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Suboptimal Filtering over Sensor Networks with
Random Communication

Aneel Tanwani

Abstract—The problem of filter design is considered for linear
stochastic systems using distributed sensors. Each sensor unit,
represented by a node in an undirected and connected graph,
collects some information about the state and communicates
its own estimate with the neighbors. It is stipulated that this
communication between sensor nodes is time-sampled randomly
and the sampling process is assumed to be a Poisson counter. Our
proposed filtering algorithm for each sensor node is a stochastic
hybrid system: It comprises a continuous-time differential equa-
tion, and at random time instants when communication takes
place, each sensor node updates its state estimate based on
the information received by its neighbors. In this setting, we
compute the expectation of the error covariance matrix for each
unit which is governed by a matrix differential equation. To
study the asymptotic behavior of these covariance matrices, we
show that if the gain matrices are appropriately chosen and the
mean sampling rate is large enough, then the error covariances
practically converge to a constant matrix.

Index Terms—Stochastic hybrid system; distributed estimation
and filtering; graph theory; random communication; heterogen-
ous agents.

I. INTRODUCTION

Filtering, or state estimation, in stochastic dynamical sys-
tems is one of the fundamental problems in engineering which
has found applications in various disciplines ranging from con-
trol theory and signal processing to robotics and image/audio
processing. A recently compiled book [1] provides an over-
view of the developments carried out in the area of filtering
theory since its inception. Keeping in mind the current trends
of large-scale engineering systems operating over networks,
we propose filtering algorithms for estimating the state of the
continuous-time systems in a distributed manner where the
communication between the sensor nodes only takes place at
discrete times, possibly due to network constraints.

Modern control systems often involve networks of nodes
with data acquisition, processing and communication abilities,
which has led to growing interest in the area of distributed
filtering. The research in this area basically aims at computing
an estimate of the state trajectory by combining information
from several sources, each of which has some partial inform-
ation about the state. A conceptual sketch of the distributed
filtering architectures is depicted in Figure 1. In this layout,
instead of using the centralized measurements y, there are
N sensor units which measure different components of these
centralized measurements, y1, . . . , yN , and each sensor unit
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computes an estimate of the state based on the partial measure-
ments while exchanging information with its neighbors, which
are determined by a communication graph. Several design
techniques have now emerged in the literature with varying
degree of analysis. For discrete-time deterministic systems,
the estimation problem in distributed setting is studied in
[2], [3]. For continuous-time deterministic systems, one may
refer to [4], [5]. The focus in this works is on proposing
estimation algorithms and provide design criteria for each unit
which uses minimal information about the centralized system
dynamics. In certain papers, distributed state estimation is
studied as an application of synchronization of multi-agent
systems [6], [7], [8]. Distributed state estimation for determin-
istic continuous-time systems with communication at discrete
times has been studied in [9], [10]. For stochastic systems, we
see convergence based approaches for scalar systems in [11].
Distributed filtering with more general probability distributions
and application to Gaussian distributions with linear discrete-
time systems is studied in [12]. Prior to that, several algorithms
for distributed filtering have been proposed in discrete-setting
[13], [14].

An important issue from the point of implementation of
filters over networks is to make the algorithms compatible
with the underlying communication protocol [15]. In commu-
nicating messages over the networks, the transmission may
break down at some time instants, or the messages may not
be transferred at exact scheduled times. An abstract way to
model such scenarios is to assume that the underlying proto-
cols transmit messages only at randomly drawn discrete time
instants. With this motivation, certain works in the literature
have studied the problem of stabilization and control with
randomly sampled measurements: The reader may refer to
[16] for optimal control and the papers [17], [18] for stability
analysis of such systems. A recently published book chapter
[19] provides an overview of such results and some recent
developments. There have been relatively fewer works which
have addressed filtering problem in the presence of measure-
ment errors or communication uncertainties. The papers [20],
[21], [22] consider a discrete-time linear dynamical system and
associate randomness with the transmission times of the output
measurements. A different toolset, based on relative entropy,
is adopted in [23] to study the stability and convergence of
filters under relaxed assumptions on observation channels.
For continuous-time dynamical system driven by white noise,
centralized continuous-discrete observer proposed in [24].
Some analytical results on the performance of centralized
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Figure 1: Layout of Distributed Filters

continuous-time systems under random sampling appear in
[25].

In this article, we consider filtering problem in distributed
setting for continuous-time linear stochastic systems. The
particular feature we address is the one where the agents
communicate the information between themselves at discrete
times which are randomly drawn. Our objective is to propose
filtering algorithms, and analyze their performance, when the
centralized measurements are not available, and the agents can
only communicate their own state estimates to their neighbors
at time instants determined by a Poisson counter. In particular,
we consider agents (or sensor units) which have partial inform-
ation about the state at all times. This information is used to
compute an estimate of the state using a differential equation.
Then, at some random time instants, the agents exchange
the value of their estimate with their neighboring agents and
update their own state based on the information received. In
addition to formalizing this intuition in this paper, we develop
some tools for analysis of such filtering algorithms. This
involves computing the bounds on error covariance matrices
of each filter while exchanging information with other agents.
Also, we are interested in studying the limiting behavior of
these bounds as the formal stability analysis of distributed
filters with the aforementioned communication architecture
has not received much attention in the literature.

To position the contribution of this article in the existing
literature on distributed estimation and filtering, we observe
that, for distributed state estimation in deterministic setup
[4], [7], [2], [3], [5], one directly analyzes the convergence
of the norm of estimation error to the origin. The error
covariance bounds are analyzed in the stochastic setup only
[11], [12], [13], [14], which is the case here. The papers [11],
[12] essentially provide the bounds on error covariance in
the discrete-time setup. On the other hand, our main result
(Theorem III.1) provides a bound at all time instants for a
continuous-time process. Moreover, the derivation and analysis
of the expectation of error covariance bound with respect to
random (Poisson) sampling in distributed setup is a unique
feature of our work. The elegant and useful outcome of
this analysis is that we observe diffusive coupling among
covariance bounds, and the mean sampling rate plays the
role of coupling strength. This allows us to invoke some
recent developments on consensus with heterogenous agents
to analyze the asymptotic behavior of the expected error

covariance for each filtering unit.

Notation: Let us recall some basic definitions from the
literature which are used in statement and derivation of
main results. A function χ : R≥0 → R≥0 is said to
be of class K if it is continuous, increasing, and satisfies
χ(0) = 0. For the matrices M1 and M2, we define the inner
product as 〈M1,M2〉 = tr(M>1 M2). This choice of inner
product allows us to introduce the Frobenius norm, defined as
‖M‖ =

√
〈M,M〉 =

√
tr(M>M). Throughout this article,

we will work with this particular norm for matrices. We recall
that the Cauchy-Schwarz inequality for this choice of norm
implies that | tr(M1M2)| ≤ ‖M1‖ ‖M2‖. For a square matrix
M ∈ Rn×n, the notation Sym(M) stands for M +M>, and
σi(M) denotes the i-th eigenvalue of M with the convention
that σ1(M) ≤ σ2(M) ≤ · · · ≤ σn(M). The symbol o(s) for
s → 0 is a notation for any function of s ∈ R satisfying
lims→0

o(s)
s = 0, and the symbol O(s) for s → 0 stands for

any function of s ∈ R satisfying lims→0
O(s)
s exists and is

finite.

II. PROBLEM FORMULATION

Consider the dynamical system

dx = Axdt+B dω (1)

where (x(t))t≥0 is an Rn-valued diffusion process describing
the state. Let (Ω,F ,P) denote the underlying probability
space. It is assumed that, for each t ≥ 0, (ω(t))t≥0 is an
Rm-valued standard Wiener process adapted to the filtration
Ft ⊂ F , with the property that E[dω(t) dω(t)>] = Im, for
each t ≥ 0. The matrices A ∈ Rn×n and B ∈ Rn×m are taken
as constant, and the process (ω(t))t≥0 does not depend on the
state. The solutions of the stochastic differential equation (1)
are interpreted in the sense of Itô stochastic integral.

a) Measurements via distributed sensors: The measure-
ments associated with system (1) are obtained from a set of
N sensors which are distributed in their localization. Each of
these sensors provides a partial measurement about the state
described as,

dyi = Hix dt+ dvi, i = 1, . . . , N, (2)

where Hi ∈ Rpi×n, and
∑N
i=1 pi =: p. That is, for each node,

(yi(t))t≥0 describes an Rpi -valued continuous-time observa-
tion process. In the observation equation (2), vi(t) is an Ft-
adapted standard Wiener process, taking values in Rpi , and
E[dvi(t) dvi(t)

>] = Vi ∈ Rpi×pi , with Vi assumed to be
positive definite.

The sensor nodes are connected via a graph G = (V, E),
where V = {1, . . . , N} is the set of graph nodes, and E
contains all the edges defined by a subset of the pairs (i, j),
i 6= j, i, j ∈ V . We assume that the graph is undirected and
connected. The neighbors of a node i ∈ V are denoted by
Ni and we adopt the convention that i 6∈ Ni. The adjacency
matrix A := [aij ] ∈ {0, 1}N×N of the graph, which is



symmetric, provides the information about which sensor units
can communicate with each other, that is, if aij = 1 then
sensor i and j can communicate, whereas aij = 0 means
there is no communication possible between those sensors.
The degree of a node i ∈ V is defined as |Ni|, that is, the
cardinality of the set Ni. The diagonal matrix D = [dii],
with dii = |Ni| is therefore the degree matrix. We associate a
Laplacian L with this graph, defined as, L = D−A. For our
purposes, the matrix Π = [πij ] ∈ RN×N , defined as

Π := IN×N − αL (3)

where 0 < α ≤ mini∈V
1
|Ni| plays an important role. Note

that, by construction, Π is a doubly stochastic matrix, that is,
for each row and each column, the sum of their entries equals
one.

b) Communication Process: The next main ingredient of
our problem formulation is the description of time instants
at which the communication takes place between the sensor
nodes. It is assumed that there exists a monotone strictly
increasing and divergent sequence (τk)k∈N ⊂ [0,+∞[ with
τ0 := 0, and

• at each time instant τk, all sensor nodes i ∈ V transmit
the value of their state estimate to their neighbors Ni.

In this article, we are interested in the case where the sampling
times (τk)k∈N are generated randomly. Formally, we define

Nt := sup
{
k ∈ N

∣∣ τk ≤ t} for t ≥ 0 (4)

and stipulate in addition that

• (Nt)t≥0 is a continuous-time stochastic process satisfying
τNt
−−−−→
t↗+∞

+∞ almost surely.

The map t 7→ Nt increments by 1 at random times, and
it provides a description of the number of samples up to
and including time t. Let λ > 0. Recall that a random
process (Nt)t≥0 is a Poisson process of intensity λ defined on
our probability space if any one of the following equivalent
properties hold:

(P1) (Nt)t≥0 is a Markov process taking values in N, has
independent increments, and satisfies N0 = 0, and for
h↘ 0 and t ≥ 0,

P
(
Nt+h −Nt = k

∣∣Nt) =


1− λh+ o(h) if k = 0,

λh+ o(h) if k = 1,

o(h) if k ≥ 2,

where the terms o(h) do not depend on t.
(P2) (Nt)t≥0 is a continuous-time random process taking val-

ues in N, having monotone non-decreasing sample paths
with increments of 1, and spending an exponentially
distributed, with parameter λ, random time in each state
k before jumping to k + 1 independently for each k.

c) Filtering Algorithm: Based on the aforementioned
communication architecture, and the sensor localization, we

propose the following algorithm to be implemented by each
sensor node:

dx̂i(t) = (A− LiHi)x̂i(t)dt+ Lidyi(t) (5)

over the interval [τk, τk+1[, for each k ∈ N. At sampling times
τk, k ∈ N, when the sensor node i receives the information
from its neighbors, we update the state as follows:

x̂+i = x̂ −i + α
∑
j∈Ni

(x̂ −j − x̂
−
i ) (6a)

= πiix̂
−
i +

∑
j∈Ni

πij x̂
−
j , (6b)

where we recall that 0 < α ≤ mini∈V
1
|Ni| and πij ∈ [0, 1]

are the elements of the doubly stochastic matrix Π introduced
in (3). Each of these filters is a stochastic hybrid system
of the form [26] with continuous evolution described by (5)
between sampling times, and the jump rule (6) executed at
random sampling instants where we update the estimate x̂i
as the convex combination of itself and its neighbors. The
communication based on the underlying graph results in a
particular interconnection of these hybrid systems.
Remark II.1. In our filtering algorithm (5), (6), we are choos-
ing the gains Li to be constant. In optimal filtering, such as
Kalman filtering, one uses the information of the evolution
of the covariance matrices to update the gains. Our choice
is clearly suboptimal but for this paper, we focus only on
constant gains to keep the presentation simple.

d) Problem statement: The basic problem studied in this
paper is to study the performance of the distributed filters
proposed in (5)–(6) under the aforementioned communication
architecture. The design parameters are the gain matrices Li,
and we want to study the role of mean sampling rate λ in quan-
tifying the performance of the system. More precisely, if we let
Yit denote the information available to sensor node i ∈ V up
till time t ∈ [0,+∞[, that is, Yit := {(dyi(s), x̂j(τNs)) | s ≤
t, j ∈ Ni}, then our objectives are:

• Compute an upper bound on the expectation (with respect
to sampling process) of the error covariance matrices
E[E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yit ]], for t ≥ 0.

• Provide a criteria for boundedness of the expected error
covariance in terms of the gain matrices, and the mean
sampling rate.

III. MAIN RESULT

We now address the objectives outlined in the previous
section. To do so, we consider the injection gains Li ∈ Rn×pi ,
and introduce the matrices L ∈ Rn×p and H ∈ Rp×n as
follows:

L :=
1

N

[
L1 . . . LN

]
, H =

 H1

...
HN

 . (7)

Consequently, we see that A− LH = A− 1
N

∑n
i=1 LiHi.



Theorem III.1. Consider system (1) with distributed meas-
urements (2) and the corresponding hybrid filters (5), (6)
linked together by an undirected and connected graph. If
the communication between graph nodes nodes takes place
at random times generated by a Poisson process of intensity
λ > 0, then the following items hold:

1) For each λ > 0, and i = 1, · · · , N , it holds that

E[E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yit ]] ≤ Pi(t), (8)

where the matrix-valued function Pi : [0,∞[→ Rn×n
satisfies the differential equation

Ṗi = (A−LiHi)Pi+Pi(A−LiHi)
>+BB>+LiViL

>
i

+ λ
∑
j∈Ni

πij(Pj − Pi). (9)

2) If the gains Li are chosen such that the matrix (A−LH)
is Hurwitz, so that there exist a symmetric positive definite
matrix R and a symmetric positive semidefinite matrix S
satisfying

R (A− LH) + (A− LH)
>
R ≤ −In (10)

0 = (A− LH)S+S (A− LH)
>

+BB>+
1

N

N∑
i=1

LiViL
>
i

(11)
then for every λ > 0 sufficiently large, the corresponding
solution of (9) satisfies

lim sup
t→∞

‖Pi(t)− S‖ ≤

√
N
σn(R)

σ1(R)

√
χ

(
1

λασ2(L)− C1

)
(C3σG + C2‖S‖) ,

(12)

for some nonnegative constants C1, C2, C3, while σG :=
max1≤i≤N ‖BB>+LiViL

>
i ‖, and χ is a class K function

satisfying χ(s) = O(s) as s→ 0.

The proof of Theorem III.1 involves several intermediate
results, and is carried out in the remainder of this section
within various subsections.

A. Analysis for fixed sampling times

The first step in the proof of Theorem III.1 is to obtain a
bound on the covariance of estimation error resulting from (5),
(6) for a given value of sampling times. To do so, it is useful
to introduce the dynamics for the state estimation error, ei :=
x − x̂i. Over an interval [τk, τk+1[, we have the differential
equation:

dei = (A− LiHi)dei + Lidvi +Bdω (13a)

and at sampling time τk, it holds that

ei(τ
+
k ) = πiiei(τ

−
k ) +

∑
j∈Ni

πijej(τ
−
k ). (13b)

Error covariance bound on estimation error E[eie
>
i ] is de-

scribed in the following statement.

Proposition III.2. Consider system (1) and the filter (5), (6)
with {τk}k∈N fixed. Let the process Pi : [0,∞[→ Rn×n, with
Pi(0) ≥ E[(x0 − x̂i(0))(x0 − x̂i(0))>], be defined by

dPi
dt

= (A− LiHi)Pi + Pi(A− LiHi)
> +BB> + LiViL

>
i ,

(14a)
for τk ≤ t < ττk+1, and let

Pi(τ
+
k ) = πiiPi(τ

−
k ) +

∑
j∈Ni

πijPj(τ
−
k ) (14b)

Then, it holds that, for each t ≥ 0,

E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yit ] ≤ Pi(t). (15)

Proof. We first show that, for each t ∈ [τk, τk+1[,

dE[ei(t)ei(t)
>]

dt
= (A− LiHi)E[ei(t)ei(t)

>]

+ E[ei(t)ei(t)
>](A− LiHi)

> +BB> + LiViL
>
i

and that, at the sampling instants

E[ei(τ
+
k )ei(τ

+
k )>] ≤ πiiE[ei(τ

−
k )ei(τ

−
k )>]

+
∑
j∈Ni

πijE[ej(τ
−
k )ej(τ

−
k )>].

The bound in (15) then holds by observing that Pi(t) satisfies
(14a) over [τk, τk+1[, and (14b) at t = τk, with E[e0e

>
0 ] ≤

Pi(0).

a) Continuous part: We first show that for t ∈ [τk, τk+1[,
we have the inequality dE[ei(t)ei(t)

>]
dt = dPi(t)

dt . This is a rather
classical derivation, and as an example, one may refer to the
arguments in [25] for details. On this time interval, let us
consider the Itô process (13), and the function v : Rn → Rn×n
given by, Rn 3 e 7→ v(e) = ee> ∈ Rn×n. Consequently,
(v ◦ ei(t))t≥0 is an Itô process. By applying Itô’s differential
chain rule, and following the calculations as in [25, Section 3],
we obtain

dE[v(ei(t))]

dt
= (A− LiHi)E

[
ei(t)ei(t)

>]+
E
[
ei(t)ei(t)

>](A− LiHi)
> +BB> + LiViL

>
i .

b) Jump part: Computing the bound on error covariance
at sampling times basically requires us to compute bounds
on covariance of a random variable described by the convex
combination of different random variables. This is based on
the following lemma:

Lemma III.3. Let m be a positive integer, and let
x1, . . . , xm ∈ Rn. If z :=

∑m
j=1 γjxj for some γj ∈ [0, 1],∑m

j=1 γj = 1, then

zz> ≤
m∑
j=1

γjxjx
>
j . (16)



Proof. Let Sn+ denote the set of positive semidefinite matrices
in Rn×n, and consider the function f : Rn → Sn+, so that, for
x ∈ Rn, f(x) = xx>. We consider the epigraph of f , denoted
by epi(f), and defined as,

epi(f) = {(M,x) ∈ Sn+ × Rn|M ≥ f(x)}.

We claim that epi(f) ⊂ Sn+×Rn is convex, that is, if (M1, x̄1)
and (M2, x̄2) belong to epi(f), then for each γ ∈ [0, 1], it
holds that (γM1 + (1− γ)M2, γx̄1 + (1− γ)x̄2) ∈ epi(f). To
see this, we first observe that, for a fixed γ ∈ [0, 1],(√

1− γ
γ

γx̄1 −
√

γ

1− γ
(1− γ)x̄2

)
·(√

1− γ
γ

γx̄1 −
√

γ

1− γ
(1− γ)x̄2

)>
≥ 0

and hence

γ(1−γ)(x̄1x̄
>
2 +x̄2x̄

>
1 ) ≤ 1− γ

γ
γ2x̄1x̄

>
1 +

γ

1− γ
(1−γ)2x̄2x̄

>
2 .

Using this last inequality, we get

f(γx̄1 + (1− γ)x̄2) = γ2x̄1x̄
>
1 + γ(1− γ)(x̄1x̄

>
2 + x̄2x̄

>
1 )

+ (1− γ)2x̄2x̄
>
2

≤ γ2
(

1 +
1− γ
γ

)
x̄1x̄
>
1 + (1− γ)2

(
1 +

γ

1− γ

)
x̄2x̄
>
2 ,

= γx̄1x̄
>
1 + (1− γ)x̄2x̄

>
2

≤ γM1 + (1− γ)M2,

which implies that epi(f) is convex. Coming back to the state-
ment of the lemma, we observe that, for each j = 1, . . . ,m,
(f(xj), xj) ∈ epi(f) and since we have shown that this set is
convex, it follows that

m∑
j=1

γj(f(xj), xj) =

 m∑
j=1

γjf(xj),

m∑
j=1

γjxj


also belongs to epi(f). By construction, we therefore have

f

 m∑
j=1

γjxj

 ≤ m∑
j=1

γjf(xj)

which yields the desired inequality be recalling the definition
of f .

The statement of Lemma III.3 directly yields an upper
bound on E[ei(τ

+
k )ei(τ

+
k )>]. Recalling the definition of e(τ+k )

in (13b), and using the linearity of the expectation operator,
we get

E[ei(τ
+
k )ei(τ

+
k )>] ≤ πiiE[ei(τ

−
k )ei(τ

−
k )>]

+
∑
j∈Ni

πijE[ej(τ
−
k )ej(τ

−
k )>].

The proof of Proposition III.2 is therefore complete.

B. Expectation of error covariance with respect to sampling
process

In Proposition III.2, we computed a bound on the error
covariance for a fixed sequence of time instants at which
measurements are received. That is, Pi(t) is an upper bound
on E[(x(t) − x̂i(t))(x(t) − x̂i(t))> | Yit ] along one particular
sample path as the realization of Pi(·) depends on the observed
sampling times. It is thus of interest to compute the expected
value of Pi(·) along all possible sample paths generated by
the sampling process (Nt)t≥0. We do so next under the
assumption that (Nt)t≥0 is a Poisson process of intensity λ.

To compute the expected value of Pi with respect to
sampling times, we introduce the operator Linf : Rn×n →
Rn×n defined as

Linf(Q) := lim
ε→0

1

ε

(
E[Pi(t+ ε) |Pi(t) = Q]−Q

)
. (17)

We will see that this operator describes infintesimal evolution
of the expected value of the error covariance process, and
hence (9) is a direct consequence of the following result.

Proposition III.4. Consider the process (Pi(t))t≥0 given by
(14) with the sampling process (Nt)t≥0 of intensity λ > 0.
Let Pi(t) := E[Pi(t) |P0] denote the expected value of the
covariance process at time t ≥ 0 with respect to sampling
process. Then, (9) holds.

Proof. We first note that
(
Pi(t)

)
t≥0 is Markovian because the

future of Pi(t) depends only on the last sampling instant τNt
.

According to Dynkin’s formula,

Pi(t) = E[Pi(t)] = Pi(0) + E
[∫ t

0

Linf(Pi(s))
]
ds.

Since Linf is a linear operator, we get Ṗi(t) = Linf(Pi(t)).
To show (9), we thus compute Linf(Q) for a given matrix Q
in the remainder of the proof. Recalling the definition of Linf ,
we observe that

E
[
Pi(t+ ε)

∣∣Pi(t) = Q
]

= E
[(
Pi(t+ ε)

)(
1{Nt+ε=Nt}

+ 1{Nt+ε=1+Nt} + 1{Nt+ε−Nt≥2}
) ∣∣Pi(t)]. (18)

We now compute the conditional probability distribution of(
Pi(t + ε)

)
for small ε > 0 given

(
Pi(t)

)
. Since the

sampling process is independent of the process
(
Pi(t)

)
t≥0,

by definition of the sampling (Poisson) process we have, for
ε ↓ 0, P

(
Nt+ε − Nt = 0

∣∣Nt, Pi(t)) = 1 − λε + o(ε),
P
(
Nt+ε −Nt = 1

∣∣Nt, Pi(t)) = λε + o(ε), P
(
Nt+ε −Nt ≥

2
∣∣Nt, Pi(t)) = o(ε). Using these expressions we develop (18)

further for ε ↓ 0 as

E
[
Pi(t+ ε)

∣∣Pi(t) = Q
]

= E
[
Pi(t+ ε)

(
1{Nt+ε=Nt} + 1{Nt+ε=1+Nt}

) ∣∣Pi(t)]+ o(ε)

= E
[
Pi(t+ ε)

∣∣Pi(t), Nt+ε = Nt
]
·
(
1− λε+ o(ε)

)
+ E

[
Pi(t+ ε)

∣∣Pi(t), Nt+ε = 1 +Nt
](
λε
)

+ o(ε).
(19)



The two significant terms on the right-hand side of (19) are
now computed separately. For the event Nt+ε = Nt, given
Pi(t) = Q, Ṗi is governed by (14a), so we have for ε ↓ 0,

Pi(t+ ε) = Pi(t) + εṖi(t) + o(ε) = Q+ ε
[
(A− LiHi)Q

+Q(A− LiHi)
> +BB> + LiViL

>
i

]
+ o(ε),

leading to the first term on the right-hand side of (19) having
the estimate

E
[
Pi(t+ ε)

∣∣Pi(t), Nt+ε = Nt
]
·
(
1− λε+ o(ε)

)
= Q+ ε((A− LiHi)Q+Q(A− LiHi)

> +BB> + LiViL
>
i )

− (λε)Q+ o(ε). (20)

for ε ↓ 0. Concerning the second term on the right-hand side
of (19), we observe that conditional on Nt+ε = 1 + Nt,
the probability distribution of τNt+ε

is [27, Theorem 2.3.7]
uniform over [t, t+ ε[ by definition of the sampling (Poisson)
process. We introduce θ ∈ [0, 1[ such that τNt+ε

= t+θε; then
θ is uniformly distributed on [0, 1[ given Nt+ε = 1 +Nt. We
now write the right-hand side of (14a) more compactly using
the map ψ,

Q 7→ ψ(Q) = (A−LiHi)Q+Q(A−LiHi)
>+BB>+LiViL

>
i

and (14b) using the map ψt, Q 7→ ψt(Q) = πiiQ +∑
j∈Ni

πijPj(t).We thus have, conditioned on the event
Nt+ε = 1 +Nt, Pi(t) = Q,

Pi(τNt+ε) = Pi(t+ θε) = ψt(Pi(t+ θε)−).

The above expressions then lead to, conditioned on the same
event, and for ε ↓ 0,

Pi(t+ ε) = Pi(t+ θε) + (1− θ)εṖi(t+ θε) + o(ε)

= Pi(t+ θε) + (1− θ)εψ
(
Pi(t+ θε)

)
+ o(ε)

= ψt+θε(Pi(t) + θεψ(Pi(t)) + o(ε))

+ (1− θ)εψ
(
Pi(t+ θε)

)
+ o(ε)

= ψt(Pi(t)) + θO(ε) +O(ε) + o(ε).

Therefore, for ε ↓ 0,

E
[
Pi(t+ ε)

∣∣Pi(t) = Q,Nt+ε = 1 +Nt
]
· (λε)

=

∫ 1

0

(
E[ψt(Q)] + θO(ε) +O(ε) + o(ε)

)
dθ · (λε)

=
(
E[ψt(Q)] +O(ε)

)
· (λε) = (λε)E[ψt(Q)] + o(ε). (21)

Substituting (20) and (21) in (19), we obtain

E
[
Pi(t+ε)

∣∣Pi(t) = Q
]

= Q− (λε)
(
Q−E[ψt(Q)]

)
+o(ε)

+ ε
(

(A−LiHi)Q+Q(A−LiHi)
> +BB> +LiViL

>
i

)
.

Substituting these expressions in (17), we see that for each
Q ∈ Rn×n,

Linf(Q) = (A− LiHi)Q+Q(A− LiHi)
> +BB> + LiViL

>
i

+ λ
(
E[ψt(Q)]−Q

)
,

which, upon recalling the definition of ψt, leads to the desired
expression in (9).

This also completes the proof of first item in the statement
of Theorem III.1.

C. Asymptotic behavior

The second item in Theorem III.1 relates to the asymptotic
behavior of the coupled differential equations (9). Each of
these equations is linear in the state, driven by a constant
term which corresponds to the noise level in the system and
sensors, and are interconnected by diffusive coupling which
corresponds to the mean sampling rate λ. Such systems in the
literature are studied under the framework of heterogenous
multi-agent systems since the dynamics of Pi are different for
each i ∈ V . In contrast to homogenous agents, consensus in
heterogenous agents is not possible in general. However, one
can get the states of all the agents close to desired accuracy
by increasing the coupling strength. Practical stabilization of
heterogenous agents has been studied in [6], [8] and here we
base our analysis on similar concepts adapted to linear matrix-
valued processes. For the proof of item 2) in Theorem III.1,
we introduce the notation,

Ai := A− LiHi, and A := A− LH =
1

N

N∑
i=1

Ai.

Furthermore, let

Fi(Pi) := AiPi + PiA>i , and Gi := BB> + LiViL
>
i

so that, Ṗi = Fi(Pi) +Gi. Also, we let

P :=

P1

...
PN

 , F (P) :=

 F1(P1)
...

FN (PN )

 , G :=

G1

...
GN

 .
Then, we can write

Ṗ = F (P) +G(P) + λ(Π⊗ IN )P − λ(In ⊗ IN )P
= F (P) +G− λα(L ⊗ IN )P.

where we recall that Π = IN + αL. For an undirected
connected graph with Laplacian L, we can find a matrix U
such that ULU> = diag (0,Λ). Let v`1 denote the normalized
eigenvector corresponding the eigenvalue 0 of the Laplacian,
so that

v>`1 =
1√
N

[
1 1 · · · 1

]
∈ R1×N , and v>`1L = 0.

There exists a matrix Ũ ∈ RN×(N−1), with Ũ>Ũ = IN−1,
Ũ> · 1N = 0, such that

U =

[
v>`1
Ũ>

]
, U−1 = U> = [v`1 , Ũ

†]

where U† ∈ RN×(N−1) is the matrix satisfying

Ũ>Ũ† = IN−1, and 1>N Ũ† = 0.



Introduce the coordinate transformation

Q =
1√
N

(U ⊗ In)P =

[
1
N (1>N ⊗ In)
1√
N

(Ũ> ⊗ In)

]
P =:

[
Q1

Q̃

]
and the inverse of this transformation gives,

P =
√
N(U ⊗ In)−1Q =

√
N(U−1 ⊗ In)Q

=
√
N
[
(v`1 ⊗ In) (Ũ† ⊗ In)

]
Q

= (1N ⊗ In)Q1 +
√
N(Ũ† ⊗ In)Q̃.

Let S denote the solution of the differential equation Ṡ =

AS + SA> + BB> + 1
N

∑N
i=1 LiViL

>
i . We introduce the

variable E to denote the difference between the mean value of
Pi, i = 1, . . . , N , and S, that is,

E := Q1 − S =
1

N

N∑
i=1

Pi − S,

and it is observed that

Ė = Q̇1 − Ṡ =
1

N

N∑
i=1

Ṗi − Ṡ

= AE + EA> +
1

N

(
N∑
i=1

Fi

(√
N(Ũ†i ⊗ In)Q̃

))
(22)

where Ũ†i denotes the i-th row of Ũ†. Also, we can write

˙̃Q = −λα(Λ⊗ In)Q̃+
1√
N

(Ũ> ⊗ In) (F (P) +G)

= −λα(Λ⊗ In)Q̃+
1√
N

(Ũ> ⊗ In)
[
F ((1N ⊗ In)Q1

+
√
N(Ũ† ⊗ In)Q̃) +G

]
= −λα(Λ⊗ In)Q̃+ (Ũ> ⊗ In)F ((Ũ† ⊗ In)Q̃)

+
1√
N

(Ũ> ⊗ In) (F ((1N ⊗ In)(E + S)) +G) . (23)

For stability analysis of the process P , we equivalently analyze
the stability of (22) and (23). Towards this end, we recall the
matrix R that satisfies (10), and introduce the functions

V1(E) :=
1

2
tr(R1/2ERER1/2),

V2(Q̃) :=
1

2
tr (Q̃Q̃>).

To analyze the evolution of V1 along the solutions of (22), we
compute the bound on the derivative of V1. Using the cyclic
property of the trace operator, we get

V̇1 =
1

2
tr
[
Sym((RA+A

>
R)ERE)

]
+

1

2N
tr

[
Sym

(
RER

N∑
i=1

Fi(
√
N(Ũ†i ⊗ In)Q̃)

)]
≤ − tr(ERE)

+
1

2
√
N

tr

[
N∑
i=1

Sym
(
RERFi((Ũ†i ⊗ In)Q̃)

)]
≤ −σ1(R)‖E‖2 + C0

√
N ‖E‖ ‖Q̃‖

where we used the bounds on the trace of products from
[28], tr(ERE) = tr(RE2) ≥ σ1(R) tr(E2), and C0 ≥ 0 is
a constant satisfying

max
1≤i≤N

1

2
tr
[
Sym(RER(Fi((Ũ

†
i ⊗ In)Q̃))

]
≤ C0‖E‖ ‖Q̃‖.

On the other hand, using similar techniques, we can bound the
derivative of V2 along the solutions of (23) as follows:

V̇2 ≤ −λασ2(L) tr(Q̃Q̃>) + C1 tr(Q̃Q̃>)

+ C2 ‖E‖ · ‖Q̃‖+ C2 ‖S‖ · ‖Q̃‖+ C3σG · ‖Q̃‖

where we recall that σG = max1≤i≤N ‖Gi‖, and the positive
scalars C1, C2, C3 ≥ 0 are chosen to satisfy

0.5 tr
[
Sym(Q̃>(Ũ> ⊗ In)(F ((Ũ† ⊗ In)Q̃)))

]
≤ C1 tr(Q̃Q̃>)

0.5 tr
[
Sym(Q̃>(Ũ> ⊗ In)(F ((1N ⊗ In)E)))

]
≤ C2

√
N‖E‖ · ‖Q̃‖

0.5 tr
[
Sym(Q̃>(Ũ> ⊗ In)(F ((1N ⊗ In)S)))

]
≤ C2

√
N‖S‖ · ‖Q̃‖

0.5 tr
[
Sym(Q̃>(Ũ> ⊗ In)G)

]
≤ C3

√
NσG‖Q̃‖.

For the combined dynamical system (22), (23), we now
consider the proper, positive definite Lyapunov function

V (E ,Q) = V1(E) + V2(Q̃)

and observe that

V̇ ≤ −σ1(R)‖E‖2 − (λασ2(L)− C1)‖Q̃‖2

+ (C0

√
N + C2)‖E‖ ‖Q̃‖+ (C2‖S‖+ C3σG) ‖Q̃‖.

Applying Lemma A.1 from Appendix, we readily obtain,

lim sup
t→∞

‖E(t)‖2 + ‖Q(t)‖2 ≤ 1

σ2
1(R)

lim sup
t→∞

V (E(t),Q(t))

≤ σ2
n(R)

σ2
1(R)

(
C3σG + C2 lim sup

t→∞
‖S(t)‖

)2

χ

(
1

λασ2(L)− C1

)
.

With A Hurwitz and S satisfying (11), we have
limt→∞ S(t) = S, which leads to the following bound
for each i ∈ V ,

lim sup
t→∞

‖Pi(t)− S‖ = lim sup
t→∞

‖Pi(t)− S(t)‖

≤ lim sup
t→∞

√
N
√
‖E(t)‖2 + ‖Q(t)‖2

≤
√
N
σn(R)

σ1(R)

√
χ

(
1

λασ2(L)− C1

)
(C3σG + C2‖S‖)

for some class K function χ such that χ(s) = O(s) as
s→ 0. Hence, we obtain (12) and this completes the proof of
Theorem III.1.

IV. CONCLUSIONS AND PERSPECTIVES

We considered the problem of distributed estimation over
undirected and connected graphs. The sensor nodes exchange
information about their estimate, and the the communication
between the sensor nodes is driven by a Poisson process.
The algorithm implemented by each node is in the form of



a stochastic hybrid system. We obtain pointwise and asymp-
totic bounds on the covariance of the estimation error for
each sensor node, and show that these covariances converge
practically to a constant matrix if the mean sampling rate is
large enough.

There are some immediate research directions that emanate
from this work. Going through the proof of Theorem III.1, it
would be interesting to investigate if the bounds on ‖Pi−S‖
can be tightened. More specifically, it needs to be checked if
instead of practical convergence, one can achieve asymptotic
convergence for some fixed value of λ. In general, asymptotic
convergence in distributed estimation is ensured without any
sensor noises, so that the agents share a common equilibrium
point but it remains to be seen if some structural design
allows us to achieve asymptotic convergence despite different
noise covariances in sensor units. Another interesting direction
is, to investigate a broader class of random processes for
the communication between agents. While the memoryless
Poisson counter treated in this paper results in diffusive
coupling between the dynamics of error covariances, it remains
to be seen what kind of interconnection is obtained from other
communication processes.

APPENDIX

The following lemma has been used in the proof of The-
orem III.1.

Lemma A.1. Consider a function W : R≥0×R≥0×R≥0 → R,
and a function g : R≥0 → R≥0, such that

W (t, r, s) ≤ −a1r2 + a2rs− a3s2 + g(t)s

for some positive scalars a1, a2, a3 > 0. Then, there exists
c > 0 such that

W (t, r, s) ≤ −c(r2 + s2), if r2 + s2 ≥ g2(t)χ

(
1

a3

)
where χ is a class K function and χ(s) = O(s) as s→ 0.

The proof of Lemma A.1 is very similar to the proof of [6,
Lemma 2], where one can also find the exact expressions for
the constant c, and the function χ.
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