
HAL Id: hal-03094215
https://laas.hal.science/hal-03094215v1

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-board Diagnosis: A First Step from Detection to
Prevention of Intrusions on Avionics Applications

Aliénor Damien, Pierre-François Gimenez, Nathalie Feyt, Vincent Nicomette,
Mohamed Kaâniche, Eric Alata

To cite this version:
Aliénor Damien, Pierre-François Gimenez, Nathalie Feyt, Vincent Nicomette, Mohamed Kaâniche,
et al.. On-board Diagnosis: A First Step from Detection to Prevention of Intrusions on Avionics
Applications. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE),
Oct 2020, Coimbra, Portugal. pp.358-368, �10.1109/ISSRE5003.2020.00041�. �hal-03094215�

https://laas.hal.science/hal-03094215v1
https://hal.archives-ouvertes.fr

On-board Diagnosis: A First Step from Detection to
Prevention of Intrusions on Avionics Applications

Aliénor Damien∗, Pierre-François Gimenez†, Nathalie Feyt∗, Vincent Nicomette†, Mohamed Kaâniche†, Eric Alata†
∗Thales AVS, Toulouse, FRANCE, Email: {firstname}.{lastname}@fr.thalesgroup.com
†LAAS-CNRS, Université de Toulouse, CNRS, Email: {firstname}.{lastname}@laas.fr

Abstract—Nowadays, air travel is one of the safest trans-
portation means. While safety is historically well integrated into
avionics systems, it is becoming increasingly important to take
into account the security of such systems for the future. In
particular, Host-based Intrusion Detection Systems (HIDS) are
commonly used in traditional information systems to improve
their security. The adaptation of such systems for deployment
inside an aircraft has been studied in another work and has
shown to be effective in detecting anomalous behavior in an
avionic application. However, the detection itself is not sufficient
to provide an on-board reaction, and to prevent such intrusion.
This paper proposes to improve such HIDS by introducing a
signature-based system capable of providing a first diagnosis after
the detection of an anomalous behavior. The proposed diagnosis
approach is based on the definition of the signature of an alert,
and its comparison with a knowledge database that is regularly
updated throughout aircraft lifetime. This approach has been
implemented on a real avionic computer and yielded good results
in terms of classification accuracy and resources consumption.

Index Terms—Intrusion Detection System, Security, Avionics,
Embedded, Real-Time

I. INTRODUCTION

Major advances have been achieved over the last few
decades to ensure aircraft passengers safety. Traditionally, air-
craft systems design has mainly focused on taking into account
failures and threats that have accidental causes. However,
more recently, attention has been also focused on providing
protection against potential malicious threats. In particular,
to meet the growing need for connectivity and improve the
passenger experience, aircraft systems are constantly evolving
and integrating more and more connected services and devices.
From a security point of view, this trend is leading to a larger
attack surface. With the continued increase of threats targeting
embedded systems, the potential malicious alteration of an
aircraft application must be seriously considered for future
systems. Among the various solutions to address such threats,
Host-based Intrusion Detection Systems (HIDS) are widely
used in information systems security.

However, traditional HIDS need to be adapted to the specific
constraints and stringent requirements of embedded avionic
computer systems and applications, in particular in the context
of Integrated Modular Avionics (IMA) architectures. An IMA
system is organized as a network of computing modules, each
supporting several applications, possibly with mixed criticality
levels. Space and time segregation mechanisms are used to run
mixed-criticality software on the same module in compliance

with the ARINC 653 standard. Each application is composed
of one or more partitions. Each partition is statically and
periodically assigned an execution slot, as well as memory
resources protected by the underlying operating system.

In [1], the authors described the design and the implementa-
tion of a HIDS adapted to such embedded real-time and critical
context, taking into account the following objectives: O1
Preserving the real-time execution of the other functions, O2
Proposing limited evolution for legacy aircraft, O3 Performing
real-time detection, O4 Having a small memory footprint,
O5 Providing reliable and explainable results and O6 Being
efficient even on “black-box” applications.

The proposed HIDS implements an anomaly-based ap-
proach adapted to the IMA context and fulfilling the above
objectives, based on the monitoring of ARINC 653 API calls.
During aircraft integration phase, a model of the legitimate be-
havior of an avionic application is built based on data collected
by monitoring specific features related to the application itself
or to its environment. During the operational phase, alerts are
raised when the behavior of the application exhibits significant
deviations from this model. The implementation of such HIDS
on a real avionic computer showed the relevance of such
approach, and exhibited very good results in terms of detection
efficiency and resource usage. However, this first version of the
HIDS was designed to only detect anomalous behavior, with-
out providing diagnosis about the alert raised. Such capability
is an integral part of the overall HIDS approach proposed, but
was not explored in the first implementation.

This paper explores how to provide a first diagnosis of
the anomalous behavior detected, directly on-board. Such
functionality is a first step towards a future automatic reaction
on-board, and potential capability to block the attacks (and
not only to detect them). In this case, the ability to provide
reliable and explainable results is extremely important.

The diagnosis approach, proposed and implemented in this
paper, relies on concepts similar to signature-based HIDS.
A knowledge database is implemented onboard the aircraft
to provide a diagnosis based on already-known anomalous
behaviors (including attacks, safety-related failures, and even
known false alerts). The main advantage of using a database is
the ability to update it on a regular basis, so that the diagnosis
of anomalies detected by the HIDS is as accurate as possible. It
should be noted that in the avionics context, the most frequent
update of a database is every 28 days, while the update of an

application code is extremely rare (in fact, avionic applications
are not designed to be updated during the aircraft life cycle).

The anomaly-based detection approach implemented in the
HIDS is based on the application code and should not be
updated as it represents the normal behavior of the application,
which is not expected to change over time, except in the
unlikely event of an update of the application itself. Building
a model of normal behavior is also much more complex than
adding a known attack to a knowledge database. In other
words, the detection capability of the HIDS cannot be im-
proved on a regular basis because the applications embedded
onboard are very seldom updated. On the other hand, the
diagnosis capability can be regularly improved because the
knowledge database can be regularly upgraded.

The first contribution of this paper is the description of the
overall diagnosis process designed for the HIDS of [1]. The
second contribution is the description of an implementation of
this process, and in particular the representation of an alert
within the knowledge database, its construction on-ground
and its exploitation on-board. The third contribution is the
description of an on-board implementation of the complete
detection approach of [2], including anomaly detection and
on-board diagnosis activities, as well as the performance
evaluations performed on this realistic implementation.

Section II summarizes the overall HIDS approach and our
main contributions. Section III discusses related work. The
diagnosis process is presented in Section IV, with a specific
focus on our implementation choices for two important steps
of this process in Sections V and VI. An experimental setup of
this approach is described in Section VII, while Section VIII
describes experiments carried out on a real avionics computer
integrating the complete HIDS (including detection and diag-
nosis), with associated performance evaluations. Section IX
concludes and discusses future work.

II. GENERAL HIDS APPROACH

The anomaly-based detection approach proposed in [2]
is structured into two phases corresponding respectively to
aircraft systems integration and operation phases. Figure 1
shows 1) the activities carried out during the integration phase,
aimed at building a model of the legitimate behavior of
the application; and 2) the activities performed during the
operation phase to detect and characterize anomalies (i.e.,
behaviors that deviate significantly from the model built in the
integration phase). The activities carried out on the ground are
highlighted in green and those on-board in blue.

The Static Security Analysis aims to detect a corrupted
or malicious binary received from an application supplier to
be integrated. This analysis can be performed using existing
anti-malware techniques to check the conformity between
the binary and its documentation. The SDA Modeling and
SDA Validation blocks are intended to build a model of the
legitimate behavior of the application, referred to as “Security
Domain of the Application” or SDA. The Anomaly Detec-
tion block performs real-time anomaly detection on-board
the aircraft, identifying deviations from the SDA, and sends

Fig. 1: Integration and Operation Phases

the anomalies to the Attack Confirmation block for further
analysis. If this block is unable to indicate whether or not the
anomalies correspond to an attack, they are sent to the ground
for further investigation (On-Ground Investigation block).

This paper focuses on the design and implementation of the
Attack Confirmation and On-Ground Investigation blocks.
An alert is raised and the attack confirmation block is activated
only when the number of anomalies detected during a given
period exceeds a predefined threshold. Indeed, the role of the
Attack Confirmation is to characterize these anomalies and
check whether the characteristics correspond to a known event
or not, recorded into a knowledge database. Note that this
knowledge database records both attack patterns (just like in
an antivirus database) and potential rare events that may be
legitimate (like safety failures or false alerts).

The Attack Confirmation first computes these characteristics
to associate a signature to a group of anomalies, which is
then compared with signature patterns already recorded in the
onboard knowledge database. As a result, the overall HIDS
approach we propose is a mix of an anomaly-based detection
system (Anomaly Detection activity) and a signature-based
diagnosis system (Attack Confirmation activity).

The work described in [1] mainly focused on the definition
of the SDA used for the anomaly-based detection system
based on system calls analysis. This anomaly-based system
was specifically designed to generate very few false alarms.
Thus, the main objective of the Attack Confirmation is to
provide on-board diagnosis about the alerts raised by the
Anomaly Detection component of the HIDS. This diagnosis
is supported by the On-Ground Investigation when the
symptoms recorded do not match the information recorded
in the database. As some very rare legitimate behaviors may
have been missed during the definition of the SDA during the
integration phase, the second objective of the diagnosis is then
to identify these rare behaviors as benign or legitimate.

III. RELATED WORK

As stated in Section II, the detection system explored in
our work is based on system calls analysis. Seminal work on
anomaly-based intrusion detection analysis based on system
calls has been published by [3] ; more recent works include
e.g., [4] and [5]. In the following, we focus on misuse-based
intrusion diagnosis, as it is the scope of this paper. We first

2

present related work on feature extraction and then on machine
learning techniques for attack classification.

Feature extraction for host-based intrusion detection system
using system calls has been mainly studied in the context
of malware detection. The method proposed in [5] has been
adapted to signature-based IDS, e.g., in [6] and [7] which
use the most frequent n-gram system calls patterns to build
a signature pattern of an attack. Some techniques based on
the frequency of system calls have also been explored [8]. [9]
extracts features with principal component analysis (PCA).

Various machine learning methods have also been used to
perform attack classification. A recent survey [10] lists mul-
tiple classification models, such as k-nearest neighbours (k-
nn), decision tree, support-vector machine (SVM) and artificial
neural network (ANN) classifiers. Clustering techniques used
on system calls have also been explored, e.g. [11].

However, not all these methods are compatible with the
requirements presented in Section I. As per O5, the detection
must be explainable: this excludes for the moment the use of
some models, notably SVM, ANN and, among other ensemble
learning techniques, random forests [12]. Note that, due to
the recent interest of the scientific community in this matter,
the interpretability of these models could be enhanced in the
future. On the other hand, decision trees are straightforward
to interpret, k-nn is explainable as it is based on a handful
of similar observations and the log-likelihood computed by
a naive Bayes classifier is a weighted sum of distances for
each feature. The detection must also have a limited time and
memory footprint (O3 and O4); this disqualifies ANN that are
generally computationally expensive. On the other hand, deci-
sion tree and naive Bayes classifier have a particularly reduced
time and memory footprint. Furthermore, an important feature
that is mandatory for these critical systems and is implicit in
requirement O5 is the possibility for the detection system to
reject the classification and assign an “unknown” label to the
data. This feature, called “reject option”, is not embedded in
all models. It can be easily added to probabilistic models such
as the naive Bayes classifier. It can also be integrated in SVM
[13], ANN [14] and k-nn [15]. Ad-hoc reject option can be
added to decision trees [16] using Gaussian mixture model.

Model
Ex-

plain-
able

Reject
option

Time and
memory
footprint

Classi-
fication
effec-

tiveness
ANN No None High Excellent
SVM No Embedded Medium Very good

Random forest No None Medium Very good
Decision tree Yes Ad-hoc Low Good
Naive Bayes Yes Embedded Low Good

k-nn Yes Embedded Medium Good

TABLE I: How well the models match with the requirements

A summary of the requirements fulfilled by each model is
presented in Table I. The most suitable models in our context
are the decision tree, the naive Bayes classifier and k-nn. In the
following we make the choice to use the naive Bayes classifier
as it fulfills all the requirements (explainable classification,

reject possibility, very reduced time and memory footprint)
and generally yields good classification results.

IV. DIAGNOSIS APPROACH

The overall diagnosis approach proposed in this paper is
described by Figure 2. The Attack Confirmation is intended
to provide an on-board diagnosis (deciding whether an alert
corresponds to a real attack, a safety-related event or a false
alert), while the On-Ground Investigation aims to analyze
unrecognized alerts on the ground, in order to update further
the knowledge database used for Attack Confirmation.

The Attack Confirmation activity is based on three com-
ponents. First, Signature Extraction consists in computing
some characteristics about the alert raised by the Anomaly
Detection activity, in order to create a signature. This signature
is then compared with entries of an onboard knowledge
database (Knowledge Database Search). This knowledge
database contains a list of signature’s patterns, each pattern
being associated to a label. Each signature pattern is intended
to represent all known signatures for a specific attack, a safety
event or a false alert. The last component (Alert Message
Sending) selects the information to be recorded depending on
the label of the current alert and the raw alert data, and builds
an alert message based on this information. The reaction to
such alert messages is out of the scope of this paper and is
represented by the On-Board Security Alert Management
activity. In practice, this could consist e.g., in i) storing the
message for further analyses or to correlate the alert with other
information monitored by the system, ii) applying an automatic
reaction, or iii) suggesting recovery procedures to the crew.
Finally, the alerts that are not recognized in the knowledge
database (labeled as unknown) are sent to the ground for
further investigation (On-Ground Investigation).

A. Signature extraction

Different types of data may be used in order to define the
signature of an alert. In avionics, the characteristics defined in
the signature must be sufficient to differentiate three cases: 1)
the alert corresponds to a real attack, 2) the alert corresponds
to a safety-related event, and 3) the alert corresponds to a
false alert. A real attack should be characterized by a real
impact on the application, for example on its execution flow, its
configuration, its permissions, or its registers usage. A safety-
related event also causes a specific impact on the application’s
behavior. However, this impact should correspond to a known
event, be handled by a safety monitor and raise a safety
alert. Finally, no significant impact should be observed for
a false alert and the application state should be normal. As a
consequence, these three cases can be differentiated by means
of: 1) the correlation of the security alert with a safety alert;
this correlation process is deported directly to the On-board
Security Alert Management activity, as this correlation might
be done at the avionics suite level; 2) the state of the applica-
tion’s environment; it may be represented through contextual
data or some execution data like the return address stored
in the stack, to detect a misuse of the application’s code for

3

Fig. 2: Diagnosis approach

example, and 3) the characterization of the deviations between
the observed and the normal behavior; it may be assessed
through the distance between the anomalies raised and the
model, the variability of such anomalies, or their occurrence
time. More detailed information and concrete examples of
these characteristics are provided in Section V, focusing on
the implementation of this important step of our approach.

B. Knowledge database search

Once the signature of the alert is computed, it is compared
to the entries in the knowledge database (constructed during
the on-ground investigation, see Section IV-D). These entries
might correspond to real attacks (just like in an anti-virus
database), a safety event, or a false alert. Each entry is
composed of a label and a signature pattern. For each entry, the
signature pattern aims at representing all known signatures for
a specific attack or safety event or false alert. Each signature
provided by the signature extraction step is compared to all
the signature patterns of the knowledge database (by means
of a distance metric) in order to identify if the signature is
sufficiently close to one of these patterns (expressed by a log-
likelihood score). If no entry matches the signature then the
signature is assigned the label unknown. If multiple entries
correspond to the signature, the most likely label is associated
to the signature, based on the log-likelihood score. Informa-
tion on this log-likelihood score and the algorithm used to
efficiently search the database is provided in Section VI.

C. Alert message elaboration and sending

Once a label has been associated to the signature of the alert,
the last step of the Attack Confirmation consists in building
the alert message and sending it to the On-Board Security
Alert Management entity. This message can be constructed
differently depending on the label associated to the alert. If the
label is known, the message can be composed of the label and
the signature only, in order to minimize the memory usage. On
the contrary, if the label is unknown, it is important to provide
more information to help the On-Ground Investigation. For
example, the message could be composed of the raw data
composing the alert (so-called raw alert data in Figure 2)
and additional contextual data.

In practice, the message could be composed of the label
only, and additional data could be stored directly in non-
volatile memory by the HIDS (for example, the raw alert data,
the signature, or the log-likelihood score).

D. On-Ground investigation

The activities performed on the ground are represented
by Figure 3. The alerts received from an aircraft fleet, and
associated data, are aggregated on the ground for further inves-
tigation in order to update the knowledge database. Unknown
alerts are investigated by an expert using associated alert data
and the binary of the application incriminated, in order to
attach a label to it. In case of an attack, the malicious code is
stored in a dedicated database. The signature and associated
label are then stored in an alert signatures database. This
signature database can also be populated using 1) known alerts
raised by the aircraft fleet, and 2) alerts generated on ground
using the malicious code database.

Fig. 3: Knowledge database construction

The alert signatures are generalized into a signature pattern,
in order to construct the on-ground knowledge database. The
alert signatures database contains many examples of signature
for a same label. On the contrary, a signature pattern in the on-
ground knowledge database identifies a set of signatures with
similar characteristics, to which a specific label is associated.
Finally, the on-ground knowledge database is used to update
the knowledge database embedded inside each aircraft.

The following sections V and VI describe the implementa-
tion choices we made for the two main steps of our diagnosis
approach investigated in this paper: the signature extraction
and the knowledge database search.

V. SIGNATURE EXTRACTION

Taking into account the requirements outlined in section
IV.4 for signature extraction, we have selected 18 characteris-
tics listed in Table II to implement the signature of an alert.

4

TABLE II: Characteristics used as alert’s signature

Name Description
disttotal Sum of distances between anomalies and SDA model
distmin Min distance between anomalies and SDA model
distmax Max distance between anomalies and SDA model
nbclose # of anomalies close to SDA model (distance less than specific

threshold, fixed to 20 clock ticks)
nbunknown # of anomalies due to unknown sequence
nbra,i # of different return addresses (ra) of level i, i ∈ {1, 2, 3, 4}
nbra global # of unique return addresses
nbconsec Max # of consecutive anomalies
nbslot Max # of anomalies in one execution slot
nbgroups # of different abnormal sequences
nbi Occurrences of communication-related API call n°i,

i ∈ {1, 2, 3, 4, 5}

disttotal, distmin, distmax, nbclose, and nbunknown measure
the distance between the anomalies and the SDA model.
nbclose represents the number of anomalies that are considered
close to the SDA model, by means of a distance that is
computed using a predefined threshold. nbunknown reports
the number of anomalies with a distance of −1, represent-
ing abnormal sequences. Characteristics nbra,i, nbra global,
nbgroups, nbi represent relationships between the anomalies,
either regarding the location of the malicious code repre-
sented by the number of the different return addresses of
level i (nbra,i) and the number of unique return addresses
(nbra global), or the variability of the anomalies represented
by the number of different abnormal sequences (nbgroups)
and the number of occurrences of API call i (nbi). Finally,
the chronology of anomaly occurrences is captured through
the maximum number of consecutive anomalies observed
(nbconsec) and the maximum number of anomalies raised
during the same execution slot (nbslot). These characteristics
are computed using the raw data attached to each alert. The
relevance of these 18 characteristics is further investigated in
Section VIII, in which some experiments are carried out.

VI. KNOWLEDGE DATABASE SEARCH

The knowledge database construction consists in generaliz-
ing the signatures with a same label inside a same signature
pattern. During the knowledge database search, a new sig-
nature is compared to all signature patterns of the database
to identify whether it is sufficiently close to the patterns or
not, based on its log-likelihood score. If all log-likelihood
scores are below a threshold (that may be different for each
pattern) then the unknown label is returned. Otherwise, the
label corresponding to the signature pattern that maximizes
the log-likelihood is returned.

In this implementation, we use the Naive Bayes classifier
to perform the knowledge database searching, as explained in
Section III. To compute the log-likelihood score between a
signature and a pattern, the Naive Bayes classifier computes
the probability for a signature to match the pattern. This
probability is based on the mean and standard deviation of
each feature observed from the learning data.

A naive Bayes classifier can be expressed as a simple
Bayesian network with the following structure:

Attack

disttotal

P (disttotal | Attack)

distmin
. . . nb5

P (nb5 | Attack)

The node labelled “Attack” is the parent of the other nodes,
each one corresponding to a characteristic, with he probability
distribution in case of an attack.

As a consequence, a signature pattern p is composed of
the mean and standard deviation for each characteristic c
(respectively µp,c and σp,c) and a minimal log-likelihood
score to reach (min scorep). A minimum value of 10−4

is also defined for the standard deviation. The mean and
standard deviation for each feature are computed from a set
of training signature examples of the same label. Then, the
Naive Bayes log-likelihood is computed on each example, and
the min scorep is defined as the value of the 10th percentile
observed from the distribution of these log-likelihoods.

This process is applied to each group of signatures with
the same label, in order to obtain one signature pattern for
each label inside the knowledge database. In practice, it could
be interesting to provide multiple signature patterns for one
label, for example if the overall behavior of anomalies is
very different from an attack version to another. In this case,
a first unsupervised classification may be performed on the
signature examples with a same label to automatically define
such multiple signature patterns. This has been implemented
using a k-means clustering algorithm, with the number of
clusters manually specified for each label.

Finally, the knowledge database search consists in com-
puting the log-likelihood score between the new signature
x and each signature pattern p in the knowledge database.
Assuming that all features follow a normal distribution, the
score (denoted LL) is computed as follows:

LL(p | x) = logP (x | p) = Ap +
∑
c

Bp,c(xc − µp,c)
2

c is a feature, xc its value for signature x, µp,c is the mean
of the distribution of c for the signature pattern p, σp,c is the
standard deviation of c for p, Ap = −

∑
c
1
2 log(2πσ

2
p,c) and

Bp,c = −1/(2σ2
p,c). Ap and Bp,c are constant and can be

pre-computed to speed up the on-board processing. Since the
log-likelihood is a weighted sum, it is easy to estimate the
contribution of each feature that leads to the classification.

In order to take into account the possibility of an un-
known label, we assign a default score min scorep to the
log-likelihood score, for each pattern. min scorep can be
interpreted as a confidence threshold: if no signature pattern
matches the anomaly with at least its own log-likelihood
min scorep, then we can’t conclude on the signature label.

5

VII. EXPERIMENTAL SETUP

The HIDS has been implemented with the diagnosis com-
ponent as shown by Figure 4. This experimental setup is
composed of three different hardware components: the target
(a real avionic computer), the controller (a computer used to
communicate with the target), and a prototyping station (a
computer used to test the diagnosis capacity). This section
describes this experimental setup, whose main objective is
to evaluate the accuracy of the diagnosis on the prototyping
station. The evaluation of the resource consumption overhead
is evaluated based on the embedded implementation of the
complete HIDS as described further in Section VIII-C.

A. Target description

Two main partitions run on the target, namely App HMI
and HIDS. App HMI is an aircraft application that displays
information about the flight (like the speed and the altitude).
The HIDS partition runs the Anomaly Detection and Attack
Confirmation activities. The target uses only one core, and
the execution of the partitions is scheduled periodically as
shown in Figure 5. Every 50ms, App HMI is executed during
6.7ms and the HIDS is executed during 3.6ms. On Figure 5,
P2 represents other partitions that are also scheduled.

1) SDA Monitor: At runtime, the ARINC 653 API calls
performed by App HMI are monitored by the SDA Monitor.
The SDA Monitor is implemented inside the RTOS by means
of 53 assembly instructions (212 bytes). It intercepts the
communication-related API calls performed by App HMI and
logs for each API call three types of information into a
dedicated memory area (Log Frame): its ID, a timestamp, and
four levels of return addresses (stored in the stack). The IDs
and timestamps are computed in order to detect an abnormal
behavior in the timed sequences of the calls performed by
App HMI (Anomaly Detection). The return addresses are
only used for Attack Confirmation. Indeed, this information
is useful to investigate the state of the application when an
anomaly is detected, by analyzing the successive functions
called before performing a particular API call.

2) Anomaly Detection: In this implementation, the SDA
model used to detect anomalies is a Timed Automata1 rep-
resenting the authorized sequences of communication-related
API calls and their expected duration. An anomaly is charac-
terized by an unknown sequence or an abnormal duration of
the sequence. In case of an abnormal duration, the distance be-
tween the closest expected duration and the observed duration
is computed. In case of an abnormal sequence, this distance
is set to −1. If too many anomalies are detected in a given
time frame, an alert is raised. This threshold is defined by the
SDA model and has been set to 10 for this implementation.

3) Attack Confirmation: This component associates a label
to the current alert by means of the following process: 1) all the
information of the Log Frame associated to the 10 anomalies
of the alert are used to compute the alert’s signature; 2) this

1the results obtained in [1] showed that this model presented excellent
performances in our context

signature is compared with the different signature patterns
already defined in the embedded knowledge database, in order
to identify the label for this current alert; and 3) the suited
message alert associated to this label is sent.

For our implementation, some off-line experiments were
first performed on the prototyping station in order to assess the
efficiency of the diagnosis algorithm, by estimating the most
relevant information to compose the signature and the most
relevant algorithm to compare this signature to the signature
patterns of the knowledge database. During these first experi-
ments (described in Sections VIII-A, VIII-B and VIII-C), the
prototype was only used to get realistic data to study. The
complete implementation of the Attack Confirmation was
performed in a second step in order to evaluate its resource
consumption in real conditions (see Section VIII-D).

B. Controller

The controller interacts with the target using a debugger.
A GDB2 server is instantiated on the target. It is directly
attached to the RTOS, so that a breakpoint preserves the real-
time execution of the target and its partitions.

1) Attack Injection Tool: This tool is used to perform
mutations inside the monitored application in order to emulate
a malicious modification of the application’s binary before
its loading inside the target. Because of the lack of real
examples of attack in avionics, this tool, detailed in [17], has
been developed in order to provide application’s anomalous
behavior examples that are representative of a potential attack.
In this paper, the attack injection tool is used to generate
attack examples by using specific parameters to represent
attacks with a real impact on App HMI. In practice, the
modifications are performed using GDB at the initialization
of the target. Four attacks have been implemented and are
described in Table III. Attack Modify NAME changes the
value of a displayed field. The other attacks target specific
functions F1, F2 and F3 that are regularly invoked inside the
application, and provoke either a modification of a displayed
field (Skip F1) or a denial of service on the display (Skip F2
and Skip F3). For each one, different versions have been
defined by varying the duration and frequency of the malicious
payload activation. For each attack, the attack was activated
either at the beginning of the application for a short duration,
or later with a longer duration. For Skip F1 and Skip F3
attacks, the attack was activated at each call of the function,
or at one call over two. This frequency of activation was more
explored with the Skip F2 attack, and vary from 1/1 to 1/10
of function calls skipped.

2) Collector: The collector is used firstly to collect the
anomalies provided by the Anomaly Detection when an alert
is raised. This raw data are stored inside a file on the controller,
which is then used on the prototyping station. To collect this
data, a breakpoint is set up inside the Attack Confirmation
code. When the breakpoint is hit, a debug script logs a
description of the current experiment (ID and version of the

2GNU Debugger: https://www.gnu.org/software/gdb/

6

Fig. 4: HIDS prototype implemented, including diagnosis activity

Fig. 5: Real-time execution scheduling on the target

TABLE III: Attacks defined to test the diagnosis approach

ID Name #versions Description
1 Modify NAME 3 Replace displayed field

value by “PWN”
2 Skip F1 5 Suppress calls to F1
3 Skip F2 7 Suppress calls to F2
4 Skip F3 4 Suppress calls to F3

attack injected) and the raw data of the anomalies that led to
the alert ([ID, timestamp, return address 1, return address 2,
return address 3, return address 4] of each API call composing
the abnormal timed sequence and the distance between the
abnormal timed sequence and the SDA model, for each of the
10 abnormal timed sequences registered). An example of the
raw data for each anomaly included in the alert is given below.

alert = {
Anomaly n°i
ai = {log1 = {ID = 5, timestamp = 416798378,

ra_1 = 0x10000000, ra_2 = 0x10001000,
ra_3 = 0x10002000, ra_4 = 0x10003000},

log2 = {...},
distance = 50}

Note that during one experiment, many alerts may be raised.
Secondly, the collector is used to evaluate the execution

time of the overall HIDS partition. Two breakpoints are set
up at the beginning and at the end of the HIDS partition and
are used to log the current target timestamp. The difference
between the two timestamps is used to evaluate the execution
duration of the HIDS partition.

C. Prototyping station

The prototyping station is used to evaluate the accuracy of
the Attack Confirmation in order to select the best solution
to implement on the target. Three components have been
developed: the signature extraction, the knowledge database
construction, and the knowledge database search (described in
Sections V and VI). At the end of this prototyping step, the
chosen solutions for the signature extraction and knowledge
database search are implemented on the target, while the
knowledge database construction is carried out on-ground.

VIII. EXPERIMENTATION

The prototype previously described has been used for mul-
tiple experiments. First, this section presents the dataset used
for these experiments. Then, the signature format proposed in
Section V is analyzed to validate select the most relevant char-
acteristics used for signature extraction. The next experiment
aims to evaluate the accuracy of the diagnosis approach on
the dataset (based on the algorithm presented in Section VI,
in the case of known and unknown alerts. Finally, this section
presents a full embedded implementation of the HIDS and an
evaluation of the associated resource consumption.

A. Dataset

The dataset is composed of 1208 raw alert data exam-
ples sent from the Anomaly Detection. Five classes are
represented through these examples, with the following dis-
tribution: 246 false alerts (artificially generated), 214 alerts
“Modify NAME” attack (ID n°1), 270 alerts “Skip F1” attack
(ID n°2), 219 alerts “Skip F2” attack (ID n°3), and, 259
alerts “Skip F3” attack (ID n°4). Due to the lack of safety
mechanisms implemented on the target used in the prototype
(target under development), our experiments did not include
examples with safety-related alerts. As a preprocessing step,
an alert’s signature is computed for each raw alert data of the
dataset. In the following, the term dataset refers to the set of
1208 signatures.

B. Characteristics selection

The first experiment evaluates the relevance of the char-
acteristics proposed to implement the signature of an alert.
This is done by 1) analyzing the dataset characteristics and
2) exploring several classification algorithms to check their
ability to separate the dataset into classes. The Weka tool [18]
has been used for these first experiments.

A Principal Components Analysis showed that five char-
acteristics have a very high correlation (between 0.89 and
0.98): nbra,2, nbra,3, nbra,4, nbra global, and nbgroups. This
correlation does not depend on the type of class considered
(real attack or false alert). Therefore, it may not be necessary
to consider all these characteristics for the signature.

An unsupervised learning algorithm was also applied to the
dataset to check its ability to separate the data correctly. The
k-means algorithm was used to separate the dataset into 5 clus-
ters (i.e. as many clusters as the number of different classes).

7

Using the 18 characteristics proposed for a signature, the algo-
rithm presented difficulties in differentiating attacks Skip F1
and Skip F3. This resulted in 82.53% of well-classified alert
examples. By removing the four characteristics correlated
with the nbgroups (i.e. nbra,2, nbra,3, nbra,4, nbra global), the
algorithm produced good results (95.36% of well-classified
examples). Accordingly, the proposed characteristics should
be sufficient to differentiate the 5 classes in the dataset.

A second classification algorithm was applied to the dataset
to validate the previous results and analyze the most important
characteristics of the signature. A decision tree (supervised
learning) has been learned to differentiate classes within the
dataset. Using a 10 fold cross-validation, the resulting decision
tree was able to correctly classify 95.94% of the examples.
Also, the resulting decision tree showed the importance of
distance-related characteristics (disttotal, distmin, distmax,
nbclose) and the API calls impacted (nbi, i ∈ {1, 2, 3, 4, 5}).
Indeed, the resulting decision tree is mainly based on these
characteristics to apply its classification.

To conclude, these experiments allowed us to validate the
relevance of the 18 characteristics proposed to implement
the signature of an alert, and to select the most important
ones. As a result, only 14 over the 18 characteristics are
used in the additional experiments presented later in this
paper (nbra,2, nbra,3, nbra,4, and nbra global are removed).
These characteristics are stored in a signature database with a
corresponding label, extracted from the description of the raw
data file (ID and version of the attack injected). A subset of
the signatures are used to build the knowledge database, and
the remaining signatures are then used to test its accuracy, as
described in the next Section. Also, these first experiments
show that it is difficult to obtain 100% of correctly-classified
examples using the proposed signature definition. The use
of additional contextual data in the signature could help to
improve the results. In practice, since multiple alerts are raised
during an attack, a lower accuracy may be sufficient to provide
relevant on-board diagnosis.

C. Diagnosis accuracy evaluation

The experiments presented in this section aim to evaluate
the effectiveness of the proposed diagnosis, before implement-
ing it inside the embedded HIDS. The knowledge database
is automatically constructed using the dataset presented in
Section VIII-A. The signature format consists of the 14 char-
acteristics selected after the dataset analysis (Section VIII-B).

Two experiments were conducted to assess the accuracy of
the knowledge database: 1) based on the number of examples
used to construct the database, and 2) in the case of an
unknown class.

Accuracy is assessed according to the process described in
Listing 1. First, the dataset is split into a training dataset and
a testing dataset with a given ratio (from 5/95% to 80/20%).
To consider a class as unknown, the corresponding examples
are removed from the training dataset (and not from the
testing dataset). The training dataset is then used to build
the knowledge database, while the testing dataset is used to

Load 1208 signatures examples
dataset = load("signatures.csv")
nb_clusters = {"False Alert":1, "Modify_NAME":2,

"Skip_F1":2, "Skip_F2":1, "Skip_F3":1}↪→

results = list()
for seed in range(20):

for ratio in range(0.05, 0.80, 0.01):
Split the dataset with a given ratio
train, test = split(dataset, ratio, seed)
Optional: remove classes from training set
train.remove(unknown_classes)
Knowledge database construction
kdb = build_kdb(train,nb_clusters)
Knowledge database search
score = search_kdb(test,kdb)
results.append(score)

Listing 1: Accuracy evaluation process

test the accuracy of the knowledge database search. The final
score is computed as the ratio of well-classified examples from
the testing dataset. The definition of a well-classified example
depends on the representation of the class in the training
dataset. If the class is represented in the training dataset, a
correctly-classified example for this class is an example that
is classified with the right label. If the class is not represented
in the training dataset, a correctly-classified example for this
class is an example that is classified with the label unknown.

The nb clusters variable, in Listing 1, defines the number
of signature patterns per class. In this experiment, the analysis
of the examples from the classes Modify NAME and Skip F1
showed two different behaviors depending on the version im-
plemented (regarding respectively the moment of the attack’s
activation, and its frequency). This leads to the use of two
signature patterns for each of these two attacks, represented
through the value of the nb cluster variable.

This experiment was run 20 times with different ratios
between the training and testing dataset (represented by the
loop over the seed variable). The results are presented in
Figure 6, according to the classes represented in the training
dataset. In sub-figure 6a, the 5 different classes are represented
in the training dataset. For the remaining 5 sub-figures, one
among the five classes is missing in the training dataset. For
example, in sub-figure 6b, the False Alert class is considered
to be correctly-classified if the label attached to it is unknown.

For the six experiments, the accuracy looks asymptotic
regarding the number of signature examples used to build the
knowledge database. When at least 70 examples of each class
are used to build the knowledge database, the accuracy remains
stable, with a similar value between 87% and 90% for each
experiment. This number of examples can be reached quickly
considering that multiple alerts are raised during an attack.
Note that, if necessary, some signatures can also be artificially
generated on the ground using the malicious code database,
as mentioned in Section IV-D.

In figure 6a, the accuracy reaches 87% when at least 70
examples of each class are used to build the knowledge
database. It may be explained by the introduction of the

8

(a) All classes represented in training dataset (b) No ”False Alert” in training dataset (c) No ”Modify NAME” in training dataset

(d) No ”Skip F1” in training dataset (e) No ”Skip F2” in training dataset (f) No ”Skip F3” in training dataset

Fig. 6: Results, depending on the classes represented in the training dataset (x-axis: Number of examples used for the knowledge
database construction (per label); y-axis: Well-classified testing examples (%))

capacity to attach the unknown label to the examples, imple-
mented through the min scorep value inside the signature
patterns. Indeed, around 10% of the examples were wrongly
classified as unknown. Even though this capability induces a
loss of accuracy when all classes are known, it significantly
contributes to the good accuracy on the other experiments,
when a class is not represented during training. In the end,
only 3% of the signatures were assigned to a wrong pattern.
Finally, on figure 6b and 6c, it seems that the accuracy on
the class not represented in the training is decreasing with
the number of examples used for the knowledge database
construction. In fact, the increase in the number of examples
for the training may introduce more permissive signature
patterns. As a consequence, it is easier to mistakenly consider
examples from an unknown class as an already known class.
This problem could be solved, for example, by increasing the
number of signature patterns for a given class.

D. Resource consumption evaluation

This last section presents the experiments carried out to
evaluate the resource consumption of the embedded HIDS,
including the on-board diagnosis. First, the embedded imple-
mentation of the complete HIDS (detection and diagnosis) is
presented as well as its final size in term of memory. Then, the
timing overhead impact of the SDA Monitor on the existing
ARINC 653 API calls is evaluated. Finally, the real time
consumption of the HIDS partition is evaluated.

1) Embedded implementation: To evaluate the resources
consumption of the overall HIDS, the HIDS partition has

been updated to perform on-board diagnosis, as illustrated
in Figure 7. The three components Signature Extraction,
Knowledge Database Search and Alert Message Sending
have been integrated inside the HIDS partition. Signature
Extraction computes the signature relative to an alert, when
too many anomalies are raised by Anomaly Detection in
a given duration. This signature is composed of the 14
characteristics selected from the experiments presented in
Section VIII-B. Knowledge Database Search component
compares the extracted signature with the signature patterns
recorded in its knowledge database, as implemented on the
prototyping station. The embedded knowledge database is
generated off-line with the complete dataset used for the
accuracy evaluation experiments (e.g. 1208 alert examples
distributed among 5 different classes). Also, two signature
patterns have been set for each of the Modify NAME and
Skip F1 classes, leading to a knowledge database with seven
entries. Finally, the label of the alert is used by the Alert
Message Sending, which sends an alert message containing
the label through the aircraft network.

The HIDS partition size is 49.4 KB (0.18% of the size of the
monitored application App HMI, 27.2 MB). This includes the
anomaly detection part (log frame, SDA model and detection
code) and the attack confirmation part (knowledge database
and diagnosis code). The storage of additional information has
not been implemented (it should be determined taking into
account operational constraints), but it represents 524 bytes
when an unknown alert is raised (storage of all raw alert

9

data and a timestamp) and 80 bytes when a known alert is
raised (storage of the signature, the label and a timestamp),
considering that each information is encoded on 4 bytes.

Fig. 7: Embedded implementation on the target

2) SDA Monitor impact: We measured the duration of the
API calls performed by the App HMI application, with and
without the SDA monitor. More than 11000 captures of each
experiment have been performed. An overhead of 6 clock ticks
(+3.3%) is observed for the communication-related API calls
(mainly impacted by the SDA Monitor), on the median value.
It is very similar to the overhead measured in [1] (anomaly
detection only, 5 clock ticks), even if more information is
logged at each application API call. As expected, there is no
impact on the other API calls.

3) HIDS Partition duration: The last experiment aims to
measure the real execution time of the HIDS partition when
an alert is raised. In this case, both Anomaly Detection and
Attack Confirmation are executed and different attacks were
injected. About 500 duration samples have been captured for
this experiment. The median execution time of the HIDS
partition is 0.059 ms. This represents 0.88% of the duration
allocated to the monitored partition (App HMI, 6.7 ms). Com-
pared to the results described in [1] (0.014 ms for the HIDS
partition with Anomaly Detection only), the introduction of
the on-board diagnosis represents a high increase in terms
of execution time, but is still very efficient in terms of the
time allocated to App HMI. These results are summarized in
Table IV. Note that the worst case execution time has not been
evaluated for the complete HIDS (detection and diagnosis).
The execution time of the diagnosis part of the HIDS depends
linearly on the number of entries in the knowledge database.
It should remain very low given the very low probability of
an attack on an aircraft. Also, the number of entries can be
reduced using e.g., a decision tree [19].

IX. CONCLUSION AND FUTURE WORK

This paper presented a HIDS specifically designed for the
avionics context, composed of an anomaly-based detection
system and a signature-based diagnosis system. The anomaly-
based detection system was presented and evaluated by [1],
and was proven to be effective in detecting anomalous be-
havior of an avionic application. This paper focused on the
signature-based system, designed to provide an on-board di-
agnosis of the alert raised by the anomaly-based detection
system. This diagnosis is extremely important in the avionics

TABLE IV: Resources consumption of the HIDS - Summary

Partition Code size Execution time
Total API calls

App HMI 27.2 MB 6.7 ms -
HIDS v1 (detection
only)

28.4 KB
(0.11%)

0.014 ms
(0.21%)

+2.7%

HIDS v2 (detection +
diagnosis)

49.4 KB
(0.18%)

0.059 ms
(0.88%)

+3.3%

context: an accurate diagnosis is the first step to provide an
automatic reaction on-board in case of an attack.

The implementation of the diagnosis approach in the em-
bedded HIDS and associated experiments has yielded good
results in terms of the accuracy of the diagnosis and the
associated overhead. In particular, between 87% and 90% of
the alerts raised by the anomaly-based system are correctly
diagnosed. The wrongly-classified alerts are composed of
about 10% classified as unknown and 3% classified with a
wrong attack label. In fact, the diagnosis proposed in this
paper has been specifically designed to allow classification of
unknown alerts. In the avionics context, a wrong classification
could induce unexpected consequences. Therefore, it is far
better to classify an alert as unknown than to mislabel it.
The on-board implementation has shown low overhead in
terms of resource consumption for the overall HIDS. The
increase of resource consumption related to the integration
of the diagnosis capacity still remains acceptable (the general
objective being to use less than 5% of the available resources).

In practice, the main difficulties encountered while proto-
typing the avionics HIDS were related to the data sources
(selecting relevant information to monitor without introduc-
ing complex instrumentation), the experimental environment
(trade-off between application’s availability, target’s features,
and target’s novelty), and the multiplicity of competencies
involved (modeling, configuration, integration, platform, ap-
plication, tools).

Concerning the certification of our solution, even if there
is no guidance available yet for Machine Learning-based
solutions certification, we anticipated this need by selecting
algorithms that should fulfill explainability and embeddability
requirements. It should be noted that the criticality does not lie
in the detection and diagnosis, but in the reaction that could be
based on such diagnosis. The commercial deployment of the
HIDS without automatic reaction should be easily achievable
(no or low impact on aircraft safety), and should enable the
evaluation of the solution in an operational environment before
considering an on-board reaction.

To go further, we plan to test the overall HIDS approach on
a more advanced environment (especially with the occurrence
of safety-related events with realistic safety monitor, and with
multiple and more complex applications exposing interactions
between them). The diagnosis part should also be improved,
for example by adapting the computation of the expected
distribution of values, for each signature characteristic. Finally,
we also plan to study the worst case behavior of our approach
in terms of memory and execution time.

10

REFERENCES

[1] A. Damien, M. Marcourt, V. Nicomette, E. Alata, and M. Kaaniche,
“Implementation of a host-based intrusion detection system for avionic
applications,” in 2019 IEEE 24th Pacific Rim International Symposium
on Dependable Computing (PRDC), Dec 2019, pp. 178–17 809.

[2] A. Damien, M. Fumey, E. Alata, M. Kaaniche, and V. Nicomette,
“Anomaly based intrusion detection for an avionic embedded system,”
Aerospace Systems and Technology Conference (ASTC), London, United
Kingdom, Nov. 2018.

[3] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Proceedings 1996 IEEE Symposium on
Security and Privacy. IEEE, 1996, pp. 120–128.

[4] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of
malicious behavior,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, 2007, pp. 5–14.

[5] N. Hubballi, S. Biswas, and S. Nandi, “Sequencegram: n-gram modeling
of system calls for program based anomaly detection,” in 2011 Third
International Conference on Communication Systems and Networks
(COMSNETS 2011). IEEE, 2011, pp. 1–10.

[6] E. Aghaei and G. Serpen, “Ensemble classifier for misuse detection
using n-gram feature vectors through operating system call traces,”
International Journal of Hybrid Intelligent Systems, vol. 14, no. 3, pp.
141–154, 2017.

[7] P. Deshpande, S. C. Sharma, S. K. Peddoju, and S. Junaid, “Hids: A host
based intrusion detection system for cloud computing environment,” In-
ternational Journal of System Assurance Engineering and Management,
vol. 9, no. 3, pp. 567–576, 2018.

[8] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based
online malware detection: Towards efficient real-time protection against
malware,” IEEE transactions on information forensics and security,
vol. 11, no. 2, pp. 289–302, 2015.

[9] G. Serpen and E. Aghaei, “Host-based misuse intrusion detection using
pca feature extraction and knn classification algorithms,” Intelligent Data
Analysis, vol. 22, no. 5, pp. 1101–1114, 2018.

[10] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Host-based intrusion
detection system with system calls: Review and future trends,” ACM
Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–36, 2018.

[11] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2007, pp. 178–197.

[12] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial in-
telligence: A survey,” in 2018 41st International convention on infor-
mation and communication technology, electronics and microelectronics
(MIPRO). IEEE, 2018, pp. 0210–0215.

[13] G. Fumera and F. Roli, “Support vector machines with embedded
reject option,” in International Workshop on Support Vector Machines.
Springer, 2002, pp. 68–82.

[14] Y. Geifman and R. El-Yaniv, “Selective classification for deep neural
networks,” in Advances in neural information processing systems, 2017,
pp. 4878–4887.

[15] M. E. Hellman, “The nearest neighbor classification rule with a reject
option,” IEEE Transactions on Systems Science and Cybernetics, vol. 6,
no. 3, pp. 179–185, 1970.

[16] P. X. Huang, B. J. Boom, and R. B. Fisher, “Hierarchical classifica-
tion with reject option for live fish recognition,” Machine Vision and
Applications, vol. 26, no. 1, pp. 89–102, 2015.

[17] A. Damien, N. Feyt, V. Nicomette, E. Alata, and M. Kaaniche, “Attack
injection into avionic systems through application code mutation,” in
2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC),
Sep. 2019.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[19] C. Kruegel and T. Toth, “Using decision trees to improve signature-based
intrusion detection,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2003, pp. 173–191.

11

