N

N
N

HAL

open science

Implementation of a Host-Based Intrusion Detection
System for Avionic Applications

Aliénor Damien, Michael Marcourt, Vincent Nicomette, Eric Alata, Mohamed

Kaaniche

» To cite this version:

Aliénor Damien, Michael Marcourt, Vincent Nicomette, Eric Alata, Mohamed Kaaniche. Implemen-
tation of a Host-Based Intrusion Detection System for Avionic Applications. 2019 IEEE 24th Pacific
Rim International Symposium on Dependable Computing (PRDC), Dec 2019, Kyoto, Japan. pp.178-
17809, 10.1109/PRDC47002.2019.00048 . hal-03094199

HAL Id: hal-03094199
https://laas.hal.science/hal-03094199

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://laas.hal.science/hal-03094199
https://hal.archives-ouvertes.fr

Implementation of a Host-based Intrusion Detection
System for Avionic Applications

Aliénor Damien*T Michael Marcourt*, Vincent Nicomette!, Eric Alata’, Mohamed Kaaniche®
*Thales AVS, Toulouse, FRANCE, Email: {firstname}.{lastname} @fr.thalesgroup.com
TLAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, FRANCE, Email: {firstname}.{lastname } @laas.fr

Abstract—Today, aircraft are protected by strong safety prop-
erties, qualified operators and process-based security measures.
However, considering the recent evolution of in-flight services
towards more connectivity, resource sharing and advanced en-
tertainment functionalities, together with the increase of threats
targeting embedded systems, the potential malicious modification
of an aircraft application must be seriously considered for future
systems. In this context, several solutions can be developed to
improve aircraft security. In particular, Host-based Intrusion
Detection Systems (HIDS) are relevant to deal with targeted
threats such as an insider attack. This paper presents the
specific constraints of building an HIDS onboard an aircraft, and
discusses some relevant solutions that satisfy these constraints.
These solutions are evaluated in terms of detection efficiency
and resource consumption in order to select the solution that
allows the best trade-off between efficiency and performances.
The implementation of this solution on an embedded avionic
computer is also described.

Index Terms—Intrusion Detection System, Security, Avionics,
Embedded, Real-Time

I. INTRODUCTION

To meet the growing need for connectivity and improve the
passenger experience, aircraft systems are constantly evolving
and integrating more and more connected services and devices.
From a security point of view, this trend leads to a larger
attack surface. With the continued increase of threats targeting
embedded systems, the potential malicious modification of an
aircraft application must be seriously considered for future
systems. Among the various solutions to address such threats,
Host-based Intrusion Detection Systems (HIDS) are widely
used in information systems security.

However, traditional HIDS need to be adapted to the spe-
cific constraints and strict requirements inherent to embedded
avionic computer systems and applications, in particular in
the context of Integrated Modular Avionics (IMA) based
architectures. An IMA system is organized as a network
of computing modules, each supporting several applications,
possibly of mixed criticality levels. The execution of mixed-
criticality software on the same module is supported by space
and time segregation mechanisms in compliance with the
ARINC 653 standard. Each application is composed of one
or several partitions. Each partition is allocated statically and
periodically an execution slot, as well as memory resources
protected by the underlying operating system.

The following requirements and constraints must be con-
sidered in the design of an HIDS aimed at detecting potential
attacks during the execution of avionic applications:

o Aircraft systems may use proprietary Real-Time Oper-
ating Systems (RTOS) with custom file systems, static
configurations, and non-standard instrumentation toolkits.
In this study, we consider the RTOS as trusted.

o The detection of a security incident implies a reaction
from the crew, the operators on the ground, or directly
an automatic reaction of the embedded computer in future
systems. Because such reaction must not have an impact
on the flight safety, there are strong requirements on
the detection accuracy and the alerts raised should be
deterministic and explainable. Particularly, we consider
that no false alerts should be raised in order to build a
strong confidence in the alerts raised.

o Software development is expensive, especially for critical
functions e.g. DAL A software such as RTOS, and for
software updates (deployment cost). Generally, a daily
update cannot be considered. Currently, the most frequent
updates on an aircraft are every 28 days.

o As with any embedded system, the resources available
are limited.

« Finally, avionic systems are real-time systems with peri-
odically and statically scheduled applications. The HIDS
should not disrupt the real-time execution of the mon-
itored partitions. Moreover, some real-time properties
must be guaranteed, such as the Worst Case Execution
Time (WCET).

Many actors are involved in the development of an aircraft. In
this study, we adopt the viewpoint of the Module integrators,
i.e., the companies that perform the technical integration of
the applications on avionic computers. It is assumed that they
are responsible of the configuration of the HIDS and may not
have access to detailed specifications of the applications they
have to integrate (in the worst case, only the binary and the
resources allocated to the application are available).

The design of the HIDS to be embedded onboard the aircraft
should allow for an optimal tradeoff between the following
requirements:
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Preserving the real-time execution of the other functions
Proposing limited evolution for legacy aircraft
Performing real-time detection

04 Having a small memory footprint
O5 Providing reliable and explainable results
06 Being efficient even on “black-box” applications

This paper proposes an anomaly-based HIDS adapted to the



IMA context that is aimed at fullfing the above objectives.
Some preliminary concepts behind the proposed approach have
been discussed in [1]. The main idea is first to build, during
the integration phase, a model of the legitimate behavior of
an avionic application, based on data collected by monitoring
specific features during its execution (related to the application
itself or its environment), and second, in the operational phase,
to raise alerts when the behavior of the application exhibits
significant deviations from this model. In [1], we investigated
the use of OneClass Support Vector Machine learning model
(OCSVM) to describe the normal behavior of applications
using the observed sequences of API calls as inputs. The
few experiments carried out with this model have shown very
encouraging results in detecting anomalies, but the required
resources for the model to be embedded on an IMA platform
have not been evaluated.

In this paper, we revisit and significantly extend this work
by: 1) exploring several alternatives to model the normal
behavior of an application and 2) running a set of experiments
in which these alternatives are tested and compared with
different sets of data to be monitored. These alternatives are
evaluated regarding their detection accuracy and their resource
consumption, in order to select the most appropriate ones
to be embedded in an aircraft. This paper finally details the
implementation of a prototype of this HIDS on an avionic
platform, as well as a performance evaluation of this prototype.

Section II discusses related work. An overview of the pro-
posed approach is presented in Section III as well as different
strategies for building the model describing the legitimate
behavior of the monitored application. The evaluations of
these alternatives in terms of detection accuracy and resource
consumption are respectively presented in Section IV and Sec-
tion V, while Section VI describes the embedded implementa-
tion details of the solution we consider the most appropriate to
be embedded and evaluate its resource consumption in realistic
conditions. Section VII concludes and discusses future work.

II. RELATED WORK

This section first presents research work dealing with air-
craft security measures, and more precisely related work about
embedded IDS (Section II-A). Then, the main components of
an HIDS, i.e., the data to monitor and the algorithm used to
perform the detection based on these data, are also discussed
in Sections II-B and II-C.

A. Security in Avionic Systems & Embedded IDS

Considering some recent attacks on embedded systems [2],
[3], airworthiness regulations have evolved [4], [5], [6]. To-
day, avionics players have to consider on-board and ground
infrastructure security. This evolution has been taken into
account in the design of new aircraft. Perimetric defenses are
implemented to divide the network into different domains [7],
[8]. The systematic analysis of vulnerabilities when developing
new platforms is also considered, as presented for instance
in [9]. Aircraft also implement strong safety mechanisms
that are historically designed to provide protection against

accidental threats, and recently some security solutions have
been proposed to cope with malicious attacks [10]. However,
to the best of our knowledge, Intrusion Detection Systems
(IDS) have not been implemented yet for aircraft systems.
Such mechanisms would be useful to detect potential attacks
exploiting unknown vulnerabilities and to provide additional
protection mechanisms in the case of attacks not covered by
the existing safety and other protection mechanisms.

A few studies have been published about IDS in embedded
systems. For instance, [11] highlights some related constraints
and challenges. [12] propose an IDS for embedded automo-
tive architectures. The use and implementation of IDS on
multi-core architectures for real-time embedded systems is
investigated in [13]. Some studies proposed hybrid IDS to
take advantage of both signature-based and anomaly-based
techniques [14], [15]. Concerning avionics domain, [16]
proposes an IDS aimed at monitoring avionic networks.

Our research focuses on a different approach, aiming at
integrating a Host-based IDS (HIDS) into each avionic com-
puter that is designed to monitor the behaviour of the hosted
applications, using in particular avionic RTOS as a source of
data. The design and implementation of such HIDS requires
a preliminary selection of the data to monitor and of the
algorithm used to perform the detection.

B. Monitored data for HIDS

Avionic data monitoring systems are generally focused on
faults and failures. In IMA systems, this is managed by
the Health Monitoring (HM) [17]. Three levels of HM are
generally defined: process HM (managed by the application),
partition HM, and module HM (managed by the RTOS).
Faults include for example ARINC 653 error codes, missed
deadlines, numeric errors, or illegal requests. Only a subset
of the faults generates a message that is logged for further
investigation by maintenance operators. These messages could
be used as input data for data monitoring but the information
provided is limited to messages that are already formatted. In
addition, if the application is corrupted, the error messages
generated by process faults could be altered.

Some platforms propose specific instrumentation tools that
can be used by the module integrator to check the correct al-
location of resources. The monitored information may include
data on memory resource usage (data RAM), process stacks,
main stack, error handler stack, non-volatile memory, or
communication services memory. This system is non-intrusive
and could be an interesting source for data monitoring, but
the monitored data and associated tools are not standard (they
depend on the execution platform), and the data are limited to
resource allocation.

Other sources of data can be considered. In the studies
related to embedded HIDS, the data sources used are memory
usage [18], system calls distribution [19], execution time [13],
or a subset of system calls [11]. In the survey published
in [20], HIDS on IT systems are classified according to
the source of the used data: System logs and audit data,
windows registry data, file system monitoring, and process



and stored binaries. Notably, a section is dedicated to the
system calls, as this data has been widely used to successfully
detect anomalies. Syscalls can be observed in two main ways,
through sequential features or frequency-based features. The
survey also highlights some studies using additional data such
as system call arguments or memory pointers.

In this paper, we use the ARINC 653 API calls [21]
along with the execution time as input data. Indeed, system
calls have been shown to be very efficient to detect behavior
deviations and can be monitored at the OS level. Also, [13]
shows that it is very relevant to monitor the execution time
in a real-time system because of the periodic behavior of the
observed applications. In our context, the ARINC 653 API
calls timestamps can be directly monitored by the OS, in order
to monitor the time execution of the application.

C. Anomaly Detection Techniques

Two types of intrusion detection techniques are generally
distinguished: signature-based or anomaly-based. Signature-
based HIDS have strong limitations to be embedded in an
avionics context, such as frequent updates and their ineffi-
ciency to detect new or sophisticated attacks. Anomaly-based
HIDS seem more appropriate, especially since we expect the
false alarm rate to be reduced due to the static characteristics
of avionic environment.

[22] proposes a classification of anomaly detection tech-
niques at different levels, with a particular focus on Neural
Network models. These models have proven to be efficient
in detecting anomalies. However, they require high computing
resources and are quite difficult to interpret. These limitations
are hardly consistent with objectives O3 and OS5 (real-time
detection, and high confident and explainable results).

Other classification techniques have also been widely used
to develop IDS [23], [24]. For example, [16], [25], [26]
consider using OneClass Support Vector Machine (OCSVM)
to detect network traffic anomalies, respectively on aircraft
system, SCADA systems, and USB communications. This
technique gives results that seem difficult to interpret (objec-
tive O5) but are very effective for detection, which is compliant
with objective O3.

Also, [20] pointed out that Hidden Markov Models (HMM)
have been used successfully to model system calls usage.
These models are easier to explain but, since they are proba-
bilistic, rare events such as safety-related events are not easy to
model as part of the normal behavior model. A simplest model
called timed automata was used in [27] to detect anomalies
in the behavior of a Digital Video Broadcasting System, and
in [28] to detect ATM frauds. Due to the deterministic behavior
of such systems, the timed automata gave very good results.
This simple technique is easy to explain and to interpret and
can be very interesting in an avionics context. Also, it seems
suitable to easily model and verify the timing behavior of
ARINC 653 API call sequences.

Table 1 summarizes the characteristics of the anomaly
detection techniques considered in this section, with respect to
the objectives of an avionic HIDS. Objectives O1 and O2 are

Table I: Anomaly Detection Techniques and HIDS Objectives

[ Anomaly Detection [ O3 [ O4 [ O5 [ 06 |

Neural Network X
OCSVM X X X
HMM X X
Timed Automata X X X X
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not represented, as they mainly depend on the implementation
of the HIDS. Finally, the “OCSVM” and “Timed Automata”
approaches are considered the best solutions in our context,
for their promising results and real-time detection capability.

III. APPROACH

The anomaly-based detection approach we propose, is struc-
tured into two phases corresponding to the integration and
operation phases of aircraft systems. Figure 1 presents the
activities carried out during the integration phase, aimed at
building a model of the legitimate behavior of the application,
and Figure 2 shows the activities during the operation phase,
aimed at detecting anomalies (i.e., behaviors that deviate
significantly from the model obtained in the integration phase).
The activities carried out on the ground are plotted in green
and those onboard in blue.

For each monitored application, the “Static Security Analy-
sis” aims at detecting a corrupted or malicious binary received
from an application supplier to be integrated. Two ideas are
pursued to perform this analysis: 1) Use existing anti-malware
techniques on the binary and 2) Check compliance between
the binary and its documentation. The “SDA Modeling” and
“SDA Validation” blocks are intended to build a model of
the legitimate behavior of the application, that is referred
to as “Security Domain of the Application” or SDA. The
“Anomaly Detection” block performs real-time anomaly de-
tection onboard the aircraft, identifying deviations from the
SDA, and sends the anomalies to the “Attack Confirmation”
block for further analysis to reduce false alarms. If the “Attack
Confirmation” block is not able to indicate whether or not the
anomaly corresponds to an attack, it is sent to the ground for
further investigation. This is represented by the “On-Ground
Investigation™ block.



This section focuses on “SDA Modeling” and “SDA Vali-
dation”, proposes different solutions to obtain the SDA and a
process to evaluate the detection accuracy of each solution.
These steps are based on the Machine Learning process,
composed of a preprocessing, training, and testing phases.

A. HIDS alternatives

The preliminary anomaly detection model presented in [1]
is based on an OCSVM classifier using the ARINC 653
API calls performed by the applications as classifier inputs.
More precisely, observed ARINC 653 API calls are classified
according to their sequences and associated duration. The
model provided interesting detection results, however two
main limitations can be raised with respect to the possibility
of running the model onboard: the amount of data logged
at each execution slot of the monitored application may be
very large, and, therefore, too many resources may be needed
to process this data in real-time. In this section, we study
different solutions to address these issues, combining different
data monitoring strategies and different models.

Four data monitoring strategies are investigated. The All
API calls strategy (used in [1]) consists in logging each API
call with its corresponding timestamp. The Communications
only strategy is similar, except that only services related to
communications are logged. This means less impact on the
monitoring, less data at each execution slot, faster detection,
and easier implementation on legacy aircraft. However, there
is also a loss of information that may decrease the detection
accuracy. The volume of data processed should be lower
compared to the All API calls strategy, or the same in the
worst case. The API calls frequency strategy consists in
computing the number of API calls performed during each
execution slot of the monitored application. This monitoring
is easy to implement, fast, and requires limited memory space,
making it a good candidate to be embedded in an aircraft.
Nevertheless, ignoring the timestamps of the API calls may
significantly decrease the detection accuracy. Finally, the API
sequences frequency strategy consists in logging, at each
execution slot, for each possible sequence, the number of its
occurrences along with its minimum, maximum and mean
duration. The main advantage of this strategy is that it keeps
information on execution time and requires limited memory.
However, the additional computation cost per API call could
be significant.

Three different models are considered here. OCSVM has
been used in [1] to classify sequences but it should be more
adapted to frequency-based data (“API calls frequency” and
“API sequences frequency”). As a Machine Learning tech-
nique, it is very efficient to generalize data of a learning set. It
is simple to implement and the detection is fast. The Automata
model represents the API calls as states and the allowed
transitions as edges. Such a model is particularly suitable for
representing API call sequences. The Timed Automata model
is an extension of the Automata model introducing allowed
time intervals between two states. This combines the efficiency

Table II: Proposed HIDS Solutions

[ Solution [ Monitor [ Model |
OCSVM_all All API calls OCSVM
A_all All API calls Automata
TA_all All API calls Timed Automata
OCSVM_comms Communications only OCSVM
TA_comms Communications only Timed Automata
OCSVM_API_freq API calls frequency OCSVM
OCSVM_seq_freq API sequences frequency OCSVM

[~ 1 —
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Figure 3: Process to Evaluate an HIDS Solution

and explainability of automata with the representation of API
call sequences duration.

Based on these different strategies for data monitoring
and anomaly detection models, we propose 7 different HIDS
solutions, as summarized in Table II. The OCSVM is evaluated
on each data monitoring strategy proposed. The Automata
and Timed Automata are only evaluated according to “All
API calls” and “Communications only” strategies, as they are
not adapted to the two other data monitoring strategies. The
Automata model is not evaluated on the “Communications
only” strategy, because we consider that the loss of information
is too important compared to the solutions considering both
the API calls and the duration of the data observed.

B. HIDS evaluation process

The process used to evaluate each HIDS solution is de-
scribed by Figure 3 and Algorithm 1. It is composed of three
phases. The evaluation process inputs consist of a set of log
files containing the raw data observed during the execution of
the application under study on the avionic platform, each file
corresponding to one execution trace. The format of the raw
data is a list of [API call ID, timestamp] logs. The log files
are labeled as normal or containing an attack.

One normal log file is used as a training file to build the
SDA model of the application (If; in Figure 3). During the
Preprocessing phase, the raw data are transformed into a set of
features that are defined according to the type of models to be
trained and tested. As detailed later, these features are different
from one solution to another. The detection performance of
the model resulting from the training phase is assessed during
the testing phase which consists in evaluating each remaining



Algorithm 1: HIDS Evaluation Process
Input: log_files, labels
Output: score
Algorithm HIDS_Evaluation (log_files, labels)
1 training_lf,testing_lfs <
select_training_file (log_files)
// Preprocessing
2 req_preproc_info < initialize (training_If)
3 for I f in log_files do
4 L ppd[lf] + preprocessing (If)
// Training
5 model < train (ppd[training_If])
// Testing
6 for If in testing_lfs do
7 L decision|[lf] < predict (modellf)

// Detection score
8 return compute_score (decision,labels)

preprocessed log file not used during the training phase, as
normal or containing an attack.

The detection score is computed by comparing the decision
made by the HIDS and the label of each file. This score is
defined as the Recall if the Precision is 100%, O elsewhere.
The Precision and Recall are defined as follows (TP for True
Positive, FP for False Positive and FN for False Negative):

Precision =TP/(TP + FP) (1)
Recall = TP/(TP + FN) 2)

This score represents the rate of detected attacks while no false
alarms are raised. The objective to optimize precision is very
important in our specific context, because a false alarm could
have a significant impact on the pilot or on the flight safety.
In order to provide an automatic reaction in the future, a high
confidence in the alarm raised is needed (Objective O5).

C. Preprocessing Phase

This section presents the details of the preprocessing tasks
performed on the raw data log files for the seven HIDS
solutions previously defined. The format of each log is [API
call ID, timestamp].

1) OCSVM_all, OCSVM_comms: The first preprocessing
task is performed by the initialize function (see Algorithm 1)
which consists in retrieving every possible API call sequence
of length n from the training raw data file and assigning an
index to each of them, using a sliding window of length n.
Then, an output data vector is produced composed of 1) a
one-hot encoding' of the sequence index and 2) the duration
of the sequence. The duration is computed as the difference
between the timestamps of the first and last log of the window.
The output data vectors are then scaled. The size of the vector

'One-hot is an array of bits among which the legal combinations of values
are only those with a single high (1) bit and all the others low (0)

corresponds to the number of observed sequences. The same
preprocessing is applied in the case of the “OCSVM_comms”
solution considering only communication-related API calls.

2) A_all: The preprocessing function parses the input log
file using a sliding window of length n, n being the length
of the sequence considered. The output of the preprocessing
of each window consists of the ordered API Call IDs of the
observed sequence.

3) TA_all, TA_comms: Besides the preprocessing per-
formed for the “A_all” solution, the duration of each observed
sequence is also reported. In the case of the “TA_comms”
solution, the same preprocessing is applied considering only
communication-related API calls.

4) OCSVM_API_freq: The initialize function consists in
retrieving every possible API call ID from the training raw
data file and assigning an index to each of them. Then, the
preprocessing function executes two phases. In the first phase,
each log file is split into timing windows corresponding to one
execution slot. In the second phase, one output data vector
is generated per execution slot. The output data vector is
composed of m counters (m being the number of API calls
found in the training file), each one representing the number
of times an API call is observed. When all logs are processed,
the final output data vector is scaled.

5) OCSVM_seq_freq: The same initialize function than
“OCSVM_all” is used. The preprocessing function exe-
cutes two phases. The first phase is the same as in the
“OCSVM_API_freq” solution. In the second phase, one output
data vector is generated per execution slot. The output vector
consists of 4 x m values, m being the number of sequences
found in the training file. For each observed API call sequence
index, the number of times it is observed during the execution
slot is reported together with its minimum, maximum, and
average duration. When each log has been processed, the final
output data vector is scaled.

D. Training Phase

The implementation of the training phase depends only on
the model used. In each case, the training is performed on a
single normal preprocessed data file. Indeed, one file contains
many examples of the periodic behavior of an application and
should be sufficient to model it. Also, we want to limit the
additional work of the Module Integrator to obtain raw data.

1) OCSVM: The OCSVM model defines an hypersphere
characterized by a center ¢ and a radius R>0, with a predefined
margin to reduce false positives. The algorithm used to define
this hypersphere is detailed in [29]. Four kernels are usually
used with the OCSVM algorithm: linear, polynomial, radial
basis function (RBF) and sigmoid. In this study, the RBF
kernel has been used.

2) Automata: The model is built as a list of possible API
call sequences. This list corresponds to the set of transitions
in the Automata describing the application normal behavior.

3) Timed Automata: In addition, a list of acceptable [min,
max] duration intervals, including a margin to reduce false
positives, is associated to each transition. This list is obtained



from the preprocessing phase using k-means clustering algo-
rithm.

E. Testing Phase

For the testing phase, each data vector of the remaining
preprocessed data files is evaluated regarding the model pre-
viously built. The timestamps of the data vectors considered
as anomalies are stored in a list. Then, the maximum number
of anomalies in a sliding window of a predefined duration s
is computed for each file. If this maximum is higher than a
predefined threshold, the file is considered as containing an
attack. Else, the file is considered as normal. The evaluation
of the data vectors depends on the model used.

1) OCSVM: The detection algorithm computes a distance
between the data vector and the OCSVM model (e.g. the hy-
persurface) to determine if the current data vector is consistent
with the OCSVM model (normal) or not (anomaly).

2) Automata: The detection algorithm consists in checking
if the current data vector is included inside the list of data
vector observed during training. In this case, the boundary is
defined as O because no new sequence should be allowed.

3) Timed Automata: The detection algorithm consists in
checking if the current data vector is included inside the model.
It means that the sequence has to exist in the model, and that
the duration should be included in one of the corresponding
intervals.

IV. EVALUATION OF THE HIDS SOLUTIONS PROPOSED

This section presents the implementation of the process
described in Section III to evaluate the detection accuracy of
the proposed HIDS solutions (see Table II).

A. Experimental Environment

We have considered two avionic applications in our ex-
periments, namely HSIV (Human-System Interface Vehicle)
and CrewB. They are used to display information to the
pilots through the cockpit screen. HSIV displays information
about the aircraft itself, such as hydraulic systems, fuel, or
engine, while CrewB information concerns the flight, such as
airspeed, altitude, roll. The applications are executed according
to a predefined scenario, without any human interaction, on a
real avionic computer (target). They both exhibit a periodic
behavior after the initialization phase, without reaching any
specific error state.

The prototype illustrated in Figure 4 is used to collect raw
data from an application (example with HSIV application on
Figure 4). Raw data are extracted using a GNU debugger
(GDB): a GDB client runs on the controller and communicates
with a GDB server running on the target. An attack injection
tool, detailed in [30], is also used on the controller to inject
code mutation into the monitored application to emulate
malicious behavior. Three mutation code strategies are used
in order to emulate a corrupted behavior, by introducing ran-
dom instructions, replacing sets of instructions, or introducing
modifications based on attack patterns. Only one mutation
is performed in each experiment. The mutated code can be

Workload

Ethernet

[ —
Aftack GDB
Injection Client
Tool

9

Controller

Target

Figure 4: Raw Data Extraction from Application’s Execution

Table III: HIDS Solutions Detection Results

[ Solution [[ Score on HSIV [ Score on CrewB [[ Mean |
OCSVM_all 83.72% 78.18% 80.95%
A_all 27.91% 49.09% 38.50%
TA_all 91.63% 93.94% 92.78%
OCSVM_comms 90% 77.58% 83.79%
TA_comms 93.13% 92.73% 92.93%
OCSVM_API_freq 73.95% 53.33% 63.64%
OCSVM_seq_freq 100% 90.30% 95.15%

executed one time or multiple times, depending on its location
and its impact on the application.

The dataset collected for the HSIV application is composed
of 39 normal and 43 attack log files, with a duration of 5 to
200 seconds (100 to 4000 execution slots, 4000 to 689000
logs). The dataset for the CrewB application is composed of
30 normal and 34 attack log files, captured during 10 to 30
seconds (200 to 600 execution slots, 64000 to 215000 logs).
The environment is reset at the end of each execution in order
to prevent any side effect between two consecutive executions.

B. Detection Results

Table III reports the detection scores obtained with the
different HIDS solutions using the raw data log files collected
from the HSIV and CrewB applications. For both applications,
five different training files, with different duration, have been
used. For each training file, many experiments have been
executed in order to optimize the score (between 4 and 36000
experiments, depending on the HIDS solution evaluated). In
each experiment, a different set of parameters is applied
(e.g. the length of the sequence, the OCSVM parameters,
the margins, the testing boundary). The sequence length is
the only parameter of the AS_all solution (leading to 4
experiments only), while many combination of parameters are
applicable for the OCSVM-related solutions (leading to 36000
experiments). The resulting score is the mean of the best scores
obtained for each training file.

The “OCSVM_seq_freq” solution exhibits the best detection
results, especially on the HSIV application, for which a 100%
detection score is obtained, regardless of the training set used.
Timed Automata anomaly detection techniques ("TA_all” and
“TA_comms”) also give very good results, on both applica-
tions. Indeed, every normal file is detected as normal with a
high accurate detection of attack files.

The analysis of the experiments for a given sequence length
showed that the size of the sequence does not have a significant
impact on the results. As a consequence, the smallest size
can be used to reduce the resources needed to process the



Table IV: HSIV and CrewB Applications Characteristics

[ [ HSIV [ CrewB |
Number of API calls performed per execu- 83 173
tion slot
Number of communication-related API | 28 (33.7%) 143 (82.1%)
calls performed per execution slot
Number of different API calls 23 30
Number of different API calls sequences all(comms) all(comms)
sequence size = 2 31(9) 43(25)
sequence size = 3 42(13) 90(56)
sequence size = 4 52(17) 124(88)
sequence size = 5 62(21) 145(106)

data (memory and CPU), which is important in our specific
avionics context. The duration of the training phase has an
impact on the results for the CrewB application. Indeed, the
smallest training set (10 seconds) was too small to capture the
entire behavior of the application and gave the worst results.
Also, the tuning of the parameters was harder on the OCSVM-
based solution than for the others, and the evaluation process
was generally very time-consuming.

V. RESOURCES CONSUMPTION

The three HIDS solutions, “OCSVM_seq_freq”, “TA_all”
and “TA_comms”, exhibit similar results in terms of detection
accuracy and can be good candidates to be embedded in
an aircraft. Nevertheless, the resource consumption of each
solution must be assessed to ensure that it is consistent with
the limited resources available in an avionics context. For
that purpose, we have assessed the following performance
overhead of each solution: 1) Monitoring overhead (O1 & 02),
2) CPU consumption (O3), and 3) Size of the logs (O4).

These first analyses have been performed offline on a
classical desktop computer. The three selected solutions have
been implemented in python and run on an Intel® Core™
i7-6820HQ CPU @ 2.70 GHz x 8 computer with 16 GiB of
RAM. The resource consumption estimated are not necessarily
representative of a real embedded HIDS, but they allow a
preliminary comparison between the three selected solutions.
Table IV presents some characteristics of the HSIV and CrewB
applications, observed from the datasets. These characteristics
are used to estimate the real-time impact, CPU consumption,
or memory space of the HIDS. In order to be representative of
the final embedded implementation, the data formatting of the
“OCSVM_seq_freq” preprocessing is directly realized during
the monitoring. The remaining preprocessing tasks only are
considered to evaluate its CPU consumption.

A. Monitoring overhead

The estimation of the monitoring overhead is based on the
complexity of the operations performed by the OS each time
an API call is made. It is estimated as follows:

o TA_all: For each API call, the corresponding ID and the

current timestamp are logged (2 operations * Number of
API calls)

e TA_comms: For each communication API call, the cor-

responding ID and the current timestamp are logged

Table V: Average CPU consumption per execution slot

[ Solution [[ HSIV [ CrewB |
TA_all 83 us 182 s
TA_comms 32 us 138 us
OCSVM_seq_freq 76 us 77 us

(2 operations * Number of communication-related API
calls)

e OCSVM_seq_freq: For each API call, the current se-
quence and its duration are computed and the correspond-
ing counter, the min, max and mean duration are updated
(around 10 operations * Number of API calls)

Obviously, the “OCSVM_seq_freq” solution suffers from a
higher overhead than the “TA_all” and “TA_comms” solutions.

B. CPU consumption

The CPU consumption corresponds to the duration of the
data preprocessing phase and the detection phase for one
execution slot. For each API call, the data preprocessing
and detection phases for “TA_all” and “TA_comms solutions”
consist in 1) computing the current sequence and duration and
2) checking if it is included in the automata model. For the
“OCSVM_seq_freq”, the data preprocessing phase consists in
scaling the feature vector and the detection phase consists in
executing the OCSVM classifier. Using the traces generated
from 500 execution slots, a mean duration per execution
slot for each solution were computed. These measures are
summarized in Table V.

For the HSIV application, “TA_comms” is the most CPU-
efficient solution, while “TA_all” and “OCSVM_seq_freq”
presents similar results. The “OCSVM_seq_freq” becomes
better than “TA_all” and “TA_comms” for the CrewB ap-
plication which performs more API calls. Let us note that
this “OCSVM_seq_freq” solution exhibits a constant CPU
consumption for preprocessing and detection phase regardless
of the number of API calls considered and that this solution
becomes the most interesting for applications making many
API calls.

C. Size of the logs
The size of the logs has been estimated as follows:

e TA all : 5 bytes (1 for the API call ID, 4 for the
timestamp) for each API call performed
o TA_comms : 5 bytes (1 for the API call ID, 4 for the
timestamp) for each communication API call
e OCSVM_seq_freq : 4 bytes for the counter plus 3*4
bytes for the min, max and mean duration, per number
of different API call sequences (see Table IV)
Figure 5 shows the estimated size in bytes of the generated
logs for HSIV and CrewB applications, according to the
number of API calls executed. The gray vertical lines show
the number of API calls actually performed by the application
(HSIV or CrewB) during the experiment.
For the HSIV application, the “TA_comms” solution ex-
hibits the best solution in terms of log size, while the “TA_all”
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Figure 5: Estimated Log Frame size per API call

and “OCSVM_seq_freq” have similar log sizes if we consider
the actual number of API calls performed by this application.
Concerning the CrewB application, the three solutions are
similar. However, the fact that the log size associated to
the “OCSVM_seq_freq” model is bounded makes it a better
solution for more complex applications.

D. Conclusion

The evaluation of the monitoring overhead shows that the
“TA_comms” solution provides very good results for the two
applications studied. Regarding the CPU consumption and the
size of the logs, the “TA_comms” and “OCSVM_seq_freq”
provide similar results. The “OCSVM_seq_freq” may prob-
ably be a better solution for more complex applications
performing many API calls during each execution slot, due to
the fact that this solution uses a fixed-size log at each execution
slot, allowing for a controlled detection time and memory
consumption. However, a Timed Automata seems easier to
interpret than an OCSVM model (objective O5), and more
particularly, the “TA_comms” solution exhibits the smallest
impact on the application under monitoring (objective O1).

In the next section, we describe the implementation of the
“TA_comms” solution on a real avionic platform, as well as
some performance evaluation results.

VI. EMBEDDED HIDS IMPLEMENTATION

The embedded prototype is based on an IMA architecture.
The HIDS is implemented within a dedicated avionic partition.
This choice allows to limit the impact on the other partitions
to the monitoring overhead thanks to the IMA architecture
properties (objective O1). Also, the HIDS can be easily inte-
grated into existing legacy aircraft architectures with minimal
evolution required (objective 02).

The monitored application is an advanced version of the
CrewB application and has slightly different features from the
previous version. The following section presents the approach
to performing real-time detection (Section VI-A), the differ-
ent components of the embedded HIDS prototype developed
(Section VI-B), and the evaluation of its performance (Sec-
tion VI-C).
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Figure 7: Architecture of the Embedded Prototype

A. Real-time Execution

The processor used in this prototype is a T2081 1.8 GHz.
Its use is restricted to a single core, and a static configuration
determines the CPU resources allocated to each partition.
Each partition is statically scheduled inside a 50 ms execution
slot. The monitored application (CrewB) is composed of one
partition which runs during 6.7 ms at each period, and the
HIDS partition runs during 3.8 ms.

Figure 6 illustrates the real-time execution configuration of
the prototype. During the execution slot of CrewB, the RTOS
intercepts each API call performed by the CrewB partition
and logs the corresponding ID and timestamp in a dedicated
memory area within the HIDS partition. Other partitions may
be executed between CrewB and HIDS execution slots (for
example, “P2” in Figure 6). When the HIDS partition is
executed, it preprocesses the logs gathered from the CrewB
partition (to aggregate the API call IDs in sequences and to
compute the duration of each sequence), executes the anomaly
detection algorithm, and sends an alert if necessary. The logs
are flushed at the end of the HIDS execution slot.

B. Architecture

The embedded architecture is presented Figure 7. The “SDA
Monitor” component, introduced inside the RTOS, intercepts
each API call performed by the CrewB application and writes
a log in a dedicated memory area of the HIDS partition called
“Log Frame”. Three components are implemented inside the
HIDS partition: the “Data Preprocessing”, the “Anomaly De-
tection”, and the “Attack Confirmation”. If an alert is raised
by the “Attack Confirmation” component, a message is sent
on the network (ARINC 664p7).

1) SDA Monitor: The SDA Monitor is an additional assem-
bly code inserted inside the CrewB application. It is introduced
at the start of the module using a GDB script. This solution is
easier to implement than a direct modification of the RTOS,
while remaining representative of the overhead introduced by
the addition of monitoring. In a final implementation, the
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Figure 8: Timed Automata Implementation

monitoring should be done directly by the RTOS. The total
size of the instrumentation code is 140 bytes (35 instructions,
each instruction is 32-bits long).

2) Data Preprocessing & Anomaly Detection: The HIDS
partition performs the preprocessing and anomaly detection on
each log within the Log Frame. The Timed Automata model
implementation is illustrated in Figure 8. The preprocessing
consists in retrieving the input_index (from the ID of the log
and the ID_Table of the model), the output ID (from the ID
of the next log), and the duration of the current sequence
(from the timestamps of the current log and next log). The
anomaly detection consists in checking if the model contains
a particular (input_index, output_ID, duration) triplet. This
is done by 1) searching if the node [input_index,output _ID]
exists, and 2) searching if one of the intervals of this node
contains duration, as illustrated in the following code:

logl = (42,100)

log2 = (43,200)

# input_index=0, output_ID=43, duration=100
(input_index, output_ID, duration) =

— preprocessing(logl, log2)

# An ly Detection

# 1. Does a node [42->43] exist ?

current_node =
< search(list_nodes[input_index], output_ID)
if current_node==NULL:
raise_anomaly (log2.timestamp)
else:
# 2. Is 100
current_interval =
< search(current_node.intervals, duration)
if current_interval==NULL:
raise_anomaly (log2.timestamp)

within the interval of node [42->43]7?

3) Attack Confirmation: Each anomaly timestamp is stored
in a fixed-size buffer. The size of the buffer corresponds to the
tolerated number of anomalies raised during 0.5 s. A buffer
size of 20 means that a normal execution should not raise
more than 20 anomalies during 0.5 s. A structure manages
this buffer through the indexes of the first and last anomalies
stored. If the buffer is full, an alert message is sent via a
SAMPLING_PORT API 653 service with the timestamp of
the last anomaly. At the end of the HIDS execution, the buffer
is updated to remove obsolete anomalies.

C. Performances Evaluation

The monitoring overhead and the detection duration were
evaluated for this embedded prototype. To obtain the monitor-
ing overhead, two breakpoints are placed at the entry point and
at the final instruction of the syscall library and log the value
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Figure 9: Duration of API calls, w/ and w/o instrumentation

of the TBL register. The TBL register contains the value of a
32-bits timestamp based on the frequency of an internal bus
(1 tick = 1/37500 ms). Two sets of logs have been captured:
one without instrumentation, and one with instrumentation.
The corresponding distribution of the duration is shown by
Figure 9. An additional overhead is added to the communi-
cation services (ID 42, 43, 47, 48 and 50), but remains very
low. The median variation is 5 ticks = 135 ns = 2.7%. There
is no significant impact on the other services.

Regarding the HIDS execution time, the same principle is
used (two breakpoints giving the starting and ending times-
tamp). For an average of 140 API calls performed at each
execution slot (indeed, this is a new version of the CrewB
application and its behavior is slightly different), the mean
execution duration of the HIDS is 524 ticks = 0.014 ms. This
means that the HIDS is able to process the API calls carried
out by the application during its execution slot (6.7 ms) in
only 0.014 ms (0.21%).

However, in the worst case theoretical scenario, an appli-
cation could loop on the same API call (i.e., waiting for
an answer to a request). In this case, we consider that the
minimum duration between two API calls is 50 ticks (as
observed in Figure 9). The maximum number of logs would
be 5025, and the estimated time to compute these 5025 logs
would be 5025 x 524/140 = 18.864 ticks = 0.50 ms (7.5%).
This result remains acceptable, but must still be validated by
a dedicated experiment.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the design and the implementa-
tion of an HIDS aiming at detecting malicious applications
embedded into an aircraft. Six context-specific objectives
have been defined in order to develop such HIDS. These
objectives are related to the impact of the HIDS on the
execution environment (other applications, legacy aircraft), the
use of resources (CPU consumption, memory footprint), the
exploitation of results, and the possibility of setting up the
HIDS for “black-box” applications. The proposed approach
consists in building a model of the legitimate behavior of
the application monitored, during the integration phase, and



detecting deviations from this behavior, during the operation
phase. The model of the legitimate behavior is learned from
the sequence of ARINC 653 API calls performed by the
application as well as their duration, by using either automata,
timed automata or OCSVM classifier.

Some factors may limit the scope of our results. Even
if the experimented applications have a simple and periodic
behavior, similar applications are actually embedded in the
aircraft (for example, to collect information from the aircraft
sensors and provide them to other applications). Also, we
experimented with a small number of attack performed for
both applications, too few to provide a satisfactory detection
analysis per attack class.

However, the use of a Timed Automata to model the
communication-related API calls showed very good detection
results and interesting properties to be embedded in the given
context. This solution has been implemented inside an avionic
computer to be evaluated on a real dedicated hardware. The
experimental result show that the HIDS can perform the real-
time detection (0.014 ms to process the logs generated by an
application with an allocated execution slot of 6.7 ms) while
introducing a very small monitoring overhead at each API call
performed by the application (2.7%).

In further work, we plan to verify if this HIDS is able
to monitor multiple applications. It would be interesting to
analyze to what extent such an HIDS could perform efficiently
and to identify its limitations (for example, the number of
applications that can be monitored simultaneously). We also
plan to go further in the definition of the approach by analyzing
the interesting data to provide when an alert is raised, such
as registers value or stack values, in order to help a security
analyst to perform a diagnosis.
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