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Abstract

This paper deals with the robust stabilization of uncertain discrete-time switched affine systems using a control Lyapunov approach and
a min-switching state-feedback control law. After presenting some preliminaries on cycles and limit cycles, a constructive stabilization
theorem is provided and guarantees that the solutions to the nominal closed-loop system converge to a limit cycle. These conditions are
expressed in terms of simple linear matrix inequalities (LMI), whose underlying necessary conditions relax the usual one in this literature.
This method is extended to the case of uncertain systems, for which the notion of limit cycle needs to be adapted. The theoretical results
are evaluated on academic examples and demonstrate the potential of the method over the recent literature.
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1 Introduction

A switched system consists in the association of a finite set
of dynamics with a switching rule that designates at each
time which is the active one among them [30]. This is a
wide particular class of hybrid systems [24], that allows
to model numerous applications in various fields as em-
bedding systems, electromechanics, biology, or networked
control systems and to characterize complex and not intu-
itive behaviors.
Among them, there are discrete-time switched systems, that
can be considered in their own or potentially generated by
continuous-time switched systems with a switching rule
that is piecewise constant according to a given sampling
period [29,27]. It is interesting to emphasize that in the
last case, linear or affine modes remain linear or affine by
discretization. This kind of systems have generated a rich
study concerning their stability to the origin [13,39], stabi-
lization [22] or stabilizability [19].
The question to stabilize a switched affine system to a state,
that is not in the set of equilibrium points of the modes,
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has motivated a large collection of contributions, espe-
cially in the continuous-time framework: global quadratic
stabilization via a min-switching strategy [10], use of dy-
namic programming to select the mode to activate and also
the time to switch [34], globally stabilizing min-switching
strategy taking into account a cost to minimize [15], local
stabilization without requiring the existence of a Hurwitz
combination of the linear parts [26], practical stabiliza-
tion with dwell-time guarantees [1], robust stabilization to
an unknown equilibrium point [2,3]. We can emphasize
also contributions in the discrete-time domain leading to
the practical stabilization via different types of Lyapunov
functions: a Lyapunov function as a general quadratic form
[16], or switched quadratic Lyapunov functions based on
Lyapunov-Metzler inequalities [18] or thanks to multiple
shifted quadratic Lyapunov functions [35].
Besides equilibrium points, dynamical systems may have
as asymptotic behaviors, self-sustained oscillations, or limit
cycles: that are closed and isolated trajectories [37, Sec-
tion 7]. Their studies have been initiated by Poincaré and are
generically related to the ω-limit sets (set of accumulation
points of the trajectories) and Poincaré-Bendixson theorem.
For hybrid or switched systems, limit cycles have been
mainly investigated in the continuous-time domain, moti-
vated by switched circuits [33,28,32,25,4]. The Poincaré-
Bendixson theorem has been extended for hybrid sys-
tems [36] and the ω-limit sets of hybrid systems have been
also investigated [11]. The main difficulty is to determine
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the switching times related to a limit cycle [23,21].
There are only a few contributions on limit cycles for
discrete-time affine systems switched systems: one case
study is provided in [32], based on practical stability [41]
or clock-dependent switched Lyapunov functions [17] and
also the preliminary result on multiple shifted quadratic
Lyapunov functions putting in evidence the notion of limit
cycles [35].
This paper is focused on limit cycles for discrete-time
switched affine systems. We will investigate their exis-
tence, and also their stabilizability thanks to state-dependent
switching laws. A particular interest of this result is the fact
that these systems can be stabilized without the requirement
of having a Schur combination of the linear part. We will be
also interested in their extension to the framework of uncer-
tain switched affine systems. In summary the contributions
are:

• A rigorous definition of limit cycle in the framework
of discrete-time switched affine systems.

• An original pure state dependent min-switching con-
trol strategy allows to obtain an autonomous system.
This control law differs to the time-dependent one pre-
sented in [17], which is based on a periodic Lyapunov
function.

• By considering a class of Lyapunov functions consist-
ing in the minimum of shifted quadratic ones, an expo-
nential stabilization is proven, first to an attractor and
second with additional assumption to the (hybrid) limit
cycle.

• Noting that our min-switching control strategy does not
depend on the system structure (Aσ, Bσ), it is possible
to propose a novel robust control law that considers
parametric uncertainties.

The paper is organized as follows. The investigated system
is presented in Section 2. Limit cycles are not only peri-
odic trajectories and are rigorously defined and discussed in
Section 3. In the same section, thanks to the discrete-time
nature of the system, we can avoid the Poincaré-Bendixson
theorem and we will provide necessary and sufficient con-
ditions for the existence of limit cycles of a given length.
Section 4 deals with the stabilization to a limit cycle. Sec-
tion 5 extends these results to the framework of uncertain
switched affine systems and generalizes the notion of limit
cycle to the one of robust limit cycle. Families of optimiza-
tion problems are presented in Section 6 depending on the
requirements of the designer that characterize a satisfactory
limit cycle or the best limit cycle among a given set. Several
illustrations are provided in Section 8 allowing additional
discussions before concluding remarks in Section 9.

Notations: Throughout the paper, N denotes the set of nat-
ural numbers, R the real numbers, Rn the n-dimensional Eu-
clidean space, Rn×m the set of all real n×m matrices and Sn

the set of symmetric matrices in Rn×n. For any n and m in
N, matrices In and 0n,m (0n = 0n,n) denote the identity ma-
trix of Rn×n and the null matrix of Rn×m, respectively. When
no confusion is possible, the subscripts of these matrices

that precise the dimension, will be omitted. For any matrix
M of Rn×n, the notation M � 0, (M ≺ 0) means that M
is symmetric positive (negative) definite and det(M) repre-
sents its determinant. For any matrices A = A>, B,C = C>
of appropriate dimensions, matrix

[ A B
∗ C

]
denotes the sym-

metric matrix
[

A B
B> C

]
. ‖ · ‖ denotes the Euclidean norm.

For a symmetric positive definite matrix P and a vector
x, we denote ‖x‖P =

√
x>Px, the weighted norm. For a

symmetric matrix, λm(·) and λM(·) denote its minimal and
maximal eigenvalues respectively. For a matrix M ∈ Sn,
M � 0 and a vector h ∈ Rn, we denote the shifted ellipsoid
E(M, h) =

{
x ∈ Rn, (x − h)>M(x − h) ≤ 1

}
.

2 Problem formulation

Consider the discrete-time switched affine system given by
x+ = Aσx + Bσ,

σ ∈ u(x) ⊂ K,

x0 ∈ R
n,

(1)

where x ∈ Rn is the state vector, which adopts the follow-
ing notation x+ = xk+1 and x = xk. Likewise, σ ∈ K :=
{1, 2, ..,K} characterizes the active mode. Finally, Ai ∈ R

n×n

and Bi ∈ R
n×1, for any i ∈ K are the matrices of mode i ∈ K.

The particularity of this class of systems relies on its control
action, which is only performed through the selection of the
active mode σ, which requires a particular attention.
The objective here is to design a suitable set valued map u
in system (1) that ensures the convergence of the state tra-
jectories to a set to be characterized in an accurate manner.
Indeed, it is well-known that asymptotic stabilization of a
single equilibrium of the switched affine system (1) cannot,
in general, be achieved [41]. Due to the affine term, and con-
sequently nonlinear nature, one has to relax the control ob-
jective to derive an acceptable stability result. For instance,
in [16], the authors have derived a practical stability result.
More precisely, it is shown therein, that the solutions to the
switched affine system converge to an invariant region char-
acterized by a level set of a Lyapunov function centered at a
desired operating point or at a slightly shifted point nearby
this desired reference position.
In this paper, our objective is to go deeper into the analysis
of switched affine systems and try to characterize in a finer
manner their behavior to steady state solutions, that is to
limit cycles. This new analysis is achieved thanks to a dif-
ferent class of Lyapunov functions different to the quadratic
ones. Indeed, one has to use more advanced tools and Lya-
punov functions arising in switched affine systems in order
to derive more accurate results. A first attempt was consid-
ered in [22] for switched linear systems, where the Lyapunov
function is defined using different Lyapunov matrices. It is
note-worthy that the discrete-time nature of the dynamics
(1) allows to consider classes of Lyapunov functions asso-
ciated to possibly disconnected level sets, as pointed out in
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[12]. Here, we propose to follow our preliminary results pro-
vided in [35] where a different Lyapunov function inspired
from [18] is included. In this work, we would like to extend
the idea presented in [35] in order to better understand the
attractor of the resulting control Lyapunov function. An im-
portant by-product of the following analysis is that the usual
underlying necessary condition consisting of the existence
of a Schur stable convex combination of matrices Ai is not
required anymore.

3 Limit cycles of switched affine systems

This section is focused on the equilibria, or more precisely
time-varying steady states of switched affine systems. In-
deed, this kind of systems seem to have a natural conver-
gence to a repeated sequence, behaving as a limit cycle in
discrete time as defined in [38]. In this paper, the authors
mention that limit cycles represent the stationary state of
sustained oscillations, which do not depend on initial con-
ditions but depend exclusively on the parameters of the sys-
tem, i.e. they are intrinsic properties.

3.1 Definitions of limit cycles and discussions

We first define the notion of limit cycle [37,38], adapted to
discrete-time systems.

Definition 1 For system (1), a hybrid limit cycle or limit
cycle in short, is a closed and isolated hybrid trajectory
N→ K×Rn, k 7→ (σk, xk), which is a solution of the switched
dynamics (1). Roughly speaking s : N → K × Rn, sk =
(σk, xk) of (1) is a limit cycle if and only if the two following
properties are satisfied:

(i) Closed means periodic. There exists a positive definite
integer K such that sk+K = sk, ∀k ∈ N;

(ii) Isolated means that there exists a neighbourhood of
this trajectory which does not contain an other periodic
solution generated by the same switching law. There
exists κ > 0, such that, for any periodic trajectory
s̃k = (σk, x̃k) solution to (1), with the same switching
rule σk as sk,

sup
k∈N
‖xk − x̃k‖ > κ. (2)

Remark 1 Definition 1 emphasizes both the state evolution
and the control law of the dynamics (1), in order to ease
the determination of limit cycles and to avoid Poincaré map
and Poincaré-Bendixson theorem, that are not easy to gen-
eralize first in high dimensions or second in hybrid con-
text [23],[36]. Here, since the switching law is a purely
state-feedback, another approach, taking the point of view
of closed-loop dynamics, can recover more classical defini-
tions of autonomous differential equations/inclusions [38].

y

Remark 2 In condition ii), it is not restrictive to consider
the same switching law for the two trajectories. In fact, iso-
lated trajectories yield that there exists κ0 > 0, such that,
∀κ ∈]0, κ0],

sup
k∈N

(‖sk − s̃k‖) = sup
k∈N

(|σk − σ̃k | + ‖xk − x̃k‖) ≤ κ, (3)

implies that @K ∈ N, K ≥ 1, such that s̃k = s̃k+K . The
switching law σk and σ̃k belonging to K of finite cardinal,
the hybrid trajectory s̃k can be in the neighbourhood of sk
if they share the same switching law σ̃k = σk. This isolated
characteristic may be thus reduced to the statement ii), which
is more tractable in practice. y

Remark 3 It is noteworthy that the periods of sk and s̃k
in Definition 1 may be distinct (one is the multiple of the
other), even if they share the same switching rule. In any
case, the function k 7→ xk − x̃k is periodic. That implies that
its supremum in (2) exists and is the maximum over the
associated period. y

Remark 4 Let denote N as the period of the limit cycle. The
projected switching law trajectory N → K, k 7→ σk, is an
N−periodic function. The projected state trajectory is also
N−periodic function and could be called limit cycle through
misuse of language. In the following, we will denote ρ j, j =
1, · · · ,N, the ordered vectors consisting of this period, that
is ρ1+(k+δ)modN = xk for k ∈ N and where δ ∈ N represents a
shift in cycle. y

Remark 5 For linear switched systems, a non trivial peri-
odic trajectory cannot be isolated, due to the linearity. Only
switched systems with at least one nonlinear mode could ex-
hibit (not trivial) limit cycles. The fact that a limit cycle is
isolated is crucial for their determination in our context. y

Remark 6 An equilibrium point of a given mode can be
viewed as a particular limit cycle associated with a frozen
switching law. They will not be specifically addressed here.

y

Remark 7 Finally, in the literature, the set {ρ j} j=1,2,...,N in
Rn could be referred to the limit cycle or ω-limit set of
the trajectory. That can be understood in the context of au-
tonomous systems, where the trajectory can be identified
with its graph in the state space (see [31, Section 3.2]). We
will call it the attractor to avoid confusion. y

All these comments will be of importance to characterize
the limit cycles for affine switched systems. Due to the im-
portance of periodic switching law, the following notion of
cycle and associated definitions are introduced.

Definition 2 A cycle, ν of a switched affine system refers
to a periodic function from N to K. Notations Nν and Dν
stand for the minimum period and the minimal domain of ν,
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respectively. More formally, they are defined as follows

Nν = min N ∈ N∗ s.t. ν(` + N) = ν(`),∀` ∈ N,

Dν = {1, 2, . . . ,Nν}.

Definition 3 Denote the set of cycles from N to K by

C := {ν : N→ K, s.t. ∃N ∈ N∗, ∀` ∈ N, ν(` + N) = ν(`)} .

Moreover, CN denotes the set of cycles that are N-periodic:
CN := {ν : N→ K, s.t. ∀` ∈ N, ν(` + N) = ν(`)}, with
abuse of notation, we will explicit CN thanks to the possible
periods of ν: {ν(1), · · · , ν(N)}.

Finally for readability, we introduce the following modulo
notation: bicν = ((i − 1)modNν) + 1, for any i ∈ N, i ≥ 1.
That is, in particular, bicν = i, for any i = 1, · · · ,Nν and
bNν + 1cν = 1.

3.2 Necessary and sufficient conditions of existence

In this section, the objective is to characterize the limit cy-
cles of system (1). We take advantage of the associated peri-
odic switching law and benefits of the discrete-time (linear)
periodic system literature, see for instance [7,9,14,40] or the
survey [8]. A limit cycle having a periodic switching law,
we will determine necessary and sufficient conditions to the
existence of a limit cycle for a given cycle ν. This result is
provided in the following lemma, that generalizes the nec-
essary and sufficient condition presented in [32] to the case
of an arbitrary number of modes and an arbitrary period Nν.

Lemma 1 A cycle ν ∈ C generates a unique limit cycle for
system (1) if and only if the spectrum of the matrix Φν(0)
does not contain the eigenvalue 1, where the matrix Φν(`)
is the monodromy matrix at time ` ∈ N, defined by

Φν(`) :=
`+Nν∏
ι=`+1

Aν(ι) = Aν(`+Nν)Aν(`+Nν−1) . . . Aν(`+1), ` ∈ N.

Moreover, if this assumption holds, the unique solution is
given by

ρ := (InNν
−�ν)−1

�ν, (4)
where

�ν =



0 . . . 0 Aν(Nν)

Aν(1)
. . . 0 0

...
. . .

. . .
...

0 . . .Aν(Nν−1) 0


, �ν =



Bν(Nν)

Bν(1)
...

Bν(Nν−1)


, ρ =



ρ1

ρ2
...

ρNν


.

Proof. A cycle ν ∈ C is associated with a unique limit cycle
for the switched affine system (1) if and only if there exists

a unique sequence of Nν vectors {ρi}i∈Dν such that,

ρbi+1cν = Aν(i)ρi + Bν(i), ∀i ∈ Dν, (5)

which is illustrated on the schematic representation shown
on Figure 1. Relations (5) can be reformulated into the fol-
lowing matrix affine equation, by using a cyclic augmented
representation inspired by [40,20]:

(InNν
−�ν)ρ = �ν, (6)

where matrices �ν, �ν and ρ are defined in the Lemma.

Hence, it suffices to study the solution of (6). The cyclic
augmented matrix, �ν ∈ R

nNν×nNν , is closely related to the
monodromy matrix at time ` ∈ N, denoted Φν(`). It is known
for discrete-time periodic systems that the monodromy ma-
trix Φν(`) has a spectrum that does not depend on the time
` (see for instance [5, Section 3.1]). These eigenvalues are
called characteristic multipliers. Moreover the spectrum of
the cyclic augmented matrix �ν is the set of all Nν-roots of
the n eigenvalues of the monodromy matrix Φν(0) (see the
argument of [40, Proof of Theorem 4] or [7, page 322, Sec-
tion 3.2]). We infer that matrix (InNν

− �ν) is nonsingular
if and only if the spectrum of the monodromy matrix Φν(0)
does not contain the eigenvalue 1. When (InNν

−�ν) is non-
singular, there exists a unique solution to the equation (6)
and is such isolated. When the matrix (InNν

−�ν) is singular,
two cases occur depending on whether or not �ν belong or
not to the image (InNν

−�ν). If it does not, solution to (5) do
not exist. If it does, that there exists an infinite number of
solution to (5), which prevents from satisfying the isolated
nature of the limit cycle. �

ρ1

ρ2

ρ3

×

×

×

ν(i) = 1
ν(i) = 2

Fig. 1. Schematic representation of a cycle ν of period Nν = 3, for
a system (1) with K = 2 modes. Here we have ν : {1, 2, 2}. The
closed state trajectory is composed of the vectors ρi that verify
condition (5).

3.3 Invariance of limit cycles wrt. the realization

In the context of stabilization of switched affine systems, it
is usual to perform a change of the coordinates in order to
locate the reference position at the origin. In light of this
remark, one may wonder whether a limit cycle of the system
is affected by this transformation. Let us then introduce a
general formulation of an affine change of coordinates given
by z = T x + w, where T is a nonsingular matrix and where
w is a vector of Rn. Then, the following proposition holds.
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Proposition 1 Assume that a cycle ν generates a limit cycle
for system (1), denoted {ρi}i∈Dν . Then, for any nonsingular
matrix T and any vector w ∈ Rn, {Tρi + w}i∈Dν is the limit
cycle associated to the same cycle for the same system (1)
but expressed in the new coordinates z = T x + w.

Proof. Simple manipulations of (5) conclude the proof. �

3.4 Reduction of cycles

The search of a limit cycle of system (1) can be guided by
an objective. Among the possible objectives, we can cite for
instance and not exhaustively: existence of a limit cycle of
shortest period; a cycle with a given maximal distance to
a fixed center or optimizing robustness margins (see Sec-
tion 5). Such a search can be performed by increasing step
by step the period. In the situation where system (1) ad-
mits K modes, the number of possible Nν-periodic cycles
increases exponentially with the number of modes, since
there are KNν . Thus, it is important to understand if some of
them are redundant and can be removed. In this section, we
propose several simple rules, stated in Corollaries 1 and 2
(based on Lemma 1), to avoid redundant limit cycles. These
rules lead to a sieve on the potential cycles to investigate.

Corollary 1 For any cycle ν ∈ C, for which 1 is not a
characteristic multiplier and for any integer M > 0, the
cycle ν̄ given by

ν̄(`) = ν(` + M), ∀` ∈ N,

is Nν-periodic and associated to a unique limit cycle, which
is a circular permutation of the limit cycle related to ν.

Proof. The proof is straightforward by noting that ν̄ is a
shifted version of ν, by recalling that the spectrum of the
monodromy matrix Φν̄(`) = Φν(` + M) does not depend on
` and by re-ordering the vectors ρi’s. �

Corollary 2 For any integer M ∈ N, M > 0 and a cycle ν ∈
C, which does not admit an M-root of unity as characteristic
multiplier, consider the MNν-periodic cycle ν̄ given by

ν̄( ¯̀) = ν(b ¯̀cν), ∀ ¯̀ = 1, . . . ,MNν.

Then, ν does not admit an M-root of unity as characteristic
multiplier, the cycle ν̄ is associated to the unique limit cycle,
which consists in the M-times concatenation of the limit
cycle related to ν.

Proof. The monodromy matrix related to cycle ν̄ at time 0
satisfies Φν̄(0) = (Φν(0))M . Matrix Φν̄(0) admits 1 as eigen-
value if and only if Φν(0) admits an M-root of unity as
eigenvalue. Lemma 1 allows to conclude. It is easy to check
that the M times concatenation of the limit cycle associated
to ν is this unique limit cycle, when it exists. �

Thanks to Corollaries 1 and 2, we can build the following
first sieve on the possible cycles to investigate, irrespectively

on the associated characteristic multipliers. This sieve is irre-
spective on the associated characteristic multipliers, because
if a cycle generates a stabilibizable limit cycle, the shifted
one or one of multiple periods will be also stabilizable and
will generate the same hybrid trajectory.

Algorithm 1 Sieve 1
Input : N
Output : C∗
C∗ ← ∅
for n← 1 to N do

Consider Cn
for i← 1 to Card(Cn) do

Consider νi ∈ Cn
For any positive M ∈ N and for any ν̄ ∈ C∗
if ν̄ (`) = νi (` + M) ,∀` ∈ N then

νi ← ∅
else if ν̄( ¯̀) = νi(b ¯̀cνi ),∀ ¯̀ = 1, . . . ,Mn then

νi ← ∅
else
C∗ ← C∗ ∪ νi

end if
end for

end for

To illustrate the application and benefits of this sieve, let us
consider the particular case where K = 3, i.e. K = {1, 2, 3}.
Then, the cycles of period at most of length 3 to be consid-
ered are K(1−K3)/(1−K) = 39. Applying the sieve allows
to reduce this number to 14 and finally leads to check only
the next cycles (with some abuse of notation):

Iteration 1 : C1 → {1}, {2}, {3},

Iteration 2 : C2 → {1, 2}, {1, 3}, {2, 3},

Iteration 3 : C3 → {1, 1, 2}, {1, 1, 3}, {2, 2, 1}, {2, 2, 3},

{3, 3, 1}, {3, 3, 2}, {1, 2, 3}, {3, 2, 1}.

This reduction is more consequent when increasing the max-
imal length of period N, as emphasized in the Table 1.

Remark 8 The complexity of this algorithm may be high
for large cycle by comparing two by two the cycles. Never-
theless the time to compare two cycles is less than solving
feasibility problem for LMIs. This algorithm may be very
useful to reduce the whole computation time in that sense. y

The following Corollary will provide a useful property al-

Period at most N 1 2 3 4 5 6

Initial number 3 12 39 120 363 1092

Reduced number 3 6 14 32 80 199
Table 1
Reduction of the number of cycles to investigate by applying
Sieve 1. The initial number is the number of cycles with a period
at most equal to N. The reduced number is the number of cycles
passing through the sieve.
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lowing to ensure an equivalent class of switching laws re-
lated to the attractor.

Corollary 3 Consider a cycle ν ∈ C, that generates a limit
cycle determined by {ρi}i∈Dν . If there exist (i0, i1) ∈ D2

ν , i1 >
i0, such that ρi0 = ρi1 , then {ρi}i∈Dν is the union of two closed
trajectories (potentially the same), associated with cycles
(potentially the same too) of periods strictly less than Nν.

Proof. Based on the cycle ν, the proof is obtained by design-
ing the two following cycles ν1 and ν2.
ν1 is defined as a Nν1 = (i1 − i0)-periodic cycle given by
ν1(`) = ν(i0 − 1 + `), ` = 1, · · · , (i1 − i0) and is associated
with the periodic trajectory {ρi0 ; ρi0+1; · · · ; ρi1 }.
ν2 is defined as a Nν2 = (N − i1 + i0)-periodic cycle given by
ν2(`) = ν(i1−1+`), ` = 1, · · · , (N− i1 + i0) and is associated
with the periodic trajectory {ρi1 ; ρi1+1; · · · ρNν

; ρ1; · · · ; ρi0 }. �

4 Stabilization to a limit cycle

4.1 Stabilization and Control Lyapunov function

In this section, it is addressed the problem of stabilization
to a limit cycle defined by a given cycle ν ∈ C, which has
been selected as discussed in the previous section. Before
presenting the stabilization result, we need to introduce the
following assumption, used in the second part of the The-
orem allowing the convergence to the hybrid limit cycle,
when the convergence to the attractor holds.

Assumption 1 Components {ρi}i∈Dν of a limit cycle associ-
ated to ν ∈ C are assumed to be different two by two.

Now, we are in condition of stating the global and exponen-
tial stabilization result.

Theorem 1 For a given cycle ν in C, associated with a limit
cycle composed of vectors {ρi}i∈Dν and consider there exist
matrices {Pi}i∈Dν in Sn, such that

Pi � 0, A>ν(i)Pbi+1cνAν(i) − Pi ≺ 0, ∀i ∈ Dν. (7)

Then, the following statements hold:

(i) Attractor Aν =
⋃

i∈Dν {ρi}, which is related to the limit
cycle associated with ν, is globally exponentially stable
for system (1) with the switching control law

u(x) =

{
ν (θ) , θ ∈ argmin

i∈Dν
(x − ρi)> Pi (x − ρi)

}
⊂ K.

(8)
(ii) Moreover, if Assumption 1 holds, the min-switching law

(8) converges ultimately to a shifted version of cycle ν.

Proof. For the proof, let us consider the following Lyapunov
function candidate

V(x) = min
i∈Dν

(x − ρi)>Pi(x − ρi), ∀x ∈ Rn, (9)

where vector ρi’s are the solutions to (5).

Proof of (i): Note that matrices Pi are in finite number and
are positive definite, it yields the bounds:

0 ≤ c1d2
Aν

(x) ≤ V(x) ≤ c2d2
Aν

(x), (10)

with c1 = mini∈Dν λm(Pi) > 0 and c2 = maxi∈Dν λM(Pi) > 0
and where dAν

(·) = mini∈Dν ‖ · −ρi‖ defines the distance to
the attractor Aν over Rn. The computation of the forward
increment of the Lyapunov function along the trajectories of
the system yields

∆V(x) :=V(x+) − V(x)
= min

j∈Dν
(x+−ρ j)>P j(x+−ρ j) −min

i∈Dν
(x−ρi)>Pi(x−ρi)

= min
j∈Dν

(x+−ρ j)>P j(x+−ρ j) − (x−ρθ)>Pθ(x−ρθ).

The last expression has been obtained by noting that θ results
from the control law in (8), and is such that it minimizes the
quadratic term, by definition. The first term of ∆V , being
the minimum of several values, is consequently less than
or equal to any of them. In particular, this is also true by
selecting the term associated to bθ + 1cν, yielding

∆V(x) ≤ (x+−ρbθ+1cν )
>Pbθ+1cν (x+−ρbθ+1cν )−(x−ρθ)>Pθ(x−ρθ).

From the dynamics of the closed-loop switched affine system
(1),(8), one has

x+−ρbθ+1cν = Aν(θ)x + Bν(θ) − ρbθ+1cν

= Aν(θ)(x − ρθ) + Aν(θ)ρθ + Bν(θ) − ρbθ+1cν︸                       ︷︷                       ︸
=0

. (11)

Re-injecting this expression into the upper bound of ∆V(x)
leads to the following inequality

∆V(x) ≤ (x − ρθ)>
(
A>ν(θ)Pbθ+1cνAν(θ) − Pθ

)
(x − ρθ).

Therefore, if matrices Pi’s verify the strict inequalities in
(7), there exists a small enough positive scalar c3 > 0, such
that A>ν(i)Pbi+1cνAν(i) − Pi ≺ −c3In, for all i ∈ Dν, yielding

∆V(x) ≤ −c3‖x − ρθ‖2 ≤ −c3d2
Aν

(x) ≤ −
c3

c2
V(x), ∀x ∈ Rn,

due to ‖x−ρθ‖ ≥ dAν
(x) and inequality (10). V(x) is a control

Lyapunov function for closed-loop system (1),(8). The map
k → V(xk) converges globally exponentially to zero. That
proves the global exponential convergence of the closed-
loop trajectory to attractor Aν and ends the proof.

Proof of (ii): The idea is to prove that there exist k0 ∈ N and
δ ∈ K such that

u(xk) = {ν(k − δ)}, σk = ν(k − δ), ∀k ≥ k0. (12)
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The proof is obtained by showing that there exists a suffi-
ciently small scalar ε > 0 (to be determined in this proof),
such that we have the implication: x ∈ Sε = {x ∈ Rn, V(x) ≤
ε2} and θ ∈ arg mini∈Dν (x − ρi)>Pi(x − ρi) implies

(x− ρbθ+1cν )
>Pbθ+1cν (x− ρbθ+1cν ) < (x− ρ j)>P j(x− ρ j), (13)

for all j ∈ Dν, with j , bθ + 1cν, that is the solution of
the next optimization problem (8) is bθ + 1cν. To sum up,
k0 is related to the time to reach the level set Sε , which is
always possible to reach thanks to the convergence of the
Lyapunov function to zero. The shift δ is determined thanks
to the solution θ of the optimization problem at time k0, that
is on the initial condition x0 and the selection of the previous
switchings. First, notice that thanks to the equivalence of
weighted norms, there exist constants ci, j > 0, ∀(i, j) ∈ Dν,
such that

‖x‖Pi ≤ ci, j‖x‖P j , (14)

(for instance, select ci, j ≥
√
λM(Pi)/λm(P j)). Thanks to

LMIs (7) and x ∈ Sε , we have, with the notation x+ =
Aν(θ)x + Bν(θ),

‖x+ − ρbθ+1cν‖Pbθ+1cν
≤ ‖x − ρθ‖Pθ ≤ ε. (15)

Thanks to (11) and having x in Sε , the inequalities

‖x+ − ρbθ+1cν‖Pθ = ‖Aν(θ)(x − ρθ)‖Pθ ≤ ‖Aν(θ)‖Pθ‖x − ρθ‖Pθ ,
≤ ‖Aν(θ)‖Pθε (16)

hold, where ‖Aν(θ)‖Pθ denotes the matrix norm induced by
the weighted norm ‖ · ‖Pθ . That yields, due to the triangular
inequality and relations (14),

‖ρbθ+1cν−ρ j‖Pθ−‖Aν(θ)‖Pθε≤‖ρbθ+1cν−ρ j‖Pθ−‖Aν(θ)(x − ρθ)‖Pθ ,
≤‖ρbθ+1cν − ρ j + Aν(θ)(x − ρθ)‖Pθ ,
≤‖x+ − ρ j‖Pθ ,

≤cθ, j‖x+ − ρ j‖P j , ∀ j ∈ Dν. (17)

Thanks to Assumption 1, it is always possible to find a
positive scalar ε such that the strict inequalities 0 < cθ, jε <
‖ρbθ+1cν −ρ j‖Pθ −‖Aν(θ)‖Pθε hold for any j ∈ Dν, j , bθ+ 1cν.
Combining the two latter inequalities leads to

ε < ‖x+ − ρ j‖P j , ∀ j ∈ Dν\{bθ + 1cν}. (18)

Comparing inequalities (15) and (18) concludes

‖x+ − ρbθ+1cν‖Pbθ+1cν
≤ ε < ‖x+ − ρ j‖P j , ∀ j ∈ Dν\{bθ + 1cν},

which ends the proof. �

In the remainder of the section, Theorem 1 and results in
Section 3.2 are commented and several of important conse-
quences are emphasized. More particularly, the properties of
the feasibility of conditions (7), the nature of the Lyapunov
function (9) are investigated.

4.2 Feasibility of the sufficient conditions

Theorem 1 is based on the feasibility of the Linear Matrix
Inequalities (LMIs) (7). Such inequalities have been already
encountered in the framework of discrete-time linear peri-
odic systems. By the periodic Lyapunov lemma (see [6]),
we have the following result:

Lemma 2 ([9]) For a given cycle ν, there exist positive def-
inite matrices {Pi}i∈Dν satisfying LMIs (7) if and only if the
monodromy matrix Φν(0) is Schur.

One of the main advantage of Lemma 2 is that the condition
dealing with the monodromy matrix can be moved closer
to the condition in Lemma 1: for a given cycle ν ∈ C, if
the monodromy matrix Φν(0) is Schur, then there exists a
unique limit cycle (thanks to Lemma 1) , which is stabi-
lizable (thanks to Theorem 1). The sieve can be adapted to
look for Schur-stable monodromy matrices without requir-
ing to check the feasibility of LMIs, from the practical point
of view.
The importance of having Schur monodromy matrices being
revealed, the question is now to understand whether there
exists a cycle ν ∈ C for a given system (1), which is asso-
ciated to a stable monodromy matrix. The literature about
the (periodic)-stabililizability of switched linear system pro-
vides useful conditions as for instance, the following lemma,
which provides sufficient conditions based on discrete-time
Lyapunov-Metzler inequalities (see [22]):

Lemma 3 (Theorems 6 and 22 in [19]) If there exist K
symmetric positive definite matrices {P̃i}i∈K and a matrix
π ∈ RK×K such that π j,i ≥ 0, ∀(i, j) ∈ K2,

∑
j∈K π j,i = 1,

∀i ∈ K and A>i
(∑

j∈K π j,iP j

)
Ai − Pi < 0n, for all i ∈ K, then

there exists a cycle ν ∈ C such that the monodromy matrix
Φν(0) is Schur.

Moreover we have the following equivalence, that allows to
guarantee that the existence of a stable limit cycle:

Lemma 4 (Theorem 22 in [19]) There exist N ∈ N, and a
cycle ν ∈ CN such that Φν(0) is Schur if and only if there exist
M ∈ N, and scalars πν ≥ 0, for any ν ∈ C̃M = ∪ j=1,··· ,MC j,
such that

∑
ν∈C̃M

πν = 1 and
∑
ν∈C̃M

πνΦ
>
ν (0)Φν(0) < In.

Here, we are interesting in periodic-stabilizable linear
switched systems. It should be recalled that stabilizable lin-
ear switched systems is not necessarily periodic-stabilizable,
as shown in [19, Proposition 21 and Counter-example 17].

Remark 9 Lemma 1 demonstrates that there is no need to
require the existence of weighting parameters λi ≥ 0 and∑

i∈K λi = 1, such that matrix
∑

i∈K λiAi is Schur stable unlike
[16], for instance. This represents a major relaxation with
respect to this class of stabilization results. y
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4.3 Structure of the Lyapunov function

The (control)-Lyapunov function V : Rn 7→ R+, x → V(x)
defined by (9), is build only on the knowledge of the couples
{ρi, Pi}i∈Dν and does not depend on their order, that is roughly
speaking on the cycle ν. This characteristic differs from the
periodic Lyapunov function considered in [17], Ṽ : (x, k) ∈
Rn ×N→ Ṽ(x, bkcν) ∈ R+, where bkcν can be interpreted as
a counter/index in the period of ν. One major benefit of this
time-independency is that the min-switching argument in (8)
is a pure state-feedback. In practice, this state-feedback is
designed by a state-space partition, which is a priori given
and only dependent on the couples {ρi, Pi}i∈Dν . The associ-
ated state-space partition is bounded by arcs of the solutions
of x>(Pi − P j)x − 2(ρ>i Pi − ρ

>
j P j)x + ρ>i Piρi − ρ

>
j P jρ j = 0,

(i, j) ∈ Dν)2, i , j. Geometrically these curves are conic
ones (for instance, a line when Pi = P j, an ellipsoid when
Pi−P j is definite and an hyperboloid when Pi−P j is not defi-
nite without 0 as eigenvalue). Finally, the Lyapunov function
being defined as the minimum of a set of shifted quadratic
forms, its level sets are the union of given ellipsoids (with
weighted matrix Pi) centered in ρi.

4.4 Comparison with [17]

This section aims at comparing Theorem 1 with respect to
[17, Theorem 2]. While the LMI conditions are exactly the
same for a given cycle ν, the contributions are different.
Indeed, the control law given in [17, Theorem 2] is

u(x, ν, k) = argmin
j∈K

x − ρ([k]ν)

1


>

Lk, j

x − ρ([k]ν)

1

 ⊂ K,
(19)

where

Li, j =

A>j Pbi+1cνA j − Pi A>j Pbi+1cνbi, j

∗ b>i, jPbi+1cνbi, j


with bi, j = A jρi + B j−ρbi+1cν . Moreover, the Lyapunov func-
tion used in [17] is

V(x, ν, k) = (x − ρ([k]ν))>P([k]ν)(x − ρ([k]ν)), ∀x ∈ Rn.
(20)

The authors in [17] provide stabilization sufficient condi-
tions to the state trajectory (and not to the hybrid trajectory
including the switching law), if (7) are satisfied. Note that
this control law depends on a time counter ν(k) such that
in each instant time k, the control input selects the point in
the cycle νK from an argmin function that goes down the
K-functioning modes.
Our first result concerns the convergence to the attractor,
while [17, Theorem 2] provides the convergence to the state
trajectory of the limit cycle. However if Assumption 1 is

satisfied, our second result in Theorem 1 provides a peri-
odic solution for the hybrid trajectory with the switching law
converging to ν(k − δ). Notice that this is not the case for
[17, Theorem 2], even if Assumption 1 holds (see Example
in Section 8.2). This value of shift, δ, depends on the initial
state x0 and possibly on the choice of the switching law in
the inclusion (8). Notice also that, for k ≥ k0, the set u(xk)
reduces to a singleton and there is a unique selection of the
mode to activate. A similar result may be obtained in [17,
Theorem 2], when a unique mode allows to steer a ρi to its
successor in the state trajectory, that is there exists a unique
j0 such that bi, j0 = 0. Item (ii) of Theorem 1 emphasizes that
even if the Lyapunov function does not depend on the cycle
ν, the min-switching strategy recovers a shifted version of ν,
as an element of hybrid trajectory to the equivalent relation
of attractors.
It is worth noting that for a given cycle ν our proposed con-
trol law (8) aims at selecting the best mode that minimizes
the quadratic term in V , looking for the best position in
the cycle. Alternatively, control law (19) selects the mode
that minimizes (20). Hence, the computational complexity
of both control laws are different, depending on the length
of the cycle and on the number of modes. For instance, de-
pending on whether Nν > K or Nν < K, control (8) or con-
trol (19) can reduce the computational cost and reduces the
transient time, respectively.
To sum up, the two contributions are different and their use
depends on the context. It is hard to decide whether one is
better than the other.

An important property of the min-switching algorithm (8) is
that this control law does not depend on the system param-
eters different to (19), enabling to develop a robust control
law that takes into account parametric uncertainties. Hence,
next section is devoted to present a robust control law that
ensures the states to converge to a robust limit cycle, i.e., an
invariant set of shifted ellipsoids associated to a cycle ν.

5 Robust stabilization of uncertain switched affine sys-
tems

5.1 Motivations

In many occasions, the system may suffer from parameter
uncertainties or variations. From now matrices Aσ and Bσ
will be assumed to be unknown and/or time-varying, con-
sidering that they belong to a polytopic set given by

[Aσ, Bσ] ∈ Co
([

A`
σ, B

`
σ

])
`∈L

, ∀σ ∈ K, (21)

where L is a bounded subset of N and where matrices A`
σ

and B`σ are known and constant for any σ ∈ K and any
` ∈ L. Note that set L may be dependent on the mode σ but
is avoided here without lack of generality.
It is easy to see, that the results of the previous section fail,
about stabilization and stabilizability. Indeed, the main prob-
lem appears in the selection of the limit cycle solving equa-
tions (5) in the situation of uncertain and/or time-varying
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ζ2

×

ζ3

ζ1

×

×

ν(i) = 1
ν(i) = 2

Fig. 2. Schematic representation of a robust limit cycle associated
to a cycle ν of period Nν = 3, for a system (1) with K = 2 modes.

system matrices. Therefore, it is important to investigate in
this direction, and to provide an alternative solution dedi-
cated to this relevant situation from a practical point of view.

5.2 Robust stabilization

A solution to this robust stabilization problem will be pro-
vided in this section, taking into account that the asymptotic
convergence to the union of the limit cycle cannot be guar-
anteed anymore, but an asymptotic convergence to a neigh-
borhood of each one of these limit cycles, which are char-
acterized as a level set of the Lyapunov function. Before
providing our result, we consider the following assumption.

Assumption 2 Consider matrices Wi ∈ S
n and vectors ζi ∈

Rn such that the ellipsoids

E(W−1
i , ζi) =

{
x ∈ Rn, i ∈ Dν

∣∣∣(x − ζi)>W−1
i (x − ζi) ≤ 1

}
,

associated to ν ∈ C are disjoint and different two by two.

Now, we can formalize the robust stabilization in the fol-
lowing theorem.

Theorem 2 For a given cycle ν in C and for a parameter
µ ∈ (0, 1), assume that there exist {(Wi, ζi)}i∈Dν in Sn × Rn

and that are solutions to the following matrix inequalities

Wi � 0, Ψi(A`
ν(i), B

`
ν(i)) � 0, ∀(i, `) ∈ Dν × L, (22)

where Ψi depend on the system matrices and on the decision
variables 1 {(Wi, ζi)}i∈Dν in Sn × Rn and are given by

Ψi

(
A`
ν(i), B

`
ν(i)

)
=


(1 − µ)Wi 0 Wi(A`

ν(i))
>

∗ µ (A`
ν(i)ζi + B`ν(i) − ζbi+1cν )

>

∗ ∗ Wbi+1cν

 .
(23)

Then, the following statements hold:

1 For the sake of simplicity, variables {(Wi, ζi)}i∈Dν are omitted in
the arguments of Ψi.

(i) Attractor
Sν :=

⋃
i∈Dν

E(W−1
i , ζi) (24)

is robustly globally exponentially stable for system (1)
with the switching control law

u(x) =

{
ν (θ) , θ ∈ argmin

i∈Dν
(x − ζi)>W−1

i (x − ζi)
}
⊂ K.

(25)
(ii) Moreover, if Assumption 2 holds, the min-switching law

(25) converges ultimately to a shifted version of ν.

Proof. Consider the same Lyapunov function given in (9)
but with the Lyapunov matrices Pi replaced by W−1

i and
with vectors ρi’s replaced by ζi’s, solution to the matrix
inequalities (22).

Proof of (i): Following the proof of Theorem 1, one has

∆V(x)=min
j∈Dν

(x+−ζ j)>W−1
j (x+−ζ j) −min

i∈Dν
(x−ζi)>W−1

i (x−ζi)

≤(x+−ζbθ+1cν )
>W−1
bθ+1cν(x+−ζbθ+1cν )−(x−ζθ)>W−1

θ (x−ζθ).

The objective is to express this last expression as a quadratic
term. As for Theorem 1, we have that

x+ − ζbθ+1cν = Aν(θ)x + Bν(θ) − ζbθ+1cν
= Aν(θ)(x − ζθ) + Aν(θ)ζθ + Bν(θ) − ζbθ+1cν .︸                       ︷︷                       ︸

:= Bν(θ)

(26)

However, compared to the proof of Theorem 1, vectors
Aν(θ)ζθ + Bν(θ) − ζbθ+1cν are not necessarily zero, since vectors
ζi’s are decision variables in inequalities (22), while in The-
orem 1, vectors ρi were computed a priori. In order to find
an alternative solution, we introduce

χ>θ =

[(
W−1
θ (x − ζθ)

)>
1
]>
,

so that x+ − ζbθ+1cν =

[
Aν(θ)Wθ Bν(θ)

]
χθ. Hence, ∆V(x) can

be rewritten in a more compact form

∆V(x) ≤ −χ>θ Φθ
(
Aν(θ), Bν(θ)

)
χθ, (27)

with

Φθ
(
Aν(θ), Bν(θ)

)
=

Wθ 0

0 0

 −
WθA>ν(θ)
B>ν(θ)

 W−1
bθ+1cν

WθA>ν(θ)
B>ν(θ)


>

.

Note that ∆V is not required to be negative in the whole state
space, but only outside of set Sν. From the definition of the
Lyapunov function, the control law given in (25) ensures that
V(x) = (x−ζθ)>W−1

θ (x−ζθ). Therefore, if x is assumed to be
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outside of Sν, inequality (x− ζθ)>W−1
θ (x− ζθ) > 1 holds and

has to be rewritten using the augmented vector χθ as followsx − ζθ

1


> W−1

θ 0

0 −1


x − ζθ

1

 = χ>θ

Wθ 0

0 −1

 χθ > 0. (28)

Then, the problem can be summarized as the satisfaction of
χ>θ Φθ

(
Aν(θ), Bν(θ)

)
χθ > 0 for all x such that condition (28)

holds. An S-procedure ensures that, if there exists a scalar
µ ∈ (0, 1) such that(1 − µ)Wθ 0

0 µ

 −
WθA>ν(θ)
B>ν(θ)

 W−1
bθ+1cν

WθA>ν(θ)
B>ν(θ)


>

� 0, (29)

then, ∆V(x) < 0 for all x < Sν. Finally, a Schur’s com-
plement yields Ψθ

(
Aν(θ), Bν(θ)

)
� 0, for a fixed parameter

µ, where matrix Ψθ is defined in (23). Since matrices Aν(θ)
and Bν(θ) are uncertain, it is not yet possible to evaluate nu-
merically these LMIs for all possible values of θ. However,
since they belong to the polytopic set (21), one can define
those matrices as convex combinations, with possibly time-
varying weights

Aν(θ) =
∑
`∈L

λ`A`
ν(θ) and Bν(θ) =

∑
`∈L

λ`B`ν(θ), (30)

where parameters λ` ∈ [0, 1] and hold
∑
`∈L λ` = 1. By

noting that Ψθ are affine with respect to Aν(θ) and Bν(θ), it
follows

Ψθ
(
Aν(θ), Bν(θ)

)
=

∑
`∈L

λ`Ψθ

(
A`
ν(θ), B

`
ν(θ)

)
� 0,

which is guaranteed by conditions (22). This guarantees that
∆V(x) is negative definite outside of Sν. Exponential stabil-
ity is obtained thanks to the strict inequalities (22).

To conclude the proof, it remains to prove that the attractive
set Sν is invariant. To do so, note that for any x is in Sν, i.e.
V(x) < 1, we have

V(x+)= V(x) + ∆V(x)

= V(x) − µ(V(x) − 1) + (∆V(x) + µ(V(x) − 1))

≤ V(x) − µ(V(x) − 1)

−χ>θ


(1−µ)Wθ 0

0 µ

 −
WθA>ν(θ)
B>ν(θ)

 W−1
bθ+1cν

WθA>ν(θ)
B>ν(θ)


> χθ

≤ (1 − µ)V(x) + µ,

which is guaranteed by (22). Then, since x is assumed to
be in Sν and µ in (0, 1), it holds V(x+) ≤ (1 − µ) + µ = 1,
guaranteeing that x+ also belongs to Sν.

Proof of (ii): The proof of this result is omitted because is
similar to the proof of item (ii) in Theorem 1. �

The previous theorem allows to design a control law that
stabilizes uncertain system (1)–(21), to the attractor defined
by set Sν given in (24), which is a union of shifted ellipsoids
Sν = ∪i∈DνE(W−1

i , ζi). Several comments on this robust sta-
bilization result are provided in the next subsection.

5.3 Remarks on Theorem 2

A relevant byproduct of this theorem is an extension of the
definition of limit cycles in equations (5) to the case uncer-
tain switched affine systems, which can be now expressed
in terms of series of inclusions. More specifically, Theo-
rem 2 states that, under the satisfaction of the conditions,
the invariance of the attractor Sν ensures that the following
inclusions hold

A`
ν(i)E(W−1

i , ζi) + B`ν(i) ⊂ E(W−1
bi+1cν , ζbi+1cν ), ∀(i, `) ∈ Dν × L,

(31)
where the left-hand-side of the inclusion means, with a light
abuse of notations, that, for any i ∈ Dν and for all x ∈
E(W−1

i , ζi), vector A`
ν(i)x + B`ν(i) belongs to E(W−1

bi+1cν
, ζbi+1cν )

for all ` ∈ L. This inclusion can be seen as the natural
extension of (5) to uncertain systems. The set of ellipsoids
E(W−1

i , ζi), i ∈ Dν, can be viewed as a robustly stable robust
limit cycle. It is also relevant to understand how conservative
the previous theorem is with respect to the nominal case,
presented in Theorem 1. The following proposition is stated.

Proposition 2 For a cycle ν in C, such that there exist
(Pi, ρi) in Sn × Rn for i ∈ Dν, solution to (4) and (7). Then,
for any positive scalar β > 0, (Wi, ζi) = (βP−1

i , ρi) is solu-
tion to (22) with a sufficiently small value of µ. Moreover,
limβ→0+ Sν = Aν.

Proof. Let us consider matrices Pi’s solution to inequalities
(7) of Theorem 1 and vectors ρi solution to Lemma 1. For
any positive scalar β > 0, let us set (Wi, ζi) = (βP−1

i , ρi).
Then Bν(i) = Aν(i)ρi + Bν(i) − ρbi+1cν = 0, as defined in (26).
For any µ ∈ (0, 1), Ψi

(
A`
ν(i), B

`
ν(i)

)
� 0 in (22) is equivalent to

(1 − µ)P−1
i P−1

i A>ν(i)
∗ P−1

bi+1cν

 � 0,

or, with a standard manipulation, equivalent to A>ν(i)Pbi+1cνAν(i)

−Pi ≺ −µPi. The latter inequality being true for a small
enough value µ > 0, thanks to the strict inequality (7).
Moreover, by noting that attractor Sν is composed by the
ellipsoids given by E(Pi/β, ρi), for all i ∈ Dν reduces to
the union of singletons {ρi}i∈Dν as β tends to zero, which
concludes the proof. �

Remark 10 In light of the proof, since ellipsoids E(Pi/β, ρi)
shrink to {ρi}, for all i ∈ Dν, inclusions (31) become exactly
conditions (5) for the existence of a limit cycle in the nominal
case. This demonstrates the consistency of the method. y
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The previous proposition states that there is no conservatism
induced by Theorem 2 with respect to Theorem 1. There-
fore, in the next section dealing with the introduction of
optimization problems, only the LMI constraints presented
in Theorem 2 will be considered for the sake of simplicity,
knowing that the same optimization problem could also be
presented using the LMI constraints of Theorem 1. Simi-
larly, in the sequel, we will refer to the attractor only as Sν
knowing that in the nominal case, Sν = Aν.

6 Optimization algorithms

6.1 Motivations and preliminaries

The objective of this section is to include to the previous
developments some additional constraints to conditions (22)
aiming at selecting the decisions variables {Wi, ζi}i∈Dν that
optimize a given cost function. This cost function has to be
defined for each cycle and will not depend on the switched
law. In addition, in practical situations and, in particular, in
the context of power converters, the objective is to drive the
solutions to the system as close as possible to a desired ref-
erence position, xd ∈ R

n.
Hence, it appears highly relevant that the cost function re-
flects not only the “distance" of the reference position to
the attractor, but also the “size" of the attractor in order to
limit the amplitude of the trajectories within the attractor.
This will be considered in the remainder of this section. If
the attractor is reduced to a single point of Rn, the notion of
distance is easy to be formalized. However, since this situ-
ation corresponds to a very particular case for the class of
switched affine systems, we have to provide a sensible met-
ric that also defines the distance of a point to the attractor.
To go further in this direction, let us introduce the ellipsoid
E(Q−1

ν , hν) defined for some positive definite matrix Qν in Sn

and some shifting vector hν in Rn to be optimized for a given
cycle so that E(Q−1

ν , hν) is the “smallest" ellipsoid verifying

({xd} ∪ Sν) ⊂ E(Q−1
ν , hν).

The next lemma helps expressing this inclusion as an LMI.

Lemma 5 For a given matrix Q in Sn and some shifting
vector h in Rn, let us define

KQ,h(W, ζ, η) =


ηW 0 W

∗ 1 − η ζ> − h>

∗ ∗ Q

 , (32)

for some matrix W ∈ Sn
+, a shifting vector ζ and a positive

scalar η. Then, the following statements hold

(i) ζ belongs to E(Q−1, h) if and only if KQ,h(0, ζ, 0) � 0.
(ii) E(W−1, ζ) is included in E(Q−1

ν , hν) if and only if
there exists a strictly positive scalar η such that
KQ,h(W, ζ, η) � 0.

Proof. The proof of (i) is a direct application of the
Schur complement. The proof of (ii) deserves a detailed
proof. Therefore the problem is to ensure that E(W−1, ζ) ⊂
E(Q−1, h), meaning that inequality (x − h)>Q−1(x − h) ≤ 1
holds for all x ∈ Rn such that (x − ζ)>W−1(x − ζ) ≤ 1. The
inclusion can be rewritten as followsx̃

1


> 

0 0

0 1

 −
 W

ζ> − h>

 Q−1

 W

ζ> − h>


>

x̃

1

 ≥ 0,

∀x∈Rn s.t.

x̃

1


> −W 0

0 1


x̃

1

 ≥ 0,

where notation x̃ = W−1(x−ζ) simplifies the notation. The
application of an S-procedure ensures that this problem is
equivalent to the existence of a parameter η > 0 such thatηW 0

0 1 − η

 −
 W

ζ> − h>

 Q−1

 W

ζ> − h>


>

� 0.

A Schur complement yields the result. �

In light of the previous lemma, we can state that inclusion
({xd} ∪ Sν) ⊂ E(Q−1

ν , hν) is equivalent to

Qν � 0, KQν,hν (0, xd, 0) � 0, KQν,hν (Wi, ζi, η) � 0, i ∈ Dν.
(33)

In the nominal case, the last inequality of the previous equa-
tion can be reduced to KQν,hν (0, ρi, 0) � 0, for all i ∈ Dν.

6.2 Definition of cost functions

Following the previous developments, a possible way to for-
malize the notion of a cost related to a “distance" and/or a
“size", can be formulated as follows

J∗(ν, xd) := min
{Wi,ζi}i∈Dν

J(ν, xd, {Wi, ζi}i∈Dν ) (34)

s.t. (22) and potential additional inequalities.

where J is the cost function to be optimized and is defined
as a barycenter of several families of costs (of course, not
exhaustively), for instance

J(ν, xd, {Wi, ζi}i∈Dν ) =

4∑
m=1

αmJm(ν, xd, {Wi, ζi}i∈Dν ), (35)

where αm ≥ 0 and
∑4

m=1 αm = 1 and where Ji’s are given by

• J1(ν, xd, {Wi, ζi}i∈Dν ) = Tr (Qν) with the additional in-
equalities given in (33). Hence, cost J1 aims at opti-
mizing the attractor. Indeed, this optimization problem
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is relevant to evaluate the “chattering" effect when the
solution reaches the attractor.

• J2(ν, xd, {Wi, ζi}i∈Dν ) =
∑N

i=1 Tr (Wi). In the uncertain
case, it might be also pertinent to add a term under the
form

∑N
i=1 Tr (Wi), which consists in minimizing Sν.

• J3(ν, xd, {Wi, ζi}i∈Dν ) = ω3 with the additional inequal-
ities ω3 (ζi − ζ j)>

∗ I

 � 0, ∀(i, j) ∈ D2
ν , i , j.

Cost J3 aims at enforcing the shifts ζi’s to be the same
value, that is to have a single shift for the ellipsoids.

• J4({ζi}i∈Dν , xd) = ω4 with eitherω4 x>d −
1

Nν

∑
i∈Dν ζ

>
i

∗ In

 � 0,

which minimizes the distance between the average
value of the limit cycle and the desired reference, or

ω4 (xd − ζ1)>Γ · · · (xd − ζNν
)>Γ

∗ In

∗ ∗
. . .

∗ ∗ ∗ In


� 0,

where Γ is a projection matrix (see for instance [17]),
depending on an adequate notion of distance to a de-
sired position denoted as xd ∈ R

n. Here, J4 will allow
to select a limit cycle closed in a certain sense to a
desired position that is predefined by the designer.

Remark 11 This optimization problem can be stated using
the formulation of Theorem 2 dealing with robust stabiliza-
tion. However, as commented in Remark 10, the same prob-
lem can be formulated for the nominal case by simply re-
placing ζi by ρi in (34). y

7 Optimal selection of cycles and precision on the sieve

In light of the previous section, we are now able to pre-
cise the sieve and formulate the two following optimization
problems.

Problem 1 For a given bounded subset Ω ⊂ C and a given
desired reference xd, the optimal control law is associated
to ν∗ = argminν∈Ω J∗(ν, xd).

This problem consists in spanning the bounded subset Ω to
find the cycle, among a finite number, that minimizes the
cost function. As soon as there exists a solution of the sta-
bilization condition for at least one cycle in Ω, then the pre-
vious optimization problem has a solution. However, there

is no guarantee about the level of the cost function for this
cycle. Therefore, one may consider the second optimization
problem that precises the sieve on the allowable cycles.

Problem 2 For a given desired reference xd, the optimal
control law is the solution of the following sieve

Algorithm 2 Sieve 2
Input : C∗, xd . C∗ from Sieve 1
Output : ν∗
J0 = +Inf
ν∗ ← ∅
for i← 1 to Card(C∗) do

Compute J∗(νi, xd) . νi in C∗
if J∗(νi, xd) ≤ J0 then

ν∗ ← νi
J0 ← J∗(νi, xd)

end if
end for

8 Numerical applications

8.1 Example 1

Consider the discrete-time system (1), borrowed from [16],
where the matrices Ai and Bi are defined as follows

Ai = eFiT , Bi =
∫ T

0 eFiτdτgi, ∀i ∈ {1, 2} , (36)

where T = 1 refers to the sampling period. Matrices Fi and
gi for i = 1, 2 are given by

F1 =


0 1 0

0 0 1

−1 −1 −1

, F2 =


0 1 0

0 0 1

0 −1 −1

, g1 =


1

0

0

, g2 =


0

1

0

.
It is worth noting that, for this example, there exists a lin-
ear combination of matrices Ai which is Schur stable as
shown in [16]. At a first stage, the Figure 3 shows on differ-
ent graphs the limit cycles {ρi}i∈Dν , represented by the red
crosses, obtained thanks to Lemma 1 for the different cycles
ν1 = {1, 2}, ν2 = {1, 2, 2, 2}. and ν3 = {1, 1, 1, 1, 2, 2}. The
figure also shows the trajectories of the closed-loop system,
started at the initial state x0 = [2,−5, 0]>, with the control
law presented in (8) in Theorem 1. It can be seen that each
trajectory converges to different limit cycles. The control
signal is represented at the bottom of each phase portrait on
Figure 3. One can see that this switching signal tends to the
presumed cycle after a small transient time as pointed out
in item (ii) of Theorem 1.

It is worth mentioning that the results obtained here are very
similar to the ones presented in [18] and [35]. However, the
method provided in [35] is limited by the constraints that the
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(a) ν1 = {1, 2} (b) ν2 = {1, 2, 2, 2} (c) ν3 = {1, 1, 1, 1, 2, 2}

Fig. 3. Evolution of the state variables (blue dotted line) for three different cycles ν1, ν2 and ν3 with their associated limit cycles (red
crosses). The figures at the bottom show the switching control law in each case.

Cycles (C) Associated limit cycles J∗(νi, 0)

ν1

[
1.66
−0.2
−0.04

]
,
[

2.24
−0.81
−1.01

]
2.37

ν2

[
3.2
0.99
−0.3

]
,
[

4.49
−0.81
−2.8

]
,
[

3.3
−1.15
−0.26

]
,
[

2.67
−0.03
0.24

]
8.88

ν3

[
−0.65
1.06
0.08

]
,
[

1.32
0.71
−0.89

]
,
[

2.42
−0.64
−1.63

]
,
[

2
−2.1
−1.08

]
,
[

0.59
−2.48
0.39

]
,
[
−0.98
−0.55
1.03

]
5.17

Table 2
Limit cycles generated by a selection of cycles, which verify
the assumption of Lemma 1 for system (1) with (36) (Example
1). The last column depicts the optimal cost function (35) with
α = [0.5 0 0 0.5] and xd = [0 0 0]>.

length of the cycle needs to be equal to the number of mode.
i.e. restricted to ν1. In addition, the stabilization condition
of [35] have a higher complexity since the size of each LMI
increases with the number of modes. Finally compared to
[18], our control law does not depend on time even though
it converges to a periodic signal.
Table 2 provides a numerical point of view by gathering on
the first two columns the cycles and their associated limit
cycle as in Figure 3. In addition, as commented in Section 6
and resumed in Section 7, we can use a cost function like
(35) for the nominal case. Only, the cost J3 presented does
make sense since vectors ζi’s are given by the ρi’s in (2).

Therefore, with α =

[
α1, α2, α3, α4

]
=

[
0.5, 0, 0, 0.5

]
in (35),

the cycle for which the cost function is minimized is, in this
case, cycle ν1 as indicated in Table 2.

8.2 Example 2

Let us illustrate the comparison made in Section 4.4 by an
academical example. Consider the matrices Ai’s as follows

A1 =

0.3 0.1

0.1 0.7

 , A2 =

0.9 0.5

0 −0.8

 , A3 =

0.4 0

1 −0.1

 ,
and a matrix slightly different from A1 associated to a fourth
mode A4 = A1 + 0.2

[
1 0
−1 0

]
. The affine terms are constructed

0 20 40 60 80 100
10-15

10-10

10-5

100

Lyapunov function (9)

Lyapunov function (20)

Fig. 4. Evolution of Lyapunov functions with respect to time.

with the limit cycle (ν, ρ) chosen with the cycle ν = {1, 2, 3}
and vectors ρ = {[0, 1]> , [1, 1]> , [−1, 0]>}. Hence, we have

B1 = B4 =−A1ρ1 + ρ2, B2 =−A2ρ2 + ρ3, B3 =−A3ρ3 + ρ1.

On Figure 5 is represented the state trajectory in a phase
plane in addition to the state periodic sequence associated to
the limit cycle (ν, ρ). As it appears, the evolution of the state
variables of system (1) with the switching control law (8)
seems to have a better convergence rate. However, one must
notice the differences on the switching signals. Whereas the
given limit cycle should only involve three of the system
functioning modes, the mode associated to the matrices A4
and B4 is selected periodically instead of the mode 1. Hence,
this example exposes the remark made in Section 4.4 con-
cerning the possible cases where at least two modes can
steer one vector ρi to its successor. Control (8) provides for
this example a better result than control (19). Indeed, we see
as system with control (8) converges faster to the limit cy-
cle. One can make that extra comparison through Figure 4,
where the evolution of the two Lyapunov functions (10),(20)
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(a) Application of the switching control law (8).
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-2

-1

0

1

2

0 5 10 15 20 25 30

1

2

3

4

(b) Application of the switching control law (22) from [17].

Fig. 5. The first subfigure is an illustration of the application of Theorem 1; the second, the application of Theorem 2 from [17]. In each
subfigure is represented the evolution of the state variables for Example 2 (blue dotted line) for a given cycle ν = {1, 2, 3} with their
associated state vector ρ (red crosses) of the limit cycle and the figures at the bottom show the switching control law in each case.

Fig. 6. State-space partition θ(x(1), x(2)) for Example 2 in the
nominal case. The figure also depicts the components of the limit
cycle (ρi’s) by the red crosses.

is depicted on the same diagram.

8.3 Example 3

Consider the discrete-time switched system described by the
following matrices Ai

A1 =

1 0

0 0.5

 , A2 =4
√

2

cos
(

Π
4

)
− sin

(
Π
4

)
sin

(
Π
4

)
cos

(
Π
4

)  (37)

and with matrices B1 = [0.01, 0]> and B2 = [0, 0]>.
This example has been adapted from [19], which does not
consider affine terms. As it is notified in [19], the mon-
odromy matrix with cycle ν = {111, 22} is Schur. Hence,
Lemma 2 ensures that there exists a solution to Theorem 1.
However, it is important to point out that there does not ex-
ist a linear combination of matrices A1 and A2 that is Schur
stable, originating a fail of the stabilization theorem given

Fig. 7. From top to bottom : State trajectory with the state-space
partition σ(x) = ν (θ(x)) and the switching control law. The dark
areas are the regions of the state space where mode 2 is activated.

in [16]. Subsection 4.3 demonstrated the feature “pure state-
feedback” of the min-switching argument in (8). Then, con-
sidering the tuples {ρi, Pi}i∈Dν , we are able to partition the
state-space, where each color on Figure 6 designates the ar-
eas θ(x). Figure 7 performs not only the evolution of the
state variables converging to the limit cycle associated to ν,
but also the state-space partition. Indeed, compared to Fig-
ure 6, the black and white areas indicate the regions of the
state space where ν (θ (x)) is equal to 1 or 2. Such state space
representation of the switching control law emphasizes the
simplicity of the control law and appears to be very sensitive
to understand.
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Fig. 8. Illustration of the growth of the attractor’s size is the
state space obtained for several values of δmax for system (37)
subject to uncertainties (38). The ellipsoids are deformed due to
the logarithmic scale.

Let us assume from now on that the system’s matrices suffer
from parameter uncertainties, described by

A1 =

1 0

0 0.5 ± α1δmax

, B1 =

 0.01

±α2δmax

. (38)

where α1 = 0.01 and α2 = 0.005 and where δmax is a param-
eter. Matrices A2 and B2 remain the same. Figure 8 shows the
different attractors Sν obtained for various values of δmax af-
ter performing a gridding procedure on parameter µ ∈ (0, 1)
to the optimal solution to conditions to solve conditions (2)
minimizing the cost function J with α = [0, 1, 0, 0]. As ex-
pected, the size of the attractor grows with δmax. Vectors
ζi’s, solution to Theorem 2, are very close to the limit cycle
{ρi}i∈Dν of the nominal case (for example, with δmax = 0.01,
‖ ρi−ζi ‖∞ ≤ 10−3), which illustrates Proposition 2. One can
see that the attractor obtained for the two smallest values
of δmax is the union of disjoint ellipsoid, so that the control
law converges ultimately to a periodic law, verifying item 2
of Theorem (2). Lastly, the evolution of the state variable
with its dynamic affected by a perturbation δmax = 0.01 is
plotted on Figure 9. The ordinate-axis is presented in a loga-
rithmic scale to ease the differentiation between the ellipses.
The figure shows the convergence of the state into the at-
tractor. One can also see from this figure that the trajectory
converges to the limit cycle

9 Conclusion

A new solution to the problem of stabilizing switched affine
systems has been considered. The novelty with respect to the
literature relies on the construction of a control Lyapunov
function. Thanks to an a priori selected sequence of modes,
i.e. cycle, simple LMI conditions, related to existing results
on periodic systems, have been provided to ensure that the
trajectories of the nominal closed-loop system converge to
a limit cycle characterized by system’s matrices and this se-
quence of modes. Several properties of the control law have
been provided, such as the convergence to a periodic control

Fig. 9. Trajectories of uncertain system (37)-(38) obtained for a
perturbation δmax = 0.01 and converging to the attractor repre-
sented by the union of the blue ellipsoids in a semi-logarithmic
space. The grey areas correspond to the regions of the state space,
where the control law imposes to select mode 2, the complemen-
tary set being associated to mode 1.

law. Unlike other approaches from the literature, this solu-
tion is suitable to be extending to the uncertain case, where
the notion of limit cycles was lightly modified. In this case,
the attractor is designed by the solutions of the decision vari-
ables of an LMI problem. Then, keys to embed optimization
problems have been provided, especially to select the opti-
mal cycle or limit cycle that minimizes a given cost function.
Finally, several examples have been presented, emphasizing
the potential of the method for both nominal and uncertain
cases.
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