
HAL Id: hal-03094185
https://laas.hal.science/hal-03094185v1

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attack Injection into Avionic Systems through
Application Code Mutation

Aliénor Damien, Nathalie Feyt, Vincent Nicomette, Eric Alata, Mohamed
Kaâniche

To cite this version:
Aliénor Damien, Nathalie Feyt, Vincent Nicomette, Eric Alata, Mohamed Kaâniche. Attack
Injection into Avionic Systems through Application Code Mutation. 2019 IEEE/AIAA 38th
Digital Avionics Systems Conference (DASC), Sep 2019, San Diego, United States. pp.1-8,
�10.1109/DASC43569.2019.9081616�. �hal-03094185�

https://laas.hal.science/hal-03094185v1
https://hal.archives-ouvertes.fr

Attack Injection into Avionic Systems through
Application Code Mutation

Aliénor Damien∗† Nathalie Feyt∗, Vincent Nicomette†, Eric Alata†, Mohamed Kaâniche†
∗Thales AVS, Toulouse, FRANCE, Email: {firstname}.{lastname}@fr.thalesgroup.com

†LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, FRANCE, Email: {firstname}.{lastname}@laas.fr

Abstract—Given the continuous increase of malicious threats
targeting embedded systems, the potential malicious modifi-
cation of an aircraft application, by exploiting an unknown
software or hardware vulnerability of the execution platform,
must be seriously considered for future systems. Indeed, an
insider attack breaking the organization’s security measures
to insert a malicious function on board could have significant
consequences. Various solutions can be investigated to provide
enhanced protection against such threats, including intrusion
detection techniques. To design an Intrusion Detection System
(IDS), and more specifically to evaluate its performance, ab-
normal data are required. However, to our knowledge, there is
no publicly available attack data for aircraft applications. This
paper proposes an approach and a tool aiming at automatically
performing application code mutations that mimic the behavior
of malevolent pieces of code introduced inside an application. The
approach relies on three code modification strategies, designed
to cover both generic and specific mutations. The tool takes
into account the specific characteristics of avionic applications
(dedicated hardware, real-time execution, threat model). This
paper describes the architecture and implementation details of
the tool, as well as some experiments, in which it is used in order
to calibrate a Host-based Intrusion Detection System (HIDS)
that we are currently implementing. For that purpose, specific
code changes are introduced, targeting application integrity and
availability as well as safety.

I. INTRODUCTION

Aircraft systems are constantly evolving, offering more and
more connectivity and services to the passengers. Unfortu-
nately, from the security point of view, such evolution leads
to a larger attack surface. Furthermore, the threats targeting
embedded systems are constantly evolving and the impact of
an insider attack breaking the organization’s security measures
could have significant consequences. In this context, it is
essential to anticipate a possible malicious modification of an
application for future systems, and to propose security mech-
anisms to deal with such threats. Among various solutions
to provide enhanced protection, intrusion detection techniques
are widely used in computer security.

A Host-based Intrusion Detection System (HIDS) relying
on anomaly detection techniques has been proposed in pre-
vious work [3]. The proposed approach is based on machine
learning techniques using semi-supervised algorithms. While
such approach only needs normal data to model the correct
behavior of an application, abnormal data (i.e., attack traces)
are still needed to assess the HIDS accuracy, and to calibrate
the parameters of the anomaly detection technique. However,
to our knowledge, there is no public attack data on aircraft

applications. Such data can be generated experimentally by
controlled experiments. This paper therefore proposes the
design and implementation of a tool to apply specifically
customized modifications to avionic applications code (called
fault injections), that mimic the behavior of malevolent pieces
of code introduced by potential attackers. This tool is in-
tended to support the validation of HIDS and its integration
with avionic applications. Therefore, it should be designed
to generate a wide range of malevolent pieces of code and
malicious behaviors. The design of the proposed tool takes
into account three main assumptions that are inherent to the
avionics context considered in our study. We consider the
particular case of avionic applications integrators, who, in
most cases, do not have access to the source code of the
applications. Therefore, fault injection must be carried out
in the application binary code. The second assumption is
related to the real-time constraints that are essential in avionic
applications. Accordingly, the tool must not disturb the real-
time execution of the different applications, and must be
adapted to the underlying hardware. Finally, the injected faults
should be adapted to the threat assumptions that are specific
to this context. For example, an attacker may want to execute
a malicious code only when the aircraft is in flight.

To provide a large coverage of possible malevolent pieces of
code, three different code modification strategies are proposed
as part of this approach with the possibility of generating
randomly different instances of each strategy. The first strategy
allows for a large space of mutations without a precise goal,
the second one offers a more restrictive space of mutations
without a precise goal, and the third proposes a more restrictive
space of mutations with more specific goals. They are intended
to cover different types of attack scenarios. While the first
strategy is more likely to mimic attack scenarios targeting the
availability of an avionics application, the second and third
strategies better cover scenarios targeting its confidentiality,
integrity, or traceability.

The architecture of a prototype tool implementing this
approach is detailed in this paper, as well as some experiments
that have been carried out on an avionics application im-
plemented in an hardware-representative environment. Several
scenarios have been setup, in order to emulate different types
of impacts, such as denial of service, loss of data integrity, and
deactivation of safety mechanisms. These experiments allowed
us to evaluate the detection performance of an HIDS we are
currently developing.

Section II presents some related works dealing with attack
and fault injection. Section III describes the proposed approach
and presents the architecture of the tool as well as the
three attack injection strategies. Section IV provides some
implementation details of the tool, while Section V presents
the experiments we carried out to evaluate a HIDS with
this tool. Finally, Section VI concludes and discusses further
improvements.

II. RELATED WORK

In order to assess the efficiency and performance of an
IDS, it is necessary to have access to attack data that is
actually observed or synthetically generated. Such attack data
should cover as much as possible a wide variety of possible
attacks. Several frameworks have been defined to characterize
attacks targeting traditional computer systems, e.g., [2], or to
design experimental campaigns to assess intrusion detection
systems, e.g., [7]. However, to our knowledge, only a few
studies addressed the specific context of avionics applications
and their associated constraints (e.g., [4]).

Generally, it is difficult to collect real attack data, espe-
cially from critical embedded systems. Alternatively, several
studies focus on the set up of experimental testbeds based
on fault injections, which aim to emulate malicious behavior
representative of the manifestation of attacks on the target
systems. As an example, ID2T [10] injects malicious packets
inside network data captured on a real environment to emulate
network attacks. Vulnerability and attack injection is also
used in [6] to modify the code of a web service (inject
the vulnerability), and perform SQL injections (inject the
attack) to exploit the vulnerability. To our knowledge, there
are no equivalent tools to inject a malicious code into avionics
applications.

Fault injection techniques have been widely used to assess
fault tolerance mechanisms developed for critical systems, in-
cluding avionics systems. A survey on Software Fault Injection
(SFI) is proposed in [8], presenting in particular the injec-
tion of code changes (called mutations) to emulate software
faults. Similar mechanisms can be developed when considering
attacks. The principles of code mutations correspond to the
attack injection we want to implement, with the exception of
the following hypothesis:

1) The instructions injected into the binary code do not
necessarily have to be representative of faults in the
source code

2) Even if the payload introduced by the attack is not
activated during the experiment, it must be detected

3) The distribution of faults proposed by [5] is not appli-
cable to intentional faults

[5] proposed a set of 18 operators to cover around 68%
of most frequent software faults. These operators have been
extended by [1] to cover around 57% of vulnerabilities found
in open-source projects. However, these operators are not
necessarily representative of malicious pieces of code.

Using existing attack classifications and code injection tech-
niques, this paper aims to 1) propose elementary modification

patterns to represent the consequences of an attack on an
avionics application, 2) propose an architecture for an injection
tool to implement these elementary code changes; this tool
has been designed and developed to adapt to specific avionics
constraints, such as hardware and real-time constraints and 3)
describe the experiments we have conducted, in which this
tool is used to calibrate and evaluate a HIDS that we are
developing.

III. APPROACH

The section first presents an overview of our code injection
approach (Section III-A), then describes the components we
have designed and developed to implement this approach
(Section III-B), and finally details the code injection strategies
as well as the associated attack operators (Section III-C).

A. Overview

The proposed attack injection is similar to fault injection
based on code mutation. As mentioned in [8], the fault model
for making code changes must define ”When to inject”,
”Where to inject” and ”What to inject”.

”When to inject” is related to the threat model considered in
this study. We assume that the code modification is performed
by an attacker before the application is loaded on the avionic
platform. It may correspond, for example, to a malicious
maintenance operator who modifies the binary before loading
it on-board, or to a malicious application developer who adds
some code in the application binary before sending it for
integration. However, given the context of avionics systems,
the attacker may want the payload of his attack to be activated
while the aircraft is flying, during the take-off or landing, in
the middle of the ocean, or while flying over a specific area.
Two alternatives are considered to represent this behavior: 1)
Run the malicious payload when the corrupted application is
started or 2) Embed an additional piece of code that waits for
specific time or event-related conditions to run the payload.

As regards the location of the mutation (”Where to inject”),
it must be done within the application code. As the application
code area is likely to be very large, it is important to target
specific areas where the attack is activated. However, inserting
the malicious injected code may require more space than the
original memory allocated, and may require the installation of
an additional code area. It is therefore necessary to identify a
location for this option in the application itself, for example a
code area that is unused.

Finally, with regard to the types of mutations injected that
should be representative of malevolent pieces of code (”What
to inject”), three different strategies for modifying the binary
code are proposed. These strategies and the associated attack
operators are described in Section III-C.

B. Attack Injection Tool Components

The attack injection campaign consists in defining a list
of attacks, executing each of them, and collecting a set of
observations to evaluate their impact. The proposed approach,
depicted in Figure 1, is based on four main components, and is

Figure 1. General approach

aimed at randomly generating a list of attacks and performing
the corresponding attack injection campaign.

1) Configuration: There are three different configuration
levels for the proposed injection tool. The first level defines
general information about the targeted application, such as
the addresses of code and data memory segments, the binary
entry point, or the address of an unused code area. This
information can be provided by the Module Integrator or easily
retrieved using code analysis tools. The second configuration
level is related to the control of the experiments and specifies
how to restart or restore the environment between two attack
injections, how to load the application on the platform, and
also the duration of the experiments. The third level defines
the attack operators to be used, the type of parameters for each
attack operator, and the information to be logged during the
experiments (see Section III-C).

2) Scanner: Scanners are used to establish lists of parame-
ters that are consistent with the different attack operators. We
implemented three scanners that respectively scan function en-
try points, jump instructions, and more generally instructions
executed by an application, with a given workload. The result
of this step is a set of CSV files containing a list of addresses,
corresponding to the scanned information.

3) Generator: This step aims to select a list of attack oper-
ators, either randomly or according to the tool’s configuration
and associated parameters. The value of each parameter is
randomly generated according to the type of parameter, using
the scanner results if available. For example, an instruction
address must be chosen from the list of addresses given by
the scanner, while a value must be a 32-bits random number.
The results of this step is a text file containing a list of code
changes, that consist of a list of attack operators with their
associated parameters.

4) Injector: The role of the injector is to automatically
launch the attack injection campaign, using a list of attacks,
and to monitor the application during each experiment. To
manage the attack injection campaign, for each attack until
the entire list is executed, the injector 1) launches the current
attack, 2) checks the end of the experiment (according to the
duration configured previously), and 3) restores the initial state
of the module and restarts it. For each experiment, a log file
is generated at the end of the application execution according
to the previously configured observation points.

Table I
ATTACK OPERATORS

Action Comment
Randomly Modify In-
struction (RMI)

Replace current instruction by a ran-
dom value

Modify Instruction (MI) Replace current instruction by another
Modify Branch (MB) Replace current branch instruction by

another
Modify Call (MC) Replace current function call by an-

other
Modify Register (MR) Replace register value by another
Modify Value (MV) Replace stored data value by another
Add Instruction (AI) Insert en instruction
Add Branch (AB) Insert a branch instruction
Add Call (AC) Insert a function call instruction
Remove Instruction (RI) Replace the instruction by a NOP
Remove Branch (RB) Replace the branch instruction by a

NOP
Remove Call (RC) Replace the function call instruction

by a NOP

C. Strategies of Code Injection and Associated Attack Oper-
ators

As no attack database is currently available to our knowl-
edge, we need to create artificial examples of malevolent
pieces of code. This malevolent code can be either completely
different from the classical avionic functions, or just a slight
modification that executes correctly. Three different strategies
detailed below, namely ”CrashMe”, ”Well-formed Instruction
Substitution” and ”Attack Pattern”, are adopted to perform
changes in the binary code. They have been designed either
to cover a large amount of possible modifications, leading
to possible incorrect executions, or to generate well-formed
malicious code that can be correctly executed.

The 12 attack operators described in Table I implement
these strategies. In particular, the ”Randomly Modify Instruc-
tion” operator is associated with the ”CrashMe” strategy, the
”Modify Instruction” operator is associated with the ”Well-
formed Instruction Substitution” strategy, and the remaining
operators are associated with the ”Attack Pattern” strategy.

1) Crash Me: The most generic approach consists in re-
placing some instructions with a random code. This is the
principle of the ”CrashMe” strategy. Such an approach has
already proven effective in carrying out Denial of service
(DOS) attacks or in identifying some weaknesses in safety
detection mechanisms, as presented in [4]. This code injection
strategy is implemented through a single attack operator that
consists in replacing an instruction with a random code (RMI
in Table I). Such changes are easy to make, anywhere in the
binary. Moreover, this technique covers a large number of
scenarios that potentially use incorrect instructions. However,
it cannot be used to implement meaningful attack scenarios
like data exfiltration or data falsification. The code mutations
generated are mostly intended to cause a crash of the applica-
tion, i.e., a DOS attack. As a result, our tool also implements
two other code modifications strategies, aiming at making
more significant mutations.

2) Well-formed Instruction Substitution: The second tech-
nique implemented by our tool is based on a pre-constructed
dictionary of well-formed instructions, selected from the ap-
plication itself, other applications, and/or kernel code. This
strategy replaces the application’s code by well-formed pieces
of code, i.e., code parts composed of valid binary instructions
but not intended to mimic a specific behavior of an attack.
Even if these code changes are not developed to emulate
some real attacks, they allow to generate a wide variety of
application mutants with a different behavior than the original
application. In addition, since code changes are made with
valid instructions, the corresponding mutants are less likely
to cause a crash than in the ”CrashMe” approach. This code
injection strategy is implemented through a single attack
operator, which consists in replacing one instruction with
another (MI in Table I).

3) Attack Patterns: To further define malicious behavior,
we implemented different attack scenarios and extracted el-
ementary operations performed by the corresponding malev-
olent codes. These attack scenarios included communication
tampering (payload, header, configuration), process tampering
(period, code executed), information leakage (configuration
location, communication ports), and were performed on a
test application different from the target application used in
Section IV. Then, we defined attack operators associated with
these elementary operations (MB, MC, MR, MV, AI, AB,
AC, RI, RB, RC in Table I). They include basic operations
(Modify, Add, or Remove) performed on a target (Instruction,
Branch, Call, Register, or Value). Such modifications allow
the generation of mutants whose code includes payloads that
are actually representative of the payload of real attacks.
Concerning the implementation of these operators, the user
must define the type of parameters to use. The tool is then able
to select a random value in an appropriate range, according to
the type of parameter and scanner results (see Section III-B).

IV. PROTOTYPE

This section details the prototype we implemented, based
on the architecture presented in Section III. Figure 2 presents
the components of the prototype as well as their interactions.
The target is an avionics system under development, running
on a PowerPC architecture with a T2080 processor. The target
application is a cockpit display application called HSIV for
Human-System Interface Vehicle. This application displays
information to the pilot about the state of the aircraft, such
as fuel level or tire pressure. Only one workload is used,
which always sends the same data to be displayed by the
application. The workload is implemented in the application
itself. A computer (called Controller in Figure 2) is used
to communicate with the target through Ethernet, using a
GNU Debugger1 (GDB) Client-Server communication. An
embedded GDB server runs on the target. This embedded GDB
server is directly linked to the kernel, so that a breakpoint stops
the execution of the target. The GDB server is specifically

1https://www.gnu.org/software/gdb/

Figure 2. Architecture of the Prototype

designed to preserve the value of two internal registers $tbl and
$tbu indicating the clock value of the target, so that the time
between two breakpoints is guaranteed with an approximation
of 5 usec.

The Attack Injection Tool is implemented as a set of GDB
and Python scripts. GDB scripts are used to interact with the
target (start the application, extract logs, inject attack, restart
the module, ...), while python scripts are used to start the
scanners, generate the list of attacks, and generate experiment-
specific GDB scripts. Code mutations are performed during
the initialization phase of the module. A breakpoint is set
at the initialization, and when the breakpoint is reached, the
modification is made directly in the RAM area using GDB.

A. Addition of Code

To insert an additional piece of code into the application,
it is necessary to identify a free code area to install the
additional code. This area is defined by the application-specific
configuration file. The instruction to be modified is replaced
by a jump instruction pointing to this free zone. At the end of
the payload code, another jump instruction is added to return
to the instruction following the modified instruction.

B. Control of the Payload Execution

The piece of code added to control the payload execution
corresponds to the following pseudo-code:

counter++;
Check the counter value
if first < counter < last:
Check the frequency
if counter % N == 0:
payload

A counter is defined in a free data area and incremented each
time the attack is activated. Three parameters are defined for
the attack operators, corresponding respectively to the counter
value that triggers the payload execution for the first time, the
counter value that triggers the end of the payload execution,
and the frequency of the payload execution (the payload is
executed once over N attack activations).

Table II
CHARACTERISTICS OF THE IMPLEMENTED ATTACK OPERATORS

Operator Strategy Code
Addition

Execution
Control

Frequency

RMI 1
MI 2
MB 1/MB 2/RI 3
AI 3 X
MR/MV 3 X X
RC 3 X X X

C. Attack Operators Implemented

In order to implement different schemes, the operators are
designed to execute their payload at anytime or under time
conditions, with or without addition of code, and with the
three different code modification strategies proposed. Table II
summarizes the implemented attack operators and their corre-
sponding characteristics. Four characteristics are distinguished.
”Strategy” indicates the previously defined strategies (1 =
CrashMe, 2 = Well-formed Instruction Substitution, 3 = Attack
Patterns). ”Code Addition” indicates whether or not code has
been added for this operator. ”Execution Control” indicates
whether or not the time of activation of the exploit is con-
trolled. ”Frequency” indicates whether or not the user can
select the frequency of the payload execution.

D. Attack Injection Campaign

A python script is used to generate the GDB script to
perform the entire attack injection campaign. The following
code is an example of such generated GDB script, and is
composed of different parts details further.

1. Observation Breakpoints Definition
HSIV_ENTRY_POINT
b *0x30000000
GET_TIME
b *0x10000000
SEND_QUEUING_MESSAGE
b *0x20000000

2. Initializations
LOCAL VARIABLES FOR ATTACK CAMPAIGN
set $MAX_COUNTER = 4
set $curr_counter = -1
CONTINUE TO REACH A FIRST BREAKPOINT
continue
Loop to launch ATTACK automatically
while ($curr_counter < $MAX_COUNTER)

3. Catch breakpoints
if $pc == 0x10000000 || $pc == 0x20000000 || $pc

== 0x30000000 || $pc == $addr_attack↪→

Restore and restart the module
if $tbl >= $max_duration_tbl
set logging off
clear *$addr_attack
restore_and_restart_module

end
HSIV_ENTRY_POINT
if $pc == 0x30000000

retrieve_and_inject_attack
end
GET_TIME

if $pc == 0x10000000
printf "1,0x%x,0x%x\n",$tbu,$tbl

end
SEND_QUEUING_MESSAGE
if $pc == 0x20000000
printf "2,0x%x,0x%x\n",$tbu,$tbl

end
ATTACK ADDRESS REACHED
if $pc == $addr_attack
printf "ATTACK_LAUNCHED,0x%x,0x%x\n",$tbu,$tbl

end
Crash of the application
else
Restore and restart the module
set logging off
clear *$addr_attack
restore_and_restart_module

end
continue

end

1) Breakpoints declaration: The script starts by declaring a
few breakpoints according to the configuration. In the config-
uration file presented below, three breakpoints are configured:

0x30000000;PLACE_ATTACK;HSIV_ENTRY_POINT
0x10000000;1;GET_TIME
0x20000000;2;SEND_QUEUING_MESSAGE

The first line indicates that the current attack is injected
when the application’s entry point is reached, corresponding
to the address 0x30000000. The second and third lines corre-
spond to observation breakpoints at the addresses 0x10000000
and 0x20000000, (API calls addresses GET TIME and
SEND QUEUING MESSAGE, with the respective IDs 1 and
2).

2) Execute in a loop until the end of the campaign: The
script sets the number of attacks declared in the attack list,
and executes a loop until all attacks are completed.

3) Breakpoints management: When a breakpoint is
reached, the script first checks the duration of the current
experiment. If it is longer than the duration planned in the con-
figuration, the current attack location breakpoint is removed,
and the module is restored and restarted. Otherwise, the script
checks if the current execution address (stored in the $pc
register) corresponds to an intended breakpoint address. If the
address matches the PLACE ATTACK tag, the script injects
the current attack. If the address corresponds to an observation
point, the script adds a log to the current log file, along with
the configured ID and a timestamp (stored in the $tbu and
$tbl registers). If the address corresponds to the location of
the attack, a log is also added. If the address is unknown, the
execution should have encountered an exception (crash of the
application). The script stops the current attack and continues
the campaign with the next one.

4) Attack Injection: To inject the current attack, a GDB
script is generated depending on the current attack counter
value. The following code is an example of such GDB script:

set $curr_counter = $curr_counter + 1
set $addr_attack = 0x40000000
b* $addr_attack

AI 0x40000000
set logging file data_AI-0x40000000.txt
set logging on

The first line increments the current attack counter. The next
two lines configure the current location of the attack and place
a breakpoint at this location. The fourth line injects the attack
payload inside the HSIV application. In this example, the AI
operator (see Table II) is used to duplicate the instruction at the
address 0x40000000. The last lines configure the new logging
file.

5) Resulting Log Files: The log file generated for an attack
contains a list of logs, alternatively with the ID 1, 2, or
the ATTACK LAUNCHED tag. The following example is an
extract of a log file.

2,0x0,0x14b444d2
1,0x0,0x14b449da
1,0x0,0x14b44fe6
2,0x0,0x14b4535d
ATTACK_LAUNCHED,0x0,0x14b45563
1,0x0,0x14b46e06
2,0x0,0x14b470cb
2,0x0,0x14b47441

V. EXPERIMENTAL RESULTS : HIDS EVALUATION

The tool was used to assess the efficiency of an HIDS that
we are currently developing. The following sections briefly
present the HIDS (Section V-A), and how the injection tool
is used 1) to calibrate the parameters of this HIDS through
experiments based on generic attacks (Section V-B), and 2) to
evaluate the performance of the calibrated HIDS when specific
targeted attacks are injected (Section V-C).

A. HIDS principle

Although the detailed description of the HIDS that we are
currently designing is out of the scope of this paper (see
[3] for more details), we briefly introduce the principle of
the underlying detection approach. This HIDS is based on
anomaly detection and aims to build a model of the normal
behavior of an avionics application by observing and char-
acterizing the different syscalls that this application executes
(syscall identification as well as the duration between some
syscall sequences are considered). Figure 3 outlines the main
components of the HIDS with the corresponding parameters.
The log files generated by the attack injection tool are used
as input for this HIDS. The first step, preprocessing, consists
in building the sequences of syscalls with the corresponding
duration from a log file containing a list of syscall IDs
performed by the application and associated timestamp. One
normal preprocessed file describing the application’s behavior
in the absence of attacks is used to train a One-Class Support
Vector Machine learning model. The resulting model is used
to test the remaining preprocessed files to determine, for each
file, whether an attack, corresponding to a significant deviation
of the observed syscalls sequences or their duration from the
normal learned preprocessed file, is detected.

Table III
COMPOSITION OF THE RANDOMLY GENERATED ATTACK LIST

Operator Number Number with ATTACK tag
MI 20 16
MB 1 6 6
MB 2 3 0
MR 15 14
MV 3 3
AI 16 12
RI 11 7
RC 10 3
Total 84 61

B. HIDS Parameters Evaluation

The attack injection tool was used to generate an attack
injection campaign consisting of 84 attacks. These attacks are
referred to as ”random attacks” in the following, because the
operators and associated parameters were randomly selected
from the list of attack operators implemented (except the
RMI operator). Among the 84 log files generated, only 61
contained the tag ATTACK LAUNCHED, meaning that the
attack is activated. This is due to the first implementation
of our instruction scanner. Indeed, the scanner currently im-
plemented lists the functions that are executed and considers
any instruction of each function as a potential target for code
injection. Depending on the workload, some part of the code
may never be executed (for example, branch never taken).
This leads to an attack injected but never executed because
the injection point is never reached with this workload.

Only these 61 log files were considered for the results
presented in the following. The attack operators randomly
selected for the attack campaign are given in Table III. As
this is a randomly generated campaign, the values vary from
an experiment to another. The duration of each attack is 20
seconds.

Also, 5 log files of normal behavior have been captured, one
of 20 seconds, three of 30 seconds, and one of 40 seconds.
The real duration to capture 20 seconds of normal behavior
was about 60 minutes. A set of 22 observation points has
been monitored, corresponding to the 22 ARINC 653 [9] API
calls used by the application. All these log files have been
used as input data for the previously described HIDS. The
parameters have been customized to achieve an F-measure
of 97.03% on the testing files. More precisely, the 5 normal
files were detected as normal, 49 attack files were detected as
containing an attack, and the HIDS did not raise any alarm for
the 3 remaining attack files (they were considered as normal).

C. HIDS on Targeted Attacks

To assess the accuracy of the HIDS against realistic attacks,
we have developed a set of mutant applications that have a real
impact on the display. These attacks, detailed in Table IV,
are called ”targeted attacks” in comparison to the previous
”random attacks” used to calibrate the HIDS. The targeted
attacks have an impact on the safety, integrity, or availability
of the application.

Figure 3. Process to Evaluate the HIDS Parameters

Table IV
TARGETED ATTACK SCENARIOS ON HSIV DISPLAY

ID Impact Description
1 Safety Suppression of the calls to

”RAISE APPLICATION ERROR” service
2 Integrity Modification of the displayed value of a

gauge
3 Integrity Constant modification of the names of

menus displayed
4 Integrity Partial modification of the names of menus

displayed
5 Availability Suppression of the calls to

”UNLOCK PREEMPTION” service
6 Availability Partial suppression of the calls to ”UN-

LOCK PREEMPTION” service
7 Availability Constant blinking of the screen
8 Availability Partial blinking of the screen (from 2 sec-

onds and for 3 seconds)
9 Availability Destruction of the structure of the display

Each attack was executed 5 to 7 times, resulting in a global
set of 51 log files. These files are pre-processed and evaluated
by the HIDS, resulting in a detection rate of 100% (e.g. each
log file was detected as containing an attack). This result
shows that the calibration of our HIDS with the designed
attack injection tool and campaign was efficient for detecting
real-world examples of attacks. This is very important in an
avionics context where, to our knowledge, no attack data is
publicly available. However, this result should be confirmed
by running a larger number and a wider variety of emulated
attacks (each attack should be easily implemented using one
attack operator).

VI. CONCLUSION AND FUTURE WORK

This paper presented a tool to inject attacks adapted to an
avionics application and an avionics context. In particular, we
have proposed a set of attack operators to create randomly
generated mutants that represent malevolent applications. The
architecture and implementation of the tool have been detailed
using an example where the tool is used to calibrate the param-
eters of an anomaly-based HIDS without known examples of

attacks. The experiments carried out with generated mutants,
that have been designed specifically for the avionic application
under test, showed that the HIDS was able to detect all the
targeted attacks.

However, in the current implementation of our prototype
the generation of log files may take a long time due to
the many breakpoints used to log information. One possible
extension should be to instrument the code directly, which
would lead to a drastic reduction in the overhead introduced
by the breakpoints. Some target avionic platforms already have
instrumentation facilities that could be interfaced directly with
the tool.

It would also be interesting to test the reaction of safety
mechanisms according to the different attack operators pro-
posed. This would help the user to focus on attack classes
that are not already covered by safety mechanisms.

Finally, the attack list is currently randomly generated
because, to our knowledge, there is no publicly available attack
data for aircraft applications. The usage of coverage-guided
fuzzing targeting specific behavior of application functions
could be an interesting direction to explore to build a more
comprehensive and relevant attack list. This would limit the
number of cases to test while improving the coverage of the
list of attacks.

REFERENCES

[1] Frederico Cerveira, Raul Barbosa, Marta Mercier, and Henrique
Madeira. On the Emulation of Vulnerabilities through Software Fault
Injection. In 2017 13th European Dependable Computing Conference
(EDCC), pages 73–78, Geneva, September 2017. IEEE.

[2] The MITRE Corporation. Mitre att&ck™. https://attack.mitre.org/,
2018. Accessed: 03-Apr-2019.

[3] A. Damien, M. Fumey, E. Alata, M. Kaâniche, and V. Nicomette.
Anomaly based intrusion detection for an avionic embedded system.
Aerospace Systems and Technology Conference (ASTC), London, United
Kingdom, Nov. 2018.

[4] A. Dessiatnikoff, Y. Deswarte, É Alata, and V. Nicomette. Potential
Attacks on Onboard Aerospace Systems. IEEE Security Privacy,
10(4):71–74, July 2012.

[5] Joao A. Duraes and Henrique S. Madeira. Emulation of Software Faults:
A Field Data Study and a Practical Approach. IEEE Transactions on
Software Engineering, 32(11):849–867, November 2006.

[6] J. Fonseca, M. Vieira, and H. Madeira. Vulnerability #x00026; attack
injection for web applications. In 2009 IEEE/IFIP International Con-
ference on Dependable Systems Networks, pages 93–102, June 2009.

[7] A. A. El Kalam M. S. Gadelrab and Y. Deswarte. Defining categories to
select representative attack test-cases. In Proceedings of the 2007 ACM
workshop on Quality of protection - QoP’07, Alexandria, Virginia, USA,
2007.

[8] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. As-
sessing Dependability with Software Fault Injection: A Survey. ACM
Computing Surveys, 48(3):1–55, February 2016.

[9] P. J. Prisaznuk. Arinc 653 role in integrated modular avionics (ima).
2008 IEEE/AIAA 27th Digital Avionics Systems Conference (DASC),
2008.

[10] Emmanouil Vasilomanolakis, Carlos Garcia Cordero, Nikolay Milanov,
and Max Muhlhauser. Towards the creation of synthetic, yet realistic,
intrusion detection datasets. In NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium, pages 1209–1214, Istanbul,
Turkey, April 2016. IEEE.

