between M̂1 and M , because state
s2 of M cannot be simulated by any state in M̂1. The same
holds for M̂2 because of state s1. In fact, they can both
encounter dead-ends.

3 The 2-estimation problem
There are systems, such as the one illustrated on Figure 1,
for which there does not exist any dead-end free estimator.
However, for this system, running two single state estima-
tors, M̂1 and M̂2 as shown on the figure, allows to avoid
dead-ends. Hence, keeping a finite number of diagnostics in
memory and not just one can solve the dead-end problem.
We call such an estimation process multi-estimation. If the
number of stored diagnosis stays reasonable, then memory
limitations are still met. Decision making must then take
into account the fact that the behaviour is only partially ex-
plained by each individual estimator. Yet we believe that
an arbitration process such as prioritizing estimators is quite
manageable.

In this section, we consider the case of two estimators to
form an estimator qualified as 2-estimator, hence analysing
2-estimation strategies. Some properties allowing us to
check whether 2-estimation solves the dead-end issue are
proved. To do so, we first formally define 2-estimators and
extend the concept of dead-end.

Definition 8 (2-estimator). A 2-estimator M̂1|M̂2 of a sys-
tem M is formed from a set {M̂1, M̂2} where M̂1 and M̂2

are estimators of M .
We consider that the two estimators evolve independently.

When an estimator produces a unique estimated state at each
time step, a 2-estimator simply produces two states (that
may be equal). This way, if one estimator encounters a
dead-end, the other estimator may still continue to estimate.
We define the language of a 2-estimator as the union of lan-
guages of the two estimators composing it.
Definition 9 (2-estimator language and observation lan-
guage). Let M be a system and M̂1|M̂2 a 2-estimator for
M . The language of M̂1|M̂2 is L(M̂1|M̂2) = L(M̂1) ∪
L(M̂2).

In the same way, we define the observation language of
M̂1|M̂2 as Lobs(M̂1|M̂2) = Lobs(M̂1) ∪ Lobs(M̂2).
Example 5. The observation sequence a · b · c · d belongs
to the observation language of M̂1|M̂2. It produces the esti-
mated sequence s0 ·s1 ·s3 ·s4 which belongs to L(M̂1|M̂2).

A 2-estimator cannot produce any diagnosis of the system
if both estimators encounter dead-ends for a specific obser-
vation sequence that is consistent with the system. Such a
situation is a dead-end for the 2-estimator, as formally de-
fined below.
Definition 10 (Dead-end for a 2-estimator). Let M be a sys-
tem and M̂1|M̂2 a 2-estimator of M . A sequence of obser-
vation sobs in Lobs(M) is a dead-end for M̂1|M̂2 if it is a
dead-end for M̂1 and for M̂2.

A 2-estimator M̂1|M̂2 is dead-end free if Lobs(M) =

Lobs(M̂1|M̂2).

4 A necessary condition for dead-end free
2-estimators

In order to check the existence of dead-ends for a 2-
estimator M̂1|M̂2, we build a system that over-approximates
the behaviour of the 2-estimator by "merging" M̂1 and M̂2.
The idea behind this merged estimator is to check whether it
accepts all observation sequences of the system. If not, such
observation sequences are dead-ends for the 2-estimator.

The merged estimator is basically a system that contains
every state and every transition of the two estimators of the
2-estimator.
Definition 11 (Merged estimator). Let M =

(S, s0, O,∆, obs) be a system, M̂1 = (Ŝ1, s0, O, ∆̂1, obs)

and M̂2 = (Ŝ2, s0, O, ∆̂2, obs) two estimators of M .
We define the merged estimator as the system
merge(M̂1, M̂2) = (Ŝ1 ∪ Ŝ2, s0, O, ∆̂1 ∪ ∆̂2, obs).

As the merged estimator contains every transition of both
estimators M̂1 and M̂2, it accepts a superset of the union of
the languages of the two estimators. However, it can accept
observation sequences that belong neither to the language
of one nor to the language of the other. In fact, we have
Lobs(M̂1|M̂2) ⊆ Lobs(merge(M̂1, M̂2)) ⊆ Lobs(M). In
terms of dead-ends, a dead-end for merge(M̂1, M̂2) is also
a dead-end for M̂1|M̂2. In other words, if M̂1|M̂2 is dead-
end free, then the observation language of merge(M̂1, M̂2)
is equal to the language of the system.

Proposition 2. Let M be a system and M̂1|M̂2 a 2-
estimator for M . If M̂1|M̂2 is dead-end free, then
Lobs(M) = Lobs(merge(M̂1, M̂2)).

Proof. Let M be a system and M̂1|M̂2 a 2-estimator
for M . If M̂1|M̂2 is dead-end free, then Lobs(M) =

Lobs(M̂1|M̂2) = Lobs(M̂1) ∪ Lobs(M̂2). By construction,
the merged estimator accepts the union of the estimators lan-
guages. So we have Lobs(M) ⊆ Lobs(merge(M̂1, M̂2)).
As merge(M̂1, M̂2) is a sub-system of M , we also have
Lobs(merge(M̂1, M̂2)) ⊆ Lobs(M).

The merged estimator of two deterministic systems can
be non-deterministic. This is the case if M̂1 and M̂2 con-
tain a different transition for the same state and the same
observation. In order to have a condition using simulation
similar to the one in Proposition 1, one requires a determin-
istic system. As the merged estimator of two estimators is
not deterministic, we first determinise it following a classi-
cal approach where the determinised system states are sets
of states of the original system.
Definition 12 (Determinisation of a system). Let M =
(S, s0, O,∆, obs) be a system. The determinisation of M
is the system MD = (SD, {s0}, O,∆D, obsD) where :
• SD is a subset of 2S where ∀d ∈ SD,∀(s, s′) ∈
d2, obs(s) = obs(s′)

• ∀(d, d′) ∈ (SD)2, (d, d′) ∈ ∆D if and only if ∃s ∈ d
and s′ ∈ d′ such that (s, s′) ∈ ∆

• obsD : SD → O is defined as follows : ∀d ∈
SD, obsD(d) = obs(s) where s ∈ d

We show that a system and its determinisation have the
same observation language.
Proposition 3. Let M be a system. The determinised MD

has the same observation language. Formally, Lobs(M) =
Lobs(MD).

Proof. (⊆). Let seq ∈ L(M). We prove by recurrence that
∀k ≤ |seq |−1,∃seqD ∈ L(MD) such that ∀i ≤ k, seq [i] ∈
seqD[i]
(⊇). Let seqD ∈ L(MD). We prove by recurrence that
∀k ≤ |obsD(seqD)| − 1, ∀s ∈ seqD[k], ∃seq ∈ L(M) s.t.
last(seq) = s and ∀i ≤ k, seq [i] ∈ seqD[i].

For a system M , we first prove that the determinised
merged estimator of a 2-estimator for M has the same obser-
vation language as M if and only if there exists a simulation
relation between the two systems.

Proposition 4. Let M be a system and M̂1|M̂2 a 2-
estimator. merge(M̂1, M̂2)D simulates M if and only if
Lobs(merge(M̂1, M̂2)) = Lobs(M).

Proof. (⇒)Because M̂D simulates the system and by
proposition 3, Lobs(merge(M̂1, M̂2)) ⊆ Lobs(M).
Then we prove by recurrence that if M̂D simulates M by the
simulation relation R, then ∀i ≤ |seq | − 1,∃Seq ∈ L(M̂D)
such that ∀l ≤ i, (seq [l], Seq[l]) ∈ R. Both seq and
Seq produce the same observation sequence, because ∀l ≤
|seq | − 1, (seq [l], Seq[l]) ∈ R, by equation 2, obs(seq [l]) =

obsD(Seq[l]), and then Lobs(M) ⊆ Lobs(M̂D).

(⇐) Let us consider the following relation R : ∀s ∈
S, d ∈ (Ŝ1 ∪ Ŝ2)D, (s, d) ∈ R iff ∃seqobs ∈ Lobs(M),
seq ∈ L(M), Seq ∈ L(merge(M̂1, M̂2)D) s.t. obs(seq) =

obsD(Seq) = seqobs , s = last(seq), d = last(Seq). We
prove that R is a simulation relation in a similar way as
proposition 1 is proven in [Roussel et al., 2020].

Proposition 4 along with the inclusion of observation lan-
guages allows us to derive a necessary condition in the fol-
lowing corollary.

Corollary 1. Let M be a system and M̂1|M̂2 a 2-estimator
of M . If M̂1|M̂2 is dead-end free then merge(M̂1, M̂2)D

simulates M .

5 A necessary and sufficient condition for
dead-end free 2-estimators

In this section, we propose a necessary and sufficient con-
dition for a 2-estimator to be dead-end free. To do so, we
define a union operation ⊕ for two estimators which builds
the union estimator. We show that the union estimator has
the same language as the 2-estimator and propose a result
similar to Proposition 1.

To represent the union estimator of a 2-estimator, we in-
troduce the symbol ⊥ that is used when one of the two es-
timators encounters a dead-end. Each state of the union es-
timator is either a pair of states from each estimator (i.e. a
element of S1 × S2) with the same observation or a pair
composed of a state of one estimator and the element ⊥.
The initial state is the pair of the two initial states. A tran-
sition between two pairs of states is defined if the transition
between the two first elements of the pair belongs to the
first estimator and the same for the transition between the
two second elements with respect to the second estimator,
or if there is a transition only for one estimator, the second
element of the successor’s pair becomes ⊥.
Definition 13 (Union estimator). Let M =

(S, s0, O,∆, obs) be a system and M̂1 =

(Ŝ1, s0, O, ∆̂1, obs) and M̂2 = (Ŝ2, s0, O, ∆̂2, obs)

two estimators for M . The union of M̂1 and M̂2, denoted
M̂1 ⊕ M̂2 is the system (S⊕, (s0, s0),∆⊕, O, obs⊕) such
that :
• S⊕ ={(s1, s2)|s1 ∈ Ŝ1, s2 ∈ Ŝ2, obs(s1) = obs(s2)}

∪ {(s1,⊥)|s1 ∈ Ŝ1} ∪ {(⊥, s2)|s2 ∈ Ŝ2}
• ∆⊕ is the smallest subset of S2

⊕ that contains
{((s1, s2), (s′1, s

′
2))|(s1, s′1) ∈ ∆̂1, (s2, s

′
2) ∈ ∆̂2}

∪ {((s1, s2), (s′1,⊥))|(s1, s′1) ∈ ∆̂1,

candsM (s2, obs(s′1)) = ∅}
∪ {((s1, s2), (⊥, s′2))|(s2, s′2) ∈ ∆̂2,

candsM (s1, obs(s′2)) = ∅}
∪ {((s1,⊥), (s′1,⊥))|(s1, s′1) ∈ ∆̂1}
∪ {((⊥, s2), (⊥, s′2))|(s2, s′2) ∈ ∆̂2}

• ∀s1 ∈ Ŝ1,∀s2 ∈ Ŝ2 ∪ {⊥},obs⊕((s1, s2)) = obs(s1),

∀s2 ∈ Ŝ2,obs⊕((⊥, s2)) = obs(s2)

Example 6. Figure 2 illustrates the union automaton M̂1⊕
M̂2 of the estimators defined in Figure 1. As (s0, s1)

(s0, s0)

a

(s1, s2)

b

(s3,⊥)

c

(⊥, s4)

d

(s4,⊥)

d

(⊥, s5)

e

Figure 2: Union estimator M̂1 ⊕ M̂2 with estimators of Fig. 1

and (s0, s2) are respectively transitions of ∆̂1 and ∆̂2,
((s0, s0), (s1, s2)) is a transition of ∆⊕. There is no tran-
sition in ∆̂2 from state s2 to a state with observation c so
((s1, s2), (s3,⊥)) is a transition of ∆⊕.

We first show that the observation language of a union
estimator is the same than that of the two-estimator’s.

Proposition 5. Let M = (S, s0, O,∆, obs) be a system and
M̂1 = (Ŝ1, s0, O, ∆̂1, obs) and M̂2 = (Ŝ2, s0, O, ∆̂2, obs)

two estimators for M . We have Lobs(M̂1 ⊕ M̂2) =

Lobs(M̂1) ∪ Lobs(M̂2).

Proof. (⊆) Let us consider seqobs ∈ Lobs(M̂1 ⊕ M̂2) with
n = |seqobs |. There exists seq⊕ ∈ L(M̂1 ⊕ M̂2) such that
obs⊕(seq⊕) = seqobs . For all i < n, let (ti, ui) denote
seq⊕[i].

• if tn−1 6= ⊥, consider seq = t0 ·. . .·tn−1. By construc-
tion of M̂1 ⊕ M̂2, ∀i < n, ti 6= ⊥ and (ti, ti+1) ∈ ∆̂1,
which implies seq ∈ L(M̂1). As obs(seq) = seqobs⊕,
seqobs ∈ Lobs(M1);

• if tn−1 = ⊥, then un−1 6= ⊥, and we show that seq =

u0 · . . . · un−1 ∈ L(M̂2) and seqobs ∈ Lobs(M̂2).

(⊇) Let us consider seqobs ∈ Lobs(M̂1) ∪ Lobs(M̂2) with
n = |seqobs |. Because of symmetry between M̂1 and M̂2,
we suppose that seqobs ∈ Lobs(M̂1). There exists seq ∈
L(M̂1) such that obs(seq) = seqobs .

• if seqobs is not a dead-end for M̂2, there exists seq2 ∈
L(M̂2) such that obs(seq2) = seqobs . The sequence
(seq [0], seq2[0]) · . . . · (seq [n−1], seq2[n−1]) belongs
to L(M̂1 ⊕ M̂2), so seqobs ∈ Lobs(M̂1 ⊕ M̂2).

• If seqobs is a dead-end for M̂2, we consider the greater
integer k < n such that seqobs [0] · . . . · seqobs [k − 1])

is not a dead-end for M̂2 and seq2 = seq2[0] · . . . ·
seq2[k − 1]) its associated sequence in L(M̂2). The
sequence (seq [0], seq2[0])·. . .·(seq [k−1], seq2[k−1])·
(seq [k],⊥)·. . .·(seq [n−1],⊥) belongs toL(M̂1⊕M̂2),
so seqobs ∈ Lobs(M̂1 ⊕ M̂2).

We now show that the union estimator is deterministic.

Proposition 6. Let M = (S, s0, O,∆, obs) be a system and
M̂1 = (Ŝ1, s0, O, ∆̂1, obs) and M̂2 = (Ŝ2, s0, O, ∆̂2, obs)

two estimators for M . M̂1 ⊕ M̂2 is deterministic.

Proof. Let us consider o ∈ O and (s1, s2) ∈ S⊕. As M̂1

is deterministic, there exists at most one s′1 ∈ Ŝ1 such that
(s1, s

′
1) ∈ ∆̂1 and obs(s1) = o. The same holds for M̂2. If

at least one transition exists in M̂1 or M̂2, only one transi-
tion corresponds in ∆⊕. If no transition exist in M̂1 or M̂2,
there is no corresponding transition in ∆⊕.

The next proposition proposes a necessary and suffi-
cient condition for characterising dead-end free 2-estimators
based on the simulation relation.
Proposition 7. Let M = (S, s0, O,∆, obs) be a system and
M̂1 = (Ŝ1, s0, O, ∆̂1, obs) and M̂2 = (Ŝ2, s0, O, ∆̂2, obs)

two estimators for M . M̂1 ⊕ M̂2 simulates M if and only if
Lobs(M̂1|M̂2) = Lobs(M).

Proof. (⇒) First, by Prop. 5 and Def. 9, Lobs(M̂1⊕M̂2) =

Lobs(M̂1) ∪ Lobs(M̂2) = Lobs(M̂1|M̂2). Because M̂1

and M̂2 are two estimators of M , we have Lobs(M̂1) ∪
Lobs(M̂2) ⊆ Lobs(M), so Lobs(M̂1 ⊕ M̂2) ⊆ Lobs(M).
Let us suppose that M̂1⊕ M̂2 simulates M with the simula-
tion relation R. We prove by recurrence that ∀seq ∈ L(M)

with n = |seq |, ∀k ≤ n − 1, ∃seq⊕ ∈ L(M̂1 ⊕ M̂2) s.t.
∀i ≤ k, seq [i] ∈ seq⊕[i] and (seq [i], seq⊕[i]) ∈ R. From
equation (2) of Def. 7, for every sequence of L(M), there
exists a sequence of L(M̂1 ⊕ M̂2) that has the same obser-
vation sequence, so Lobs(M) ⊆ Lobs(M̂1 ⊕ M̂2).
(⇐) Let us consider the following relation R : ∀s ∈
S, (s1, s2) ∈ S⊕, (s, (s1, s2)) ∈ R iff ∃seqobs ∈ Lobs(M),
seq ∈ L(M), seq⊕ ∈ L(M̂1 ⊕ M̂2) s.t. obs(seq) =
obs⊕(seq⊕) = seqobs , s = last(seq), (s1, s2) =
last(seq⊕). We prove that R is a simulation relation in
a similar way as Prop. 1 is proven in [Roussel et al.,
2020].

Example 7. With M , M̂1 and M̂2 of Figure 1, the union
estimator M̂1 ⊕ M̂2 in Figure 2 simulates M . In fact, the
2-estimator M̂1|M̂2 is dead-end free.

6 Experiments
We have implemented the two conditions previously pre-
sented for checking the presence of dead-ends for 2-
estimators. They are both based on an encoding of the sim-
ulation relation into SAT clauses, as described in [Shukla et
al., 1996]. We have used the Scala language from which
Sat4j (SAT solver) can be called. ([Le Berre and Parrain,
2010]).

To generate random benchmarks, we use the SST system
generation scheme presented in [Roussel et al., 2020]. In
order to get dead-end free 2-estimators, we first consider
two SST systems M1 and M2 generated randomly. From
M1 ⊕M2, we extract two subsystems N1 and N2 that have
the same observation language as M1 and M2 respectively.
Using the SMT encoding of [Roussel et al., 2020], we syn-
thesise two dead-end free estimators N̂1 and N̂2 for N1 and
N2. The 2-estimator N̂1|N̂2 for the system M1⊕M2 should
be dead-end free. In order to get 2-estimators with dead-
ends, we generate systems as the union of three random SST
systems and the estimators from only 2 of them. In total, we
have 600 systems with 26 to 1973 states, for which half of
the estimators have dead-ends.

Figure 3: Computation time in function of the number of system
states. Both scales are logarithmic.

We present the results of experiments on Figure 3. We
distinguish dead-end free 2-estimators and estimators with
dead-end on one side and the necessary condition (see
Cor. 1) denoted merge and the necessary and sufficient one
(see Prop. 7) denoted union on the other side. The computa-
tion time includes the time to perform operations on Moore
machines and the time to check the simulation relation.

Figure 3 shows that the computation time is neither af-
fected by the presence of dead-ends in estimators nor by the
condition used for checking dead-ends. In fact, the opera-
tions performed on estimators (merge and determinisation
on one side, and union on the other side) generate systems
of the same magnitude. Most of the computation time is
spent for checking the simulation relation, which explains
similar efficiency. This behaviour might be linked to the
way benchmarks are generated and more precisely to the
fact that systems that are aggregated do not share many
states. No benchmark has highlighted that the necessary
condition merge is not sufficient, which also indicates that
other benchmark generation schemes should be tested. Fi-
nally, the computation time does not blow up with the sys-
tem size. This should be confirmed with a larger range of
benchmarks.

7 Conclusion
This paper describes the problem of multi-estimation, fo-
cusing on 2-estimation. It provides two conditions, one nec-
essary and the other necessary and sufficient, to check if a
2-estimator is dead-end free. The corresponding algorithms
have been implemented and tested on randomly generated
benchmarks, which shows the feasibility of the approach.

Future work includes a generalization to n-estimators.
We suspect that as n grows, unions may have more states
than determinised merged estimators, which would make
the necessary condition more efficient than the necessary
and sufficient condition.

Finally, another perspective is to follow the [Roussel et
al., 2020] approach and define n-Single State Trackability
as the property of a system for which there exists a dead-
end free n-estimator.

Acknowledgements
We would like to thank the cluster TrustMeIA1 that funded
the internship during which this work was performed.

1https://www.laas.fr/projects/trustmeia/

References
[Bouziat et al., 2018] Valentin Bouziat, Xavier Pucel,

Stéphanie Roussel, and Louise Travé-Massuyès. Pref-
erential discrete model-based diagnosis for intermittent
and permanent faults. In Proceedings of the 29th
International Workshop on Principles of Diagnosis,
2018.

[Bouziat et al., 2019] Valentin Bouziat, Xavier Pucel,
Stéphanie Roussel, and Louise Travé-Massuyès. Single
state trackability of discrete event systems. In Proceed-
ings of the 30th International Workshop on Principles of
Diagnosis, 2019.

[Dague et al., 2019] Philippe Dague, Lulu He, and Lina Ye.
How to be sure a faulty system does not always appear
healthy?: Fault manifestability analysis for discrete event
and timed systems. Innovations in Systems and Software
Engineering, 2019.

[Fabre and Jezequel, 2010] Eric Fabre and Loïg Jezequel.
On the construction of probabilistic diagnosers. In
WODES 2010 - 10th International Workshop on Discrete
Event Systems, volume 43, pages 229 – 234, Berlin, Ger-
many, August 2010.

[Grastien and Zanella, 2019] Alban Grastien and Marina
Zanella. Discrete-event systems fault diagnosis. In
Fault Diagnosis of Dynamic Systems, pages 197–234.
Springer, 2019.

[Kurien and Nayak, 2000] James Kurien and P. Pandurang
Nayak. Back to the future for consistency-based trajec-
tory tracking. In Proceedings of the 17th AAAI Confer-
ence on Artificial Intelligence, pages 370–377, 2000.

[Le Berre and Parrain, 2010] Daniel Le Berre and Anne
Parrain. The SAT4J library, Release 2.2, System De-
scription. Journal on Satisfiability, Boolean Modeling
and Computation, 7:59–64, 2010.

[Roussel et al., 2020] Stéphanie Roussel, Xavier Pucel,
Valentin Bouziat, and Louise Travé-Massuyès. Model-
based synthesis of incremental and correct estimators for
discrete event systems. In Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence (IJ-
CAI’20), 2020.

[Sampath et al., 1995] Meera Sampath, Raja Sengupta,
Stéphane Lafortune, Kasim Sinnamohideen, and De-
mosthenis Teneketzis. Diagnosability of discrete-event
systems. IEEE Transactions on automatic control,
40(9):1555–1575, 1995.

[Shu et al., 2007] Shaolong Shu, Feng Lin, and Hao Ying.
Detectability of discrete event systems. IEEE Transac-
tions on Automatic Control, 52(12):2356–2359, 2007.

[Shukla et al., 1996] Sandeep Shukla, Daniel Rosenkrantz,
Harry Iii, and Richard Stearns. The polynomial time
decidability of simulation relations for finite state pro-
cesses: A HORNSAT based approach. Satisfiability
Problem: Theory and applications, 1996.

[Torta and Torasso, 2007] Gianluca Torta and Pietro
Torasso. An on-line approach to the computation and
presentation of preferred diagnoses for dynamic systems.
AI Communications, 20(2):93–116, 2007.

