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Suboptimal Filtering over Sensor Networks with
Random Communication

Aneel Tanwani

Abstract—The problem of filter design is considered for
continuous-time linear stochastic systems using distributed
sensors. Each sensor unit, represented by a node in an undirected
and connected graph, collects some information about the state
and communicates its own estimate with the neighbors. It
is stipulated that this communication between sensor nodes
connected by an edge is time-sampled randomly and for each
edge, the sampling process is an independent Poisson counter.
Our proposed filtering algorithm for each sensor node is a
stochastic hybrid system: It comprises a continuous-time differen-
tial equation, and at random time instants when communication
takes place, each sensor node updates its state estimate based
on the information received by its neighbors. In this setting, we
compute the expectation of the error covariance matrix for each
unit which is governed by a matrix differential equation. To
study the asymptotic behavior of these covariance matrices, we
show that if the gain matrices are appropriately chosen and the
mean sampling rate is large enough, then the error covariances
practically converge to a constant matrix.

Index Terms—Stochastic hybrid system; distributed estimation
and filtering; graph theory; random communication; heterogen-
ous agents.

I. INTRODUCTION

Modern control systems often involve networks of nodes
with data acquisition, processing and communication abilities,
which has led to growing interest in the area of distributed
filtering. The research in this area basically aims at computing
an estimate of the state trajectory by combining information
from several sources, each of which has some partial inform-
ation about the state. A conceptual sketch of the distributed
filtering architectures is depicted in Figure 1. In this layout,
instead of using the centralized measurements y, there are
N sensor units which measure different components of these
centralized measurements, y1, . . . , yN , and each sensor unit
computes an estimate of the state based on the partial measure-
ments while exchanging information with its neighbors, which
are determined by a communication graph. Several design
techniques have now emerged in the literature with varying
degree of analysis. For discrete-time deterministic systems, the
estimation problem in distributed setting is studied in [1], [2].
For continuous-time deterministic systems, one may refer to
[3], [4]. The focus in these works is on proposing estimation
algorithms and provide design criteria for each unit which uses
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minimal information about the centralized system dynamics.
In certain papers, distributed state estimation is studied as an
application of synchronization of multi-agent systems [5], [6],
[7]. Distributed state estimation for deterministic continuous-
time systems with communication at discrete times has been
studied in [8], [9]. For stochastic systems, we see consensus
based approaches for scalar systems in [10]. Distributed filter-
ing with more general probability distributions and application
to Gaussian distributions with linear discrete-time systems is
studied in [11]. Prior to that, several algorithms for distributed
filtering have been proposed in discrete-setting [12], [13].

An important issue from the point of implementation of
filters over networks is to make the algorithms compatible
with the underlying communication protocol [14]. In commu-
nicating messages over the networks, the transmission may
break down at some time instants, or the messages may not
be transferred at exact scheduled times. An abstract way to
model such scenarios is to assume that the underlying proto-
cols transmit messages only at randomly drawn discrete time
instants. With this motivation, certain works in the literature
have studied the problem of stabilization and control with
randomly sampled measurements: The reader may refer to
[15] for optimal control and the papers [16], [17] for stability
analysis of such systems. A recently published book chapter
[18] provides an overview of such results and some recent
developments. There have been relatively fewer works which
have addressed filtering problem in the presence of measure-
ment errors or communication uncertainties. The papers [19],
[20], [21] consider a discrete-time linear dynamical system and
associate randomness with the transmission times of the output
measurements. A different toolset, based on relative entropy,
is adopted in [22] to study the stability and convergence of
filters under relaxed assumptions on observation channels.
For continuous-time dynamical system driven by white noise,
centralized continuous-discrete estimators are studied in [23].
Performance bounds for centralized filters of continuous-time
systems under random sampling appear in [24].

In this article, we consider filtering problem in distrib-
uted setting for continuous-time linear stochastic systems.
Our objective is to propose filtering algorithms, and analyze
their performance, when the centralized measurements are not
available, and the agents can only communicate their own state
estimates to their neighbors at time instants determined by a
Poisson counter. In particular, we consider agents (or sensor
units) which have partial information about the state at all
times. This information is used to compute an estimate of
the state using a differential equation. Then, at some random
time instants, the agents exchange the value of their estimate
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dx = Axdt+Bdω,

dy = Hxdt+ dv
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Figure 1: Layout of distributed filters, where dashed lines
represent communication at random times.

with their neighboring agents and update their own state
based on the information received. In addition to formalizing
this intuition, we develop some tools for analysis of such
filtering algorithms. This involves computing the bounds on
error covariance matrices of each filter while exchanging
information with other agents. Also, we are interested in
studying the limiting behavior of these bounds as the formal
stability analysis of distributed filters with the aforementioned
communication architecture has not received much attention
in the literature.

To position the contribution of this article in the existing
literature on distributed estimation and filtering, we observe
that, for distributed state estimation in deterministic setup [1],
[2], [3], [4], [6], one directly analyzes the convergence of the
norm of estimation error to the origin and the focus is mostly
on design aspect. The error covariance bounds are analyzed in
the stochastic setup [10], [11], [12], [13], where the problem
is essentially studied in the discrete setting without any loss of
information and the focus is mostly on achieving optimality
via appropriate filter design. On the other hand, our focus
is on analyzing the performance of distributed filters for a
continuous-time process, where each filter gets continuous
information from the sensors, and some updates at random
discrete times from its neighbors. The derivation of the bounds
on the expectation of error covariance process with Poisson
sampling in distributed setup is a unique feature of our work.
The elegant and useful outcome of this analysis is that we
observe diffusive coupling among covariance bounds, and the
mean sampling rate plays the role of coupling strength. This
observation allows us to analyze the asymptotic behavior of
the expected error covariance for each filtering unit. However,
unlike [12], [13], the asymptotic bounds quantifying the per-
formance of the distributed filters are obtained in suboptimal
setting through a simplistic choice of injection gains and the
update rule for information fusion is not necessarily optimal.

Notation: Let us recall some basic definitions from the
literature which are used in the statement and derivation
of main results. A function χ : R≥0 → R≥0 is said to
be of class K if it is continuous, increasing, and satisfies
χ(0) = 0. For the matrices M1 and M2, we define the inner
product as 〈M1,M2〉 = tr(M>1 M2). This choice of inner
product allows us to introduce the Frobenius norm, defined as
‖M‖ =

√
〈M,M〉 =

√
tr(M>M). Throughout this article,

we will work with this particular norm for matrices. We recall

that the Cauchy-Schwarz inequality for this choice of norm
implies that | tr(M1M2)| ≤ ‖M1‖ ‖M2‖. For a square matrix
M ∈ Rn×n, the notation Sym(M) stands for M +M>, and
σi(M) denotes the i-th eigenvalue of M with the convention
that σ1(M) ≤ σ2(M) ≤ · · · ≤ σn(M). The symbol o(s) for
s→ 0 denotes a function of s ∈ R satisfying lims→0

o(s)
s = 0,

and the symbol O(s) for s→ 0 stands for a function of s ∈ R
satisfying lims→0

O(s)
s exists and is finite.

II. PROBLEM FORMULATION

Consider the dynamical system

dx = Axdt+B dω (1)

where (x(t))t≥0 is an Rn-valued diffusion process describing
the state. Let (Ω,F ,P) denote the underlying probability
space. It is assumed that, for each t ≥ 0, (ω(t))t≥0 is an
Rm-valued standard Wiener process adapted to the filtration
Ft ⊂ F , with the property that E[dω(t) dω(t)>] = Imdt, for
each t ≥ 0. The matrices A ∈ Rn×n and B ∈ Rn×m are taken
as constant, and the process (ω(t))t≥0 does not depend on the
state. The solutions of the stochastic differential equation (1)
are interpreted in the sense of Itô stochastic integral.

a) Measurements via distributed sensors: The measure-
ments associated with system (1) are obtained from a set of
N sensors which are distributed in their localization. Each of
these sensors provides a partial measurement about the state
described as,

dyi = Hix dt+ dvi, i = 1, . . . , N, (2)

where Hi ∈ Rpi×n, and
∑N
i=1 pi =: p. That is, for each node,

(yi(t))t≥0 describes an Rpi -valued continuous-time observa-
tion process. In the observation equation (2), vi(t) is an Ft-
adapted standard Wiener process, taking values in Rpi , and
E[dvi(t) dvi(t)

>] = Vidt, with Vi ∈ Rpi×pi assumed to be
positive definite.

The sensor nodes are connected via a graph G = (V ,E ),
where V = {1, . . . , N} is the set of graph nodes, and E
contains all the edges defined by a subset of the pairs (i, j),
i 6= j, i, j ∈ V . We assume that the graph is undirected and
connected. The neighbors of a node i ∈ V are denoted by
Ni := {j ∈ V | (i, j) ∈ E }, and we adopt the convention
that i 6∈ Ni. The adjacency matrix A := [aij ] ∈ {0, 1}N×N
of the graph, which is symmetric, provides the information
about which sensor nodes can communicate with each other,
that is, if aij = 1 then sensor i and j can communicate,
whereas aij = 0 means there is no communication possible
between those sensors. The degree of a node i ∈ V is defined
as |Ni|, that is, the cardinality of the set Ni. The diagonal
matrix D = [dii], with dii = |Ni| is therefore the degree
matrix. We associate a Laplacian L with this graph, defined as,
L = D−A. For our purposes, the matrix Π = [πij ] ∈ RN×N ,
defined as

Π := IN×N − αL (3)

with 0 < α ≤ mini∈V
1
|Ni| , plays an important role. Note

that, by construction, Π is a doubly stochastic matrix, that is,
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for each row and each column, the sum of their entries equals
one.

b) Communication Process: The next main ingredient of
our problem formulation is the description of the time instants
at which the communication takes place between two sensor
nodes connected by an edge. Corresponding to each edge
(i, j) ∈ E , it is stipulated that there is an increasing and
divergent sequence (τ ijk )k∈N ⊂ [0,+∞[ with τ ij0 := 0, and
the sensor nodes i, j ∈ V transmit the value of their state
estimate to each other at τ ijk , k ∈ N.

In this article, we are interested in the case where the
sampling times (τ ijk )k∈N are generated randomly. Formally,
we define

N ij
t := sup

{
k ∈ N

∣∣ τ ijk ≤ t} for t ≥ 0. (4)

The map t 7→ N ij
t increments by 1 at random times, and

it provides a description of the number of times the nodes
i, j ∈ V communicate with each other up to and including
time t. Let λ > 0. The communication times are such that
τ ij
Nij

t

−→ +∞ almost surely as t↗ +∞. Recall that a random

process (N ij
t )t≥0 is a Poisson process of intensity λ, defined

on our probability space, if any one of the following equivalent
properties hold:

(P1) (N ij
t )t≥0 is a Markov process taking values in N, has

independent increments, and satisfies N0 = 0, and for
h↘ 0 and t ≥ 0,

P
(
N ij
t+h−N

ij
t = k

∣∣N ij
t

)
=


1− λh+ o(h) if k = 0,

λh+ o(h) if k = 1,

o(h) if k ≥ 2,

where the terms o(h) do not depend on t.
(P2) (N ij

t )t≥0 is a continuous-time random process taking
values in N, having monotone non-decreasing sample
paths with increments of 1, and spending an exponen-
tially distributed, with parameter λ, random time in each
state k before jumping to k + 1 independently for all k.

The communication process between any two neighbors is
described by the following hypothesis:

• for each (i, j) ∈ E , (N ij
t )t≥0 is an independent Poisson

process of intensity λ > 0.

Next, we associate with each node i ∈ V , the process N i
t ,

N i
t :=

∑
j∈Ni

N ij
t

so that N i
t increments by one whenever node i ∈ V exchanges

information with one of its neighbors. We recall that N i
t is also

a Poisson process. The times at which N i
t gets incremented

are denoted by τ i
Ni

t
. We can now introduce the activation set

Ait, for t ≥ 0, which is defined as,

Ait :=
{
j ∈ Ni

∣∣∣N ij
t −N

ij
t 6= 0; t = τ iNi

t−1

}
,

that is, at times τ i
Ni

t
, the set Ait describes the neighbors of

agent i ∈ V that communicate with it.

c) Filtering Algorithm: Based on the aforementioned
communication architecture, and the sensor localization, we
propose the following algorithm, to be implemented by each
sensor node:

dx̂i = (A− LiHi)x̂idt+ Lidyi (5)

over the interval [τ i
Ni

t
, τ i
Ni

t+1
[, for each t ∈ [0,+∞[. Because

of the arrival of new information at random times, the estimate
x̂i, i ∈ V , gets updated at such times, that is, for each node
i ∈ V , we update x̂i at tc = τ i

Ni
t

as follows:

x̂i(t
+
c ) =

∑
j∈Ai

tc

πij x̂j(t
−
c ) +

(
1−

∑
j∈Ai

tc

πij

)
x̂i(t

−
c ), (6)

where πij are the elements of the matrix Π introduced in
(3). Each of these filters is a stochastic hybrid system of the
form [25] with continuous evolution described by (5) between
sampling times, and the jump rule (6) executed at random
sampling instants where we update the estimate x̂i as the
convex combination of itself and its active neighbors. The
communication based on the underlying graph results in a
particular interconnection of these hybrid systems.
Remark II.1. In our filtering algorithm (5), (6), we are choos-
ing the gains Li to be constant. In optimal filtering, such as
Kalman filtering, one uses the information of the evolution
of the covariance matrices to update the gains. Our choice
is clearly suboptimal but for this paper, we focus only on
constant gains to keep the presentation simple.

d) Problem statement: The basic problem studied in this
paper is the performance of the distributed filters proposed in
(5)–(6) when the communication across each edge is described
by an independent Poisson counter. The design parameters are
the gain matrices Li, and we want to study the role of mean
sampling rate λ in quantifying the performance of the system.
More precisely, if we let Yit denote the information available
to sensor node i ∈ V up till time t ∈ [0,+∞[, that is, Yit :=
{(dyi(s), x̂j(τ iNi

s
)) | s ≤ t, j ∈ Ni}, then our objectives are:

• Compute an upper bound on the expectation (with respect
to sampling process) of the error covariance matrices
E[E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yit ]], for t ≥ 0.

• Provide a criteria for boundedness of the expected error
covariance in terms of the gain matrices, and the mean
sampling rate.

III. MAIN RESULT

We now address the objectives outlined in the previous
section. To do so, we consider the injection gains Li ∈ Rn×pi ,
and introduce the matrices L ∈ Rn×p and H ∈ Rp×n as
follows:

L :=
1

N

[
L1 . . . LN

]
, H =

 H1

...
HN

 . (7)

Consequently, we see that A− LH = A− 1
N

∑N
i=1 LiHi.
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Theorem III.1. Consider system (1) with distributed measure-
ments (2) and the corresponding hybrid filters (5), (6) coupled
by an undirected and connected graph G = (V ,E ). Suppose
that the communication across an edge (i, j) ∈ E takes place
at random times described by an independent Poisson process
(N ij

t )t≥0 of intensity λ > 0, then the following items hold:

1) For each λ > 0, and i = 1, · · · , N , we have

E[E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yit ]] ≤ Pi(t), (8)

where the matrix-valued function Pi : [0,∞[→ Rn×n
satisfies the differential equation

Ṗi = (A−LiHi)Pi+Pi(A−LiHi)
>+BB>+LiViL

>
i

+ λ
∑
j∈Ni

πij(Pj − Pi). (9)

2) If the gains Li are chosen such that the matrix (A−LH)
is Hurwitz, which in turn implies that there exist a sym-
metric positive definite matrix R and a symmetric positive
semidefinite matrix S satisfying

R (A− LH) + (A− LH)
>
R ≤ −In (10)

0 = (A− LH)S+S (A− LH)
>

+BB>+
1

N

N∑
i=1

LiViL
>
i

(11)
then for every λ > 0 sufficiently large, the corresponding
solution of (9) satisfies

lim sup
t→∞

‖Pi(t)− S‖ ≤

√
N
σn(R)

σ1(R)

√
χ

(
1

λασ2(L)− C1

)
(C3σG + C2‖S‖) ,

(12)

for some nonnegative constants C1, C2, C3, while σG :=
max1≤i≤N ‖BB>+LiViL

>
i ‖, and χ is a class K function

satisfying χ(s) = O(s) as s→ 0.

The proof of Theorem III.1 involves several intermediate
results, and is carried out in the remainder of this section
within various subsections.

A. Analysis for fixed sampling times

The first step in the proof of Theorem III.1 is to obtain
a bound on the covariance of estimation error resulting from
(5), (6) for a given value of sampling times. To do so, it is
useful to introduce the dynamics for the state estimation error,
ei := x − x̂i. For i ∈ V , over an interval [τ i

Ni
t
, τ i
Ni

t+1
[, we

have the differential equation:

dei = (A− LiHi)dei + Lidvi +Bdω (13a)

and at communication times tc = τ i
Ni

t
, it holds that

ei(t
+
c ) =

(
1−

∑
j∈Ai

tc

πij

)
ei(t
−
c ) +

∑
j∈Ai

tc

πijej(t
−
c ). (13b)

Error covariance bound on estimation error is described in the
following statement.

Proposition III.2. Consider system (1) and the filter (5), (6).
For a node i ∈ V , consider the sequence {τ ik}k∈N to be fixed.
Let the process Pi : [0,∞[→ Rn×n, with Pi(0) ≥ E[(x0 −
x̂i(0))(x0 − x̂i(0))>], be defined by

dPi
dt

= (A− LiHi)Pi + Pi(A− LiHi)
> +BB> + LiViL

>
i ,

(14a)
for τ ik ≤ t < τ ik+1, for each k ∈ N, and at tc = τ ik, let

Pi(t
+
c ) :=

(
1−

∑
j∈Ai

tc

πij

)
Pi(t

−
c ) +

∑
j∈Ai

tc

πijPj(t
−
c ). (14b)

Then, it holds that, for each t ≥ 0,

E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yit ] ≤ Pi(t). (15)

Proof. For the sake of conciseness, we will denote the expect-
ation on the left-hand side of (15) by E[eie

>
i ]. We first show

that, for each t ∈ [τ ik, τ
i
k+1[, k ∈ N,

dE[ei(t)ei(t)
>]

dt
= (A− LiHi)E[ei(t)ei(t)

>]

+ E[ei(t)ei(t)
>](A− LiHi)

> +BB> + LiViL
>
i

and that, at the communication instants, tc = τ ik,

E[ei(t
+
c )ei(t

+
c )>] ≤

(
1−

∑
j∈Ai

tc

πij

)
E[ei(t

−
c )ei(t

−
c )>]

+
∑
j∈Ai

tc

πijE[ej(t
−
c )ej(t

−
c )>].

The bound in (15) then holds by observing that Pi(t) sat-
isfies (14a) over [τ ik, τ

i
k+1[, and (14b) at t = τ ik, with

E[ei(0)ei(0)>] ≤ Pi(0).

a) Continuous part: We first show that for t ∈ [τ ik, τ
i
k+1[,

we have the equality dE[ei(t)ei(t)
>]

dt = dPi(t)
dt . This is a rather

classical derivation, and as an example, one may refer to the
arguments in [24] for details. On this time interval, let us
consider the Itô process (13), and the function v : Rn → Rn×n
given by, Rn 3 e 7→ v(e) = ee> ∈ Rn×n. Consequently,
(v ◦ ei(t))t≥0 is an Itô process. By applying Itô’s differential
chain rule, and following the calculations as in [24, Section 3],
we obtain

dE[v(ei(t))]

dt
= (A− LiHi)E

[
ei(t)ei(t)

>]+
E
[
ei(t)ei(t)

>](A− LiHi)
> +BB> + LiViL

>
i .

b) Jump part: Computing the bound on error covariance
at sampling times basically requires us to compute bounds
on covariance of a random variable described by the convex
combination of different random variables. This is based on
the following lemma:
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Lemma III.3. Let m be a positive integer, and let
x1, . . . , xm ∈ Rn. If z :=

∑m
j=1 γjxj for some γj ∈ [0, 1],∑m

j=1 γj = 1, then

zz> ≤
m∑
j=1

γjxjx
>
j . (16)

Proof of Lemma III.3. Let Sn+ denote the set of positive semi-
definite matrices in Rn×n, and consider the function f : Rn →
Sn+, so that, for x ∈ Rn, f(x) = xx>. We consider the
epigraph of f , denoted by epi(f), and defined as,

epi(f) = {(M,x) ∈ Sn+ × Rn|M ≥ f(x)}.

We claim that epi(f) ⊂ Sn+×Rn is convex, that is, if (M1, x̄1)
and (M2, x̄2) belong to epi(f), then for each γ ∈ [0, 1], it
holds that (γM1 + (1− γ)M2, γx̄1 + (1− γ)x̄2) ∈ epi(f). To
see this, we first observe that, for a fixed γ ∈ [0, 1],(√

1− γ
γ

γx̄1 −
√

γ

1− γ
(1− γ)x̄2

)
·(√

1− γ
γ

γx̄1 −
√

γ

1− γ
(1− γ)x̄2

)>
≥ 0

and hence

γ(1−γ)(x̄1x̄
>
2 +x̄2x̄

>
1 ) ≤ 1− γ

γ
γ2x̄1x̄

>
1 +

γ

1− γ
(1−γ)2x̄2x̄

>
2 .

Using this last inequality, we get

f(γx̄1 + (1− γ)x̄2) = γ2x̄1x̄
>
1 + γ(1− γ)(x̄1x̄

>
2 + x̄2x̄

>
1 )

+ (1− γ)2x̄2x̄
>
2

≤ γ2
(

1 +
1− γ
γ

)
x̄1x̄
>
1 + (1− γ)2

(
1 +

γ

1− γ

)
x̄2x̄
>
2 ,

= γx̄1x̄
>
1 + (1− γ)x̄2x̄

>
2

≤ γM1 + (1− γ)M2,

which implies that epi(f) is convex. Coming back to the state-
ment of the lemma, we observe that, for each j = 1, . . . ,m,
(f(xj), xj) ∈ epi(f) and since we have shown that this set is
convex, it follows that

m∑
j=1

γj(f(xj), xj) =

 m∑
j=1

γjf(xj),

m∑
j=1

γjxj


also belongs to epi(f). By construction, we therefore have

f

 m∑
j=1

γjxj

 ≤ m∑
j=1

γjf(xj)

which yields the desired inequality be recalling the definition
of f .

At communication times, tc = τ ik, the statement
of Lemma III.3 directly yields an upper bound on
E[ei(t

+
c )ei(t

+
c )>] by recalling the definition of e(t+c ) in (13b),

and using the linearity of the expectation operator. The proof
of Proposition III.2 is therefore complete.

B. Expectation of error covariance with respect to sampling
process

In Proposition III.2, we computed a bound on the error
covariance for a fixed sequence of time instants at which
measurements are received by node i ∈ V . That is, Pi(t) is an
upper bound on E[(x(t)−x̂i(t))(x(t)−x̂i(t))> | Yit ] along one
particular sample path as the realization of Pi(·) depends on
the observed sampling times. It is thus of interest to compute
the expected value of Pi(·) along all possible sample paths
generated by the communication processes (N ij

t )t≥0, j ∈ Ni.
We do so next under the assumption that (N ij

t )t≥0 is a Poisson
process of intensity λ.

To compute the expected value of Pi with respect to
sampling times, we introduce the operator Linf : Rn×n →
Rn×n defined as

Linf(Q) := lim
ε→0

1

ε

(
E[Pi(t+ ε) |Pi(t) = Q]−Q

)
. (17)

We will see that this operator describes infintesimal evolution
of the expected value of the error covariance process and
hence, (9) and the proof of first item in Theorem III.1, are
a direct consequence of the following result.

Proposition III.4. Consider the process (Pi(t))t≥0 given by
(14) with the processes (N ij

t )t≥0 of intensity λ > 0, j ∈ Ni.
Let Pi(t) := E[Pi(t) |P0] denote the expected value at time
t ≥ 0 with respect to distribution associated with the process
N i
t :=

∑
j∈Ni

N ij
t . Then, (9) holds.

Proof. We first note that
(
Pi(t)

)
t≥0 is Markovian because the

future of Pi(t) depends only on the last sampling instant τ i
Ni

t
.

According to Dynkin’s formula,

Pi(t) = E[Pi(t)] = Pi(0) + E
[∫ t

0

Linf(Pi(s))
]
ds.

Since Linf is a linear operator, we get Ṗi(t) = Linf(Pi(t)).
To show (9), we thus compute Linf(Q) for a given matrix Q
in the remainder of the proof. Recalling the definition of Linf ,
we observe that

E
[
Pi(t+ ε)

∣∣Pi(t) = Q
]

= E
[(
Pi(t+ ε)

)(
1{Ni

t+ε=N
i
t}

+ 1{Ni
t+ε=1+Ni

t} + 1{Ni
t+ε−Ni

t≥2}
) ∣∣Pi(t)]. (18)

We now compute the conditional probability distribution of(
Pi(t+ ε)

)
for small ε > 0 given

(
Pi(t)

)
. We note that N i

t is
a Poisson process of intensity diiλ, where dii is the degree of
node i ∈ V . Since the communication times are independent
of the process

(
Pi(t)

)
t≥0, by definition of the Poisson process

we have, for ε ↓ 0, P
(
N i
t+ε − N i

t = 0
∣∣N i

t , Pi(t)
)

= 1 −
diiλε + o(ε), P

(
N i
t+ε −N i

t = 1
∣∣N i

t , Pi(t)
)

= diiλε + o(ε),
P
(
N i
t+ε−N i

t ≥ 2
∣∣N i

t , Pi(t)
)

= o(ε). Using these expressions
we develop (18) for ε ↓ 0 as

E
[
Pi(t+ ε)

∣∣Pi(t) = Q
]

= E
[
Pi(t+ ε)

(
1{Ni

t+ε=N
i
t} + 1{Ni

t+ε=1+Ni
t}
) ∣∣Pi(t)]+ o(ε)

= E
[
Pi(t+ ε)

∣∣Pi(t), N i
t+ε = N i

t

]
·
(
1− diiλε+ o(ε)

)
+ E

[
Pi(t+ ε)

∣∣Pi(t), N i
t+ε = 1 +N i

t

](
diiλε

)
+ o(ε). (19)
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The two significant terms on the right-hand side of (19) are
now computed separately. For the event N i

t+ε = N i
t , given

Pi(t) = Q, Ṗi is governed by (14a), so we have for ε ↓ 0,

Pi(t+ ε) = Pi(t) + εṖi(t) + o(ε) = Q+ ε
[
(A− LiHi)Q

+Q(A− LiHi)
> +BB> + LiViL

>
i

]
+ o(ε),

leading to the first term on the right-hand side of (19) having
the estimate

E
[
Pi(t+ ε)

∣∣Pi(t), N i
t+ε = N i

t

]
·
(
1− diiλε+ o(ε)

)
= Q+ ε((A− LiHi)Q+Q(A− LiHi)

> +BB> + LiViL
>
i )

− (diiλε)Q+ o(ε), (20)

for ε ↓ 0. Concerning the second term on the right-hand side
of (19), we observe that P

(
N i
t+ε = 1 +N i

t

∣∣N i
t

)
is equivalent

to∑
j∈Ni

P
(
N ij
t+ε−N

ij
t = 1

∣∣N ij
t

)∏
k 6=j

P
(
N ik
t+ε−N ik

t = 0
∣∣N ik

t

)
.

Moreover, conditional on N ij
t+ε = 1 + N ij

t , j ∈ Ni, the
probability distribution of τ ij

Nij
t+ε

is uniform over [t, t + ε[ by
definition of the Poisson process [26, Theorem 2.3.7]. We
introduce θ ∈ [0, 1[ such that τ ij

Nij
t+ε

= t + θε; then θ is

uniformly distributed on [0, 1[ given N ij
t+ε = 1 + N ij

t . We
now write the right-hand side of (14a) more compactly using
the map ψ,

Q 7→ ψ(Q) = (A−LiHi)Q+Q(A−LiHi)
>+BB>+LiViL

>
i

and (14b) using the map ψjt , Q 7→ ψjt (Q) := (1 − πij)Q +
πijPj(t).We thus have, conditioned on the event N ij

t+ε = 1 +

N ij
t , Pi(t) = Q,

Pi(τ
ij

Nij
t+ε

) = Pi(t+ θε) = ψjt (Pi(t+ θε)−).

The above expressions then lead to, conditioned on the same
event, and for ε ↓ 0,

Pi(t+ ε) = Pi(t+ θε) + (1− θ)εṖi(t+ θε) + o(ε)

= Pi(t+ θε) + (1− θ)εψ
(
Pi(t+ θε)

)
+ o(ε)

= ψjt+θε(Pi(t) + θεψ(Pi(t)) + o(ε))

+ (1− θ)εψ
(
Pi(t+ θε)

)
+ o(ε)

= ψjt (Pi(t)) + θO(ε) +O(ε) + o(ε).

One can repeat the above procedure for each j ∈ Ni, so that,
for ε ↓ 0,

E
[
Pi(t+ ε)

∣∣Pi(t) = Q,N i
t+ε = 1 +N i

t

]
P
(
N i
t+ε = 1 +N i

t

)
=
∑
j∈Ni

∫ 1

0

(
E[ψjt (Q)] + θO(ε) +O(ε) + o(ε)

)
dθ · (λε)

=
∑
j∈Ni

(
E[ψjt (Q)] +O(ε)

)
· (λε)

=
∑
j∈Ni

(λε)E[ψjt (Q)] + o(ε). (21)

Substituting (20) and (21) in (19), we obtain

E
[
Pi(t+ε)

∣∣Pi(t) = Q
]

= Q−(λε)
∑
j∈Ni

(
Q−E[ψjt (Q)]

)
+o(ε)

+ ε
(

(A−LiHi)Q+Q(A−LiHi)
> +BB> +LiViL

>
i

)
.

Substituting these expressions in (17), we see that for each
Q ∈ Rn×n,

Linf(Q) = (A− LiHi)Q+Q(A− LiHi)
> +BB> + LiViL

>
i

+ λ
(
E[ψjt (Q)]−Q

)
,

which, upon recalling the definition of ψjt , leads to the desired
expression in (9).

C. Asymptotic behavior

The second item in Theorem III.1 relates to the asymptotic
behavior of the coupled differential equations (9). Each of
these equations is linear in the state, driven by a constant
term which corresponds to the noise level in the system and
sensors, and are interconnected by diffusive coupling which
corresponds to the mean sampling rate λ. Such systems in the
literature are studied under the framework of heterogenous
multi-agent systems since the dynamics of Pi are different for
each i ∈ V . In contrast to homogenous agents, consensus in
heterogenous agents is not possible in general. However, one
can get the states of all the agents close to desired accuracy
by increasing the coupling strength λ.

For the proof of item 2) in Theorem III.1, we introduce the
notation,

Ai := A− LiHi, and A := A− LH =
1

N

N∑
i=1

Ai.

Furthermore, let

Fi(Pi) := AiPi + PiA>i , and Gi := BB> + LiViL
>
i

so that, Ṗi = Fi(Pi) +Gi. Also, we let

P :=

P1

...
PN

 , F (P) :=

 F1(P1)
...

FN (PN )

 , G :=

G1

...
GN

 .
Then, we can write

Ṗ = F (P) +G+ λ(Π⊗ In)P − λ(IN ⊗ In)P
= F (P) +G− λα(L ⊗ In)P,

where we recall that Π = IN + αL. For an undirected
connected graph with Laplacian L, we can find a matrix U
such that ULU> = diag (0,Λ). Let v`1 denote the normalized
eigenvector corresponding to the eigenvalue 0 of the Laplacian,
so that

v>`1 =
1√
N

[
1 1 · · · 1

]
∈ R1×N , and v>`1L = 0.

There exists a matrix Ũ ∈ RN×(N−1), with Ũ>Ũ = IN−1,
Ũ> · 1N = 0, such that

U =

[
v>`1
Ũ>

]
, U−1 = U> = [v`1 , Ũ

†]
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where Ũ† ∈ RN×(N−1) is the matrix satisfying

Ũ>Ũ† = IN−1, and 1>N Ũ† = 0.

Introduce the coordinate transformation

Q =
1√
N

(U ⊗ In)P =

[
1
N (1>N ⊗ In)
1√
N

(Ũ> ⊗ In)

]
P =:

[
Q1

Q̃

]
and the inverse of this transformation gives,

P =
√
N(U ⊗ In)−1Q =

√
N(U−1 ⊗ In)Q

=
√
N
[
(v`1 ⊗ In) (Ũ† ⊗ In)

]
Q

= (1N ⊗ In)Q1 +
√
N(Ũ† ⊗ In)Q̃.

Let S denote the solution of the differential equation Ṡ =

AS + SA> + BB> + 1
N

∑N
i=1 LiViL

>
i . We introduce the

variable E to denote the difference between the mean value of
Pi, i = 1, . . . , N , and S, that is,

E := Q1 − S =
1

N

N∑
i=1

Pi − S,

and it is observed that

Ė = Q̇1 − Ṡ =
1

N

N∑
i=1

Ṗi − Ṡ

= AE + EA> +
1

N

(
N∑
i=1

Fi

(√
N(Ũ†i ⊗ In)Q̃

))
(22)

where Ũ†i denotes the i-th row of Ũ†. Also, we can write

˙̃Q = −λα(Λ⊗ In)Q̃+
1√
N

(Ũ> ⊗ In) (F (P) +G)

= −λα(Λ⊗ In)Q̃+
1√
N

(Ũ> ⊗ In)
[
F ((1N ⊗ In)Q1

+
√
N(Ũ† ⊗ In)Q̃) +G

]
= −λα(Λ⊗ In)Q̃+ (Ũ> ⊗ In)F ((Ũ† ⊗ In)Q̃)

+
1√
N

(Ũ> ⊗ In) (F ((1N ⊗ In)(E + S)) +G) . (23)

For stability analysis of the process P , we equivalently analyze
the stability of (22) and (23). Towards this end, we recall the
matrix R that satisfies (10), and introduce the functions

V1(E) :=
1

2
tr(R1/2ERER1/2),

V2(Q̃) :=
1

2
tr (Q̃Q̃>).

To analyze the evolution of V1 along the solutions of (22), we
compute the bound on the derivative of V1. Using the cyclic
property of the trace operator, we get

V̇1 =
1

2
tr
[
Sym((RA+A

>
R)ERE)

]
+

1

2N
tr

[
Sym

(
RER

N∑
i=1

Fi(
√
N(Ũ†i ⊗ In)Q̃)

)]
≤ − tr(ERE)

+
1

2
√
N

tr

[
N∑
i=1

Sym
(
RERFi((Ũ†i ⊗ In)Q̃)

)]
≤ −σ1(R)‖E‖2 + C0

√
N ‖E‖ ‖Q̃‖

where we used the bounds on the trace of products from
[27], tr(ERE) = tr(RE2) ≥ σ1(R) tr(E2), and C0 ≥ 0 is
a constant satisfying

max
1≤i≤N

1

2
tr
[
Sym(RER(Fi((Ũ

†
i ⊗ In)Q̃))

]
≤ C0‖E‖ ‖Q̃‖.

On the other hand, using similar techniques, we can bound the
derivative of V2 along the solutions of (23) as follows:

V̇2 ≤ −λασ2(L) tr(Q̃Q̃>) + C1 tr(Q̃Q̃>)

+ C2 ‖E‖ · ‖Q̃‖+ C2 ‖S‖ · ‖Q̃‖+ C3σG · ‖Q̃‖

where we recall that σG = max1≤i≤N ‖Gi‖, and the positive
scalars C1, C2, C3 ≥ 0 are chosen to satisfy

0.5 tr
[
Sym(Q̃>(Ũ> ⊗ In)(F ((Ũ† ⊗ In)Q̃)))

]
≤ C1 tr(Q̃Q̃>)

0.5 tr
[
Sym(Q̃>(Ũ> ⊗ In)(F ((1N ⊗ In)E)))

]
≤ C2

√
N‖E‖ · ‖Q̃‖

0.5 tr
[
Sym(Q̃>(Ũ> ⊗ In)(F ((1N ⊗ In)S)))

]
≤ C2

√
N‖S‖ · ‖Q̃‖

0.5 tr
[
Sym(Q̃>(Ũ> ⊗ In)G)

]
≤ C3

√
NσG‖Q̃‖.

For the combined dynamical system (22), (23), we now
consider the proper, positive definite Lyapunov function

V(E ,Q) = V1(E) + V2(Q̃)

and observe that

V̇ ≤ −σ1(R)‖E‖2 − (λασ2(L)− C1)‖Q̃‖2

+ (C0

√
N + C2)‖E‖ ‖Q̃‖+ (C2‖S‖+ C3σG) ‖Q̃‖.

Applying Lemma A.1 from Appendix, we readily obtain,

lim sup
t→∞

‖E(t)‖2 + ‖Q̃(t)‖2 ≤ 1

σ2
1(R)

lim sup
t→∞

V(E(t),Q(t))

≤ σ2
n(R)

σ2
1(R)

(
C3σG + C2 lim sup

t→∞
‖S(t)‖

)2

χ

(
1

λασ2(L)− C1

)
.

With A Hurwitz and S satisfying (11), we have
limt→∞ S(t) = S, which leads to the following bound
for each i ∈ V ,

lim sup
t→∞

‖Pi(t)− S‖ = lim sup
t→∞

‖Pi(t)− S(t)‖

≤ lim sup
t→∞

√
N

√
‖E(t)‖2 + ‖Q̃(t)‖2

≤
√
N
σn(R)

σ1(R)

√
χ

(
1

λασ2(L)− C1

)
(C3σG + C2‖S‖)

for some class K function χ such that χ(s) = O(s) as
s→ 0. Hence, we obtain (12) and this completes the proof of
Theorem III.1.
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IV. CONCLUSIONS AND PERSPECTIVES

We considered the problem of distributed filtering over
undirected and connected graphs. The sensor nodes exchange
information about their estimate, and the communication
between the sensor nodes is driven by independent Poisson
processes. The algorithm implemented by each node is in the
form of a stochastic hybrid system. We derive bounds on the
covariance of the estimation error for each node, and show
practical convergence for large enough sampling rates.

There are some immediate research directions that emanate
from this work. Building on Theorem III.1, it is interesting to
investigate algorithms which minimize the covariance bounds
under different information patterns. Another interesting dir-
ection is to study a broader class of random processes for the
communication between sensor nodes. While the memoryless
Poisson counter treated in this paper results in diffusive
coupling between the dynamics of expected error covariances,
it remains to be seen what kind of interconnection is obtained
from other communication processes.

APPENDIX

The following lemma has been used in the proof of The-
orem III.1.

Lemma A.1. Consider a function W : R≥0×R≥0×R≥0 → R,
and a function g : R≥0 → R≥0, such that

W (t, r, s) ≤ −a1r2 + a2rs− a3s2 + g(t)s

for some positive scalars a1, a2, a3 > 0. Then, there exists
c > 0 such that

W (t, r, s) ≤ −c(r2 + s2), if r2 + s2 ≥ g2(t)χ

(
1

a3

)
where χ is a class K function and χ(s) = O(s) as s→ 0.

The proof of Lemma A.1 is very similar to the proof of [5,
Lemma 2], where one can also find the exact expressions for
the constant c, and the function χ.
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