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Abstract

This paper deals with the robust stabilization of uncertain discrete-time switched affine systems using a control Lyapunov approach and
a min-switching state-feedback control law. After presenting some preliminaries on limit cycles, a constructive stabilization theorem,
expressed as linear matrix inequalities, guarantees that the solutions to the nominal closed-loop system converge to a limit cycle. This
method is extended to the case of uncertain systems, for which the notion of limit cycle needs to be adapted. The theoretical results are
evaluated on academic examples and demonstrate the potential of the method over the recent literature.
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1 Introduction

A switched system consists in the association of a finite set
of dynamics with a switching rule that designates at each
time which is the active one among them [28]. This is a
wide particular class of hybrid systems [23], that allows to
model numerous applications in various fields as embedded
systems, electromechanics, biology, or networked control
systems and to characterize complex and not intuitive be-
haviors. Among them, there are discrete-time switched
systems, that can be considered in their own or poten-
tially generated by continuous-time switched systems with
a switching rule that is piecewise constant according to a
given sampling period [27]. It is interesting to emphasize
that in the last case, linear or affine modes remain linear or
affine by discretization. This kind of systems have generated
a rich study concerning their stability to the origin [12,36],
stabilization [21] or stabilizability [18].
Stabilizing Switched Affine Systems (SAS’s) to a desired
position, that is not in the set of equilibrium points of the
modes, has motivated a large collection of contributions, es-
pecially in the continuous-time framework: global quadratic
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stabilization via a min-switching strategy [10], use of dy-
namic programming to select the mode to activate and also
the time to switch [31], globally stabilizing min-switching
strategy taking into account a cost to minimize [15], local
stabilization without requiring the existence of a Hurwitz
combination of the linear parts [25], practical stabilization
with minimum dwell-time guarantees [1], robust stabiliza-
tion to an unknown equilibrium point [2,3]. We can empha-
size also contributions in the discrete-time domain leading
to the practical stabilization via different types of Lyapunov
functions: quadratic forms [14], switched quadratic func-
tions based on Lyapunov-Metzler inequalities [17] or thanks
to multiple shifted quadratic functions [32].
Besides equilibrium points, dynamical systems may have
as asymptotic behaviors, self-sustained oscillations, or limit
cycles: that are closed and isolated trajectories [34, Sec-
tion 7]. Their studies have been initiated by Poincaré and are
generically related to the ω-limit sets (set of accumulation
points of the trajectories) and Poincaré-Bendixson theorem.
For hybrid or switched systems, limit cycles have been
mainly investigated in the continuous-time domain, mo-
tivated by switched circuits [4,24,26,30]. The Poincaré-
Bendixson theorem has been extended for hybrid sys-
tems [33] and the ω-limit sets of hybrid systems have been
also investigated [11]. The main difficulty is to determine
the switching times related to a limit cycle [20,22]. There
are only few contributions on limit cycles for discrete-time
SAS’s: one case study is provided in [29], based on prac-
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tical stability [38] or clock- and state-dependent switched
Lyapunov functions [16] and also the preliminary result on
multiple shifted quadratic Lyapunov functions putting in
evidence the notion of limit cycles [32].
This paper is focused on limit cycles for nominal and un-
certain discrete-time SAS’s, and their stabilizability thanks
to state-dependent switching laws. In summary the contri-
butions are:
• A rigorous definition of limit cycles in the framework

of discrete-time SAS’s.
• An original pure state-feedback min-switching control

strategy allows to obtain an autonomous system, which
differs to the time-dependent one presented in [16].
• An exponential stabilization criteria, using a min-

switching control law, expressed in terms of Linear
Matrix Inequalities (LMI) is proven.
• A robust stabilization criteria for the uncertain case.

The paper is organized as follows. The investigated system
is presented in Section 2. Limit cycles are rigorously defined
in Section 3, where a necessary and sufficient condition for
their existence is provided. Sections 4 and 5 deal with the
stabilization to a limit cycle, in the nominal and uncertain
cases. Families of optimization problems are presented in
Section 6. Several illustrations are provided in Section 7
before concluding remarks in Section 8.
Notations: Throughout the paper, N denotes the set of nat-
ural numbers, R the real numbers, Rn the n-dimensional Eu-
clidean space, Rn×m the set of all real n×m matrices and Sn

the symmetric matrices in Rn×n. For any n and m in N, In and
0n denote the identity and null matrices of Rn×n, respectively.
Notation 1n×m stands for the matrix in Rn×m whose entries
are all 1. For any matrix M of Rn×n, the notation M ≻ 0,
(M ≺ 0) means that M is symmetric positive (negative) def-
inite. For any suitable matrices A = A⊤, B,C = C⊤, notation[ A B
∗ C

]
stands for the symmetric matrix

[
A B

B⊤ C

]
. ∥x∥ denotes

the Euclidean norm of x. For any M ≻ 0 in Sn and any vector
x ∈ Rn, we denote ∥x∥M =

√
x⊤Mx, the weighted norm and

λm(M) and λM(M) denote its minimal and maximal eigenval-
ues respectively of M. For any vector h ∈ Rn, we denote the
shifted ellipsoid E(M, h) =

{
x ∈ Rn, (x − h)⊤M(x − h) ≤ 1

}
.

2 Problem formulation

Consider the discrete-time SAS given by x+ = Aσx + Bσ,

σ ∈ u(x) ⊂ K,
(1)

where x ∈ Rn is the state vector, which adopts the follow-
ing notation x+ = xk+1 and x = xk and x0 ∈ R

n. Likewise,
σ ∈ K := {1, 2, ..,K} characterizes the active mode. Finally,
Ai ∈ R

n×n and Bi ∈ R
n×1 are the matrices of mode i ∈ K.

The particularity of this class of systems relies on its control
action, which is performed through the selection of the mode
σ, requiring a particular attention. The objective here is to

design a suitable set valued map u that ensures the conver-
gence of the state trajectories to a set to be characterized ac-
curately. Indeed, it is well-known that stabilizing system (1)
to a single equilibrium cannot be achieved in general [38].
Its nonlinear nature, due to the affine term imposes to relax
the control objectives to an acceptable stability result such
as practical stability in [14], for instance.
In this paper, the objective is to go deeper into the analysis
and design of SAS’s and to characterize their steady-state
behavior, i.e. limit cycles. Compared to [4] or [16], the fol-
lowing improvements have been performed. First, a distinc-
tion between periodic state-trajectories, as stated in [16],
state-limit cycles, and hybrid limit cycles is provided. Then,
a necessary and sufficient condition for their existence re-
gardless of their stability will be presented, which is not the
case in [16]. More interestingly, we will show that the LMI
condition provided here, which is the same as the one in
[9] for periodic systems or more recently [16] for SAS’s,
ensures both the existence of a hybrid limit cycle and its
stability. Finally, an extension to the case of uncertain sys-
tems is conducted, enhancing then the notion of robust limit
cycles. To do so, we propose to follow our preliminary re-
sults provided in [32] where a different Lyapunov function
inspired from [17] is included to better understand the at-
tractor of the resulting control Lyapunov function. An im-
portant by-product of the following analysis is that the usual
underlying necessary condition consisting in the existence
of a Schur stable convex combination of matrices Ai is not
required anymore, which, apart from [16], has been rarely
completed in the literature.

3 Limit cycles of switched affine systems

This section focuses on the time-varying steady-states of
SAS’s, which seem to have a natural convergence to a re-
peated sequence, behaving as a limit cycle in discrete time.
Limit cycles represent the stationary state of sustained os-
cillations, that depend exclusively on the parameters of the
system and their intrinsic properties. The notion of limit cy-
cles [34,35] is adapted here to discrete-time SAS’s.

3.1 Definitions and notations

Let us first denote as Hn, the set of functions from N to
K × Rn. The following definition of hybrid limit cycle is
formulated.

Definition 1 (Hybrid limit cycle) A hybrid limit cycle for
system (1) or limit cycle in short, is a closed and isolated
hybrid trajectory s ∈ Hn.
More formally, this means that k 7→ sk = (σk, xk) is an N-
periodic solution to (1), which verifies

∃κ(s) > 0, s.t. ∀s̃ ∈ Tn(s), min
δ∈N

(
sup
k∈N
∥sk− s̃k+δ∥

)
>κ(s),

where Tn(s) ⊂ Hn is the set of N-periodic functions of Hn

(i.e. with the same period as s), that are solution to (1) but
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are not shifted version of s

Tn(s) =


s̃ ∈ Hn,


(i) x̃k+1 = Aσ̃k x̃k + Bσ̃k , ∀k ∈ N,

(ii) s̃k+N = s̃k, ∀k ∈ N,

(iii) min
δ∈N

(
sup
k∈N
∥sk− s̃k+δ∥

)
, 0.


.

Studying limit cycles is usually performed using Poincaré
map and Poincaré-Bendixson theorem. However, the results
are not easy to generalize for high dimensions nor for hy-
brid systems [22,33]. Another approach, taking the point of
view of closed-loop dynamics, recovers more classical defi-
nitions of autonomous differential equations/inclusions [35].
Compared to [16], the notion of hybrid limit cycles is intro-
duced. It is composed of both the state trajectory xk and the
control input σk. Here, ‘closed’ refers to periodic nature of
this trajectory (avoiding heteroclinic orbits [34, Ex.6.6.1])
and ‘isolated’ means that there exists a neighborhood of this
trajectory, which does not contain another periodic solution
generated by the same switching law. This is highlighted in
the definition of Tn(s), which excludes the solutions to (1)
(e.g. (i)) that are N-periodic (e.g. (ii) and where N is the
minimal period of s) and that are a shifted version of s (e.g.
(iii)).

For a given hybrid limit cycle sk, both the projected switch-
ing signal trajectory N→ K, k 7→ σk and the projected state
trajectoryN→ Rn, k 7→ xk are periodic functions. This gives
rise to the next definitions.

Definition 2 (Cycle) For a hybrid limit cycle k 7→ sk =
(σk, xk), the cycle refers to the k 7→ σk function, denoted
ν. A limit cycle being a closed trajectory, there exists N in
N\{0}, such that ν(ℓ + N) = ν(ℓ),∀ℓ ∈ N.
In addition, notations Nν and Dν stand for the minimum pe-
riod and the minimal domain of ν, defined as follows

Nν = min N ∈ N\{0} s.t. ν(ℓ + N) = ν(ℓ),∀ℓ ∈ N,

Dν = {1, 2, . . . ,Nν}.

Definition 3 (Set of cycles) Let C defined as
C := {ν : N→ K, s.t. ∃N ∈ N\{0}, ∀ℓ ∈ N, ν(ℓ + N) = ν(ℓ)}
being the set of cycles (periodic functions) from N to K.
Moreover, CN denotes the set of cycles that are N-periodic
CN := {ν : N→ K, s.t. ∀ℓ ∈ N, ν(ℓ + N) = ν(ℓ)}.

To ease the readability, we introduce the following modulo
notation: ⌊i⌋ν = ((i− 1) mod Nν)+ 1, for any i ∈ N, i ≥ 1. In
particular, ⌊i⌋ν = i, for any i = 1, . . . ,Nν and ⌊Nν + 1⌋ν = 1.

Definition 4 (State limit cycle) For a hybrid limit cycle
k 7→ sk = (σk, xk), the state limit cycle refers to the k 7→ xk.
In the following, we will denote ρi, i ∈ Dν (ν being the
associated cycle) as the ordered vectors.

Definition 5 (Attractor) A compact set A ⊂ Rn is said to
be an attractor of system (1) if it is attractive and invariant.

The next paragraph exhibits conditions for the existence of
limit cycles for switched affine systems.

3.2 Necessary and sufficient conditions of existence

To characterize the limit cycles of system (1), we take ad-
vantage of the associated periodic switching law and ben-
efits of the discrete-time (linear) periodic system literature,
see for instance [7,9,13,37] or the survey [8]. A necessary
and sufficient condition to the existence of a limit cycle for a
given cycle ν is provided in the following lemma, that gen-
eralizes [29] to the case of an arbitrary number of modes
and an arbitrary period Nν.

Lemma 1 A cycle ν ∈ C generates a unique limit cycle for
system (1) if and only if 1 is not an eigenvalue of matrix
(Φν(0))M , for all M ∈ N\{0}, where Φν(ℓ) is the monodromy
matrix at time ℓ ∈ N, defined by Φν(ℓ) :=

∏ℓ+Nν
ι=ℓ+1 Aν(ι) =

Aν(ℓ+Nν)Aν(ℓ+Nν−1) . . . Aν(ℓ+1), ∀ℓ ∈ N. Moreover, the state-
limit cycle is given by ρ := (InNν −�ν)

−1�ν, where

�ν =


0 . . . 0 Aν(Nν )

Aν(1)

. . . 0 0
...
. . .
. . .

...
0 . . .Aν(Nν−1) 0

, �ν =


Bν(Nν )
Bν(1)

...
Bν(Nν−1)

 , ρ =

ρ1
ρ2

...
ρNν

 .
Proof. A cycle ν ∈ C is associated with a unique limit cycle
for the switched affine system (1) if and only if there exists
a unique sequence of Nν vectors {ρi}i∈Dν such that,

ρ⌊i+1⌋ν = Aν(i)ρi + Bν(i), ∀i ∈ Dν, (2)

which is illustrated on the schematic representation shown
on Fig. 1. In this figure, the attractor refers to Aν =
{ρ1}

⋃
{ρ2}

⋃
{ρ3}, the state limit cycle k 7→ xk = ρ⌊k+δ⌋ν ,

with δ ∈ {1, 2, 3}. Finally, the hybrid limit cycle is
k 7→ sk = (σk, xk) = (ν(k + δ), ρ⌊k+δ⌋ν ), with δ ∈ {1, 2, 3}.
Relations (2) can be reformulated into the following equa-
tion, by using a cyclic augmented representation inspired
by [19,37]:

(InNν −�ν)ρ = �ν, (3)
where �ν, �ν and ρ are defined in the lemma. Let us first
recall that matrix �ν ∈ RnNν×nNν is closely related to the
monodromy matrix at time ℓ ∈ N, Φν(ℓ). For discrete-time
periodic systems, the spectrum of the monodromy matrix
does not depend on the time ℓ (see [5, Section 3.1]). These
eigenvalues are called characteristic multipliers. Moreover
the spectrum of �ν is the set of all Nν-roots of the n eigen-
values ofΦν(0) (see [7, page 322, Section 3.2] or [37, Th.4]).
Sufficiency: Assume that 1 is not an eigenvalue of matrix
(Φν(0))M = ΦM

ν (0), where M is any strictly positive integer.
In particular 1 is not an eigenvalue ofΦν(0) and we infer that
matrix (InNν −�ν) is nonsingular. It follows that ρ defined in
Lemma 1 is a periodic solution of (2). This ensures that a pe-
riodic solution in the neighborhood of this solution shares the
same cycle ν. The period of the associated hybrid solution is
necessarily a multiple of Nν. Then, it is M̃Nν-periodic, with
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ρ1

ρ2

ρ3

×

×

×

ν(i) = 1, i = 1
ν(i) = 2, i = {2, 3}

Fig. 1. Schematic representation of a cycle ν of period Nν = 3, for
a system (1) with K = 2 modes. Here, we have ν : {1, 2, 2}.

an integer M̃ ≥ 1. Let us introduce the M̃Nν-periodic cycle ν̃
defined by ν̃(ℓ) = ν(⌊ℓ⌋ν), ∀ℓ ≥ 1. We denote by ρ̃ ∈ RnM̃Nν ,
such a solution to

(
1M̃×1 ⊗ ρ − ρ̃

)
∈ Ker(InM̃Nν − �ν̃). The

eigenvalues of �ν̃ are the M̃Nν-roots of Φν̃(0) = ΦM̃
ν (0).

Hence, �ν̃ admits 1 as eigenvalue if and only if 1 is also
an eigenvalue of ΦM̃

ν (0). If 1 is not an eigenvalue of matrix
ΦM
ν (0) where M is any strictly positive integer, this kernel

is reduced to the null vector and the two hybrid trajectories
are the same. The periodic solution induced by ν exists and
the limit cycle is unique.
Necessity: The proof is performed by contraposition. As-
sume that there exists a positive integer M such that ΦM

ν (0)
admits 1 as eigenvalue. Let us set M as the minimum in-
teger satisfying this. If M = 1, (3) has no solution or an
infinite number of solutions, whether or not �ν belongs
to Span

(
InNν −�ν

)
. That implies that there does not ex-

ist a periodic solution of period Nν or it is not isolated. If
M > 1, then there exists a solution ρ ∈ RnNν . We build now
an M-repetition of this periodic solution, that is 1M×1 ⊗ ρ.
Due to the assumption, there exists a non trivial vector
ρ̌ ∈ Ker

(
InMNν −�ν̄

)
⊂ RnMNν , with ν̄ being the MNν-

periodic cycle defined by ν̄(ℓ) = ν(⌊ℓ⌋ν), ∀ℓ ≥ 1. Therefore,
for any small scalar κ > 0, 1M×1 ⊗ ρ +

1
2κρ̌ is related to

a periodic solution in the neighborhood of ρ, which is not
isolated, and therefore concludes the proof. □

A simpler but only sufficient test is presented below.

Corollary 1 A cycle ν ∈ C generates a unique limit cycle
for system (1) if either Φν(0) or Aν is Schur stable.

Proof. If Φν(0) or Aν are Schur stable, they do not have any
eigenvalue on the unitary disc, which proves the result. □

3.3 Additional properties

When stabilizing of SAS’s, it is usual to perform a change
of coordinates in order to locate the reference position at the
origin. The following proposition holds.

Proposition 1 Assume that a cycle ν generates a limit cycle
for system (1), with the components of the state limit cycle
denoted {ρi}i∈Dν . Then, for any nonsingular matrix T and
any vector w ∈ Rn, {Tρi + w}i∈Dν are the components of the
state limit cycle associated to the same cycle for the same
system (1) but expressed in the new coordinates z = T x+w.

Proof. Simple manipulations of (2) conclude the proof. □

Another useful property to ensure an equivalent class of
switching laws related to the attractor is provided here.

Corollary 2 Consider a cycle ν ∈ C and its limit cycle
{ρi}i∈Dν . If there exist (i0, i1) ∈ D2

ν , i1 > i0, such that ρi0 = ρi1 ,
then {ρi}i∈Dν is the union of two closed trajectories associated
with cycles of periods strictly less than Nν.

Proof. Based on the cycle ν, the proof is obtained by de-
signing the two following cycles ν1 and ν2. ν1 is defined
as a Nν1 = (i1 − i0)-periodic cycle given by ν1(ℓ) = ν(i0 −
1 + ℓ), ℓ = 1, · · · , (i1 − i0) and is associated with the peri-
odic trajectory {ρi0 , ρi0+1, · · · , ρi1 }. ν2 is defined as a Nν2 =
(N − i1 + i0)-periodic cycle given by ν2(ℓ) = ν(i1 − 1 + ℓ),
ℓ = 1, · · · , (N − i1 + i0) and is associated with the periodic
trajectory {ρi1 , ρi1+1, · · · ρNν , ρ1, · · · , ρi0 }. □

4 Stabilization to a limit cycle

4.1 Stabilization and Control Lyapunov function

This section presents the first stabilization theorem to a limit
cycle defined by a given cycle ν ∈ C.

Theorem 1 For a given cycle ν in C, assume that there exist
matrices {Pi}i∈Dν in Sn, such that

Pi ≻ 0, A⊤ν(i)P⌊i+1⌋νAν(i) − Pi ≺ 0, ∀i ∈ Dν. (4)

Then, the following statements hold:
(i) Cycle ν generates a unique limit cycle for system (1).

(ii) Aν :=
⋃

i∈Dν {ρi}, with ρi solution to (2) is globally
exponentially stable for system (1) with the switching
control law

u(x)=
{
ν (θ) , θ∈argmin

i∈Dν
(x−ρi)⊤ Pi (x−ρi)

}
⊂ K. (5)

(iii) If ρi,ρ j for any i, j in Dν, then the switching signal σ
resulting from the closed-loop system (1),(5) converges
ultimately to a shifted version of ν.

Proof. The proof is split into three parts.
Proof of (i): Introduce P̄ = diag (Pi)i=1,...,Nν solution to (4).
Simple calculations show that

�
⊤
ν P̄�ν − P̄ = diag

(
A⊤ν(i)P⌊i+1⌋νAν(i) − Pi

)
i=1,...,Nν

≺ 0.

Hence, matrix�ν is Schur stable, which, according to Corol-
lary 1, implies that (2) thus admits a unique solution.

Proof of (ii): Consider the Lyapunov function candidate de-
fined as follows

V(x) = min
i∈Dν
∥x−ρi∥

2
Pi
= min

i∈Dν
(x−ρi)⊤Pi(x−ρi), ∀x ∈ Rn, (6)

4



where vectors ρi’s are solution to (2). Since Dν is bounded
and Pi ≻ 0, inequality

0 ≤ c1d2
Aν

(x) ≤ V(x) ≤ c2d2
Aν

(x), (7)

holds with c1 = mini∈Dν λm(Pi) > 0 and c2 = maxi∈Dν λM(Pi)
> 0 where dAν (x) = mini∈Dν ∥x − ρi∥ defines the distance of
a vector x in Rn to Aν. Moreover, ∆V writes

∆V(x) :=V(x+) − V(x)=min
j∈Dν
∥x+−ρ j∥

2
P j
−min

i∈Dν
∥x+−ρi∥

2
Pi

=min
j∈Dν
∥x+−ρ j∥

2
P j
− ∥x+−ρθ∥2Pθ .

The last expression has been obtained by noting that θ results
from the control law in (5), and minimizes the quadratic
term, by definition. The first term of ∆V , being the minimum
of several values, is consequently less than or equal to any
of them, and, in particular, to ⌊θ + 1⌋ν. This yields ∆V(x) ≤
∥x+−ρ⌊θ+1⌋ν∥

2
P⌊θ+1⌋ν

−∥x−ρθ∥2Pθ . The closed-loop system (1),(5)
imposes that x+−ρ⌊θ+1⌋ν = Aν(θ)x+Bν(θ)−ρ⌊θ+1⌋ν= Aν(θ)(x−ρθ),
since Aν(θ)ρθ + Bν(θ) − ρ⌊θ+1⌋ν = 0 from (2). Re-injecting this
expression into the upper bound of ∆V(x) yields

∆V(x) ≤ (x − ρθ)⊤
(
A⊤ν(θ)P⌊θ+1⌋νAν(θ) − Pθ

)
(x − ρθ).

Therefore, if matrices Pi’s verify the strict inequalities (4),
then there exists a small enough positive scalar c3 > 0, such
that A⊤ν(i)P⌊i+1⌋νAν(i) − Pi ≺ −c3In, for all i ∈ Dν, so that

∆V(x) ≤ −c3∥x−ρθ∥2 ≤ −c3d2
Aν

(x) ≤ −c3/c2V(x), ∀x ∈ Rn,

due to ∥x − ρθ∥ ≥ dAν (x) and inequality (7), which proves
the global exponential convergence to attractor Aν.

Proof of (iii): The idea is to prove that there exist k0 ∈ N and
δ ∈ K such that u(xk) = {ν(k−δ)}, σk = ν(k−δ), for all k ≥ k0.
To do so, one needs to show that there exists a sufficiently
small scalar ϵ > 0 (to be determined), such that having
x ∈ Sϵ = {x ∈ Rn, V(x) ≤ ϵ2} and θ ∈ arg mini∈Dν∥x

+−ρi∥
2
Pi

implies ∥x − ρ⌊θ+1⌋ν∥
2
P⌊θ+1⌋ν

< ∥x − ρ j∥
2
P j

, for all j ∈ Dν, with
j , ⌊θ + 1⌋ν, that is the solution to (5) is ⌊θ + 1⌋ν.
To sum up, k0 is related to the time to reach the level set Sϵ ,
which is always possible to reach thanks to the convergence
of the Lyapunov function to zero. The shift δ only depends on
the initial condition x0. To prove this item, the equivalence
of weighted norms ensures that

∃ci, j>0, ∀(i, j) ∈ Dν, s.t. ∀y ∈ Rn, ∥y∥Pi ≤ ci, j∥y∥P j , (8)

(for instance, select ci, j ≥
√
λM(Pi)/λm(P j)). Thanks to (4)

and x ∈ Sϵ , we have, with the notation x+ = Aν(θ)x + Bν(θ),

∥x+ − ρ⌊θ+1⌋ν∥P⌊θ+1⌋ν
≤ ∥x − ρθ∥Pθ ≤ ϵ. (9)

As x+−ρ⌊θ+1⌋ν =Aν(θ)(x − ρθ) and x is in Sϵ , inequalities

∥x+−ρ⌊θ+1⌋ν∥Pθ =∥Aν(θ)(x−ρθ)∥Pθ ≤∥Aν(θ)∥Pθ∥x−ρθ∥Pθ ≤∥Aν(θ)∥Pθϵ
(10)

hold, where ∥Aν(θ)∥Pθ denotes the matrix norm induced by the
weighted norm ∥x∥Pθ =

√
xT Pθx, for any vector x in Rn. The

triangular inequality and relations (8) yield, for all j ∈ Dν

∥ρ⌊θ+1⌋ν−ρ j∥Pθ−∥Aν(θ)∥Pθϵ ≤ ∥ρ⌊θ+1⌋ν−ρ j∥Pθ−∥Aν(θ)(x − ρθ)∥Pθ
≤ ∥ρ⌊θ+1⌋ν−ρ j+Aν(θ)(x−ρθ)∥Pθ ≤ ∥x

+−ρ j∥Pθ ≤ cθ, j∥x+−ρ j∥P j .

Since having ρi , ρ j for any i , j in Dν, it is always possible
to find ϵ > 0 such that cθ, jϵ < ∥ρ⌊θ+1⌋ν − ρ j∥Pθ − ∥Aν(θ)∥Pθϵ
holds for any j ∈ Dν\{⌊θ+1⌋ν}. Combining both inequalities
leads to ϵ < ∥x+−ρ j∥P j , for all j ∈Dν\{⌊θ+1⌋ν}. Comparing
this with (9) yields ∥x+ − ρ⌊θ+1⌋ν∥P⌊θ+1⌋ν

≤ ϵ < ∥x+ − ρ j∥P j , for
all j ∈ Dν\{⌊θ + 1⌋ν}, which concludes the proof. □

Hereafter, Theorem 1 and results in Section 3.2 are com-
mented and several important consequences are emphasized.

4.2 Feasibility of the sufficient conditions

Theorem 1 is based on the feasibility of LMIs (4), which
have been already encountered in the framework of discrete-
time linear periodic systems. Indeed the periodic Lyapunov
lemma (see [6]) states the following result:

Lemma 2 ([9]) For a given cycle ν, there exist positive def-
inite matrices {Pi}i∈Dν satisfying LMIs (4) if and only if the
monodromy matrix Φν(0) is Schur.

One of the main advantage of Lemma 2 is that the condition
dealing with the monodromy matrix can be moved closer to
the condition in Lemma 1: for a given cycle ν ∈ C, if the
monodromy matrixΦν(0) is Schur, then there exists a unique
limit cycle (thanks to Lemma 1). The importance of having
Schur monodromy matrices being revealed, the question is
now to understand whether there exists a cycle ν ∈ C for a
given system (1), which is associated to a stable monodromy
matrix. The literature about the (periodic)-stabilizability of
switched linear system provides useful conditions as for in-
stance, [21] or more recently [18, Th. 6 and 22]).

4.3 Comparison with [16]

This section aims at comparing Theorem 1 with respect to
[16, Th. 2]. While the LMI conditions are exactly the same
for a given cycle ν, the contributions are notably different.
Indeed the control law given in [16, Th. 2] is

u(x, ν, k) = argmin
j∈K

x − ρ⌊k⌋ν
1


⊤

Lk, j

x − ρ⌊k⌋ν
1

 ⊂ K, (11)

whereLi, j =

[
A⊤j P⌊i+1⌋νA j−Pi A⊤j P⌊i+1⌋νbi, j

∗ b⊤i, jP⌊i+1⌋νbi, j

]
and with bi, j = A jρi+

B j−ρ⌊i+1⌋ν and with the clock-dependent Lyapunov function

V(x, ν, k) = (x − ρ⌊k⌋ν )
⊤P⌊k⌋ν (x − ρ⌊k⌋ν ), ∀x ∈ Rn. (12)
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The authors in [16] provide sufficient conditions for stabi-
lization to the state trajectory (and not to the hybrid trajec-
tory including the switching law), if (4) are satisfied. Note
that this control law depends on a time counter ν(k) such
that at each instant time k, the control input selects the point
in the cycle νK from an argmin function over all K modes.
Our first result concerns the convergence to the attractor,
while [16, Th. 2] provides the convergence to the state tra-
jectory of the limit cycle. However if the assumption of item
(iii) is satisfied, Theorem 1 provides a periodic solution for
the hybrid trajectory with the switching law converging to
ν(k− δ). Notice that this is not the case for [16, Th. 2], even
if the additional assumption on the state limit cycle holds.
This value of shift, δ, depends on the initial state x0 and
possibly on the choice of the switching law in the inclu-
sion (5). Notice also that, for k ≥ k0, the set u(xk) reduces
to a singleton and there is a unique selection of the mode
to activate. A similar result may be obtained in [16, Th. 2],
when a unique mode allows to steer a ρi to its successor in
the state trajectory, that is there exists a unique j0 such that
bi, j0 = 0. Item (iii) of Theorem 1 emphasizes that even if the
Lyapunov function does not depend on ν, the min-switching
strategy recovers a shifted version of ν, as an element of hy-
brid trajectory to the equivalent relation of attractors.
For a given cycle ν, control law (5) aims at selecting the
best mode that minimizes the quadratic term in V , looking
for the best position in the cycle. Alternatively, control law
(11) selects the mode that minimizes (12), evaluated a k+1.
Hence, the computational complexity of both control laws
are different, depending on the length of the cycle and on
the number of modes. For instance, depending on whether
Nν > K or Nν < K, control (5) or (11) can reduce the com-
putational cost and the transient respectively.
To sum up, both contributions are different and their use
depends on the context. An important property of the min-
switching algorithm (5) is that this control law does not de-
pend on the system parameters, enabling to develop a robust
control law that takes into account parametric uncertainties.
Hence, the following section presents a robust control law
that ensures the states to converge to a robust limit cycle.

5 Robust stabilization of uncertain systems

Here matrices Aσ and Bσ are assumed to be unknown and/or
time-varying, with a polytopic representation given by

[Aσ, Bσ] ∈ Co
([

Aℓσ, B
ℓ
σ

])
ℓ∈L
, ∀σ ∈ K, (13)

where L is a bounded subset of N and Aℓσ and Bℓσ are known
and constant for any σ ∈ K and any ℓ ∈ L. Note that set L
may depend on the mode σ but is avoided here without lack
of generality. The results of the previous section fail, about
stabilization and stabilizability. Indeed, the main problem
appears in the selection of the limit cycle solving equations
(2) in the situation of uncertain and/or time-varying system
matrices. Therefore, it is important to provide an alternative
solution dedicated to this relevant situation from a practical
point of view. The robust stabilization is formalized here.

ζ2

×

ζ3

ζ1

×

×

ν(i) = 1, i = 1
ν(i) = 2, i = {2, 3}

Fig. 2. Schematic representation of a robust limit cycle associated
to a cycle ν of period Nν = 3, for a system (1) with K = 2 modes.

Theorem 2 For a given cycle ν in C and for a parameter
µ ∈ (0, 1), assume that there exist {(Wi, ζi)}i∈Dν in Sn × Rn

and that are solutions to the following matrix inequalities

Wi ≻ 0, Ψi(Aℓν(i), B
ℓ
ν(i)) ≻ 0, ∀(i, ℓ) ∈ Dν × L, (14)

where Ψi depend on the system matrices and on the decision
variables 1 {(Wi, ζi)}i∈Dν in Sn × Rn and are given by

Ψi

(
Aℓν(i), B

ℓ
ν(i)

)
=


(1−µ)Wi 0 Wi(Aℓν(i))

⊤

∗ µ (Aℓν(i)ζi+Bℓν(i)−ζ⌊i+1⌋ν )
⊤

∗ ∗ W⌊i+1⌋ν

 . (15)

Then, the following statements hold:
(i) Sν :=

⋃
i∈Dν E(W−1

i , ζi) is robustly globally exponen-
tially stable for system (1) with the control law

u(x)=
{
ν(θ), θ∈argmin

i∈Dν
(x−ζi)⊤W−1

i (x−ζi)
}
⊂ K.

(16)
(ii) Moreover, if E(W−1

i , ζi)
⋂
E(W−1

j , ζ j) = ∅ for all i , j ∈
Dν, then the switching signal σ of closed-loop system
(1),(16) converges ultimately to a shifted version of ν.

Remark 1 Note that condition (14) becomes an LMI once
parameter µ ∈ (0, 1) is fixed. ⌟

Proof. Consider the same Lyapunov function given in (6) but
with the Lyapunov matrices Pi replaced by W−1

i and with
vectors ρi’s replaced by ζi’s, solution to (14).
Proof of (i): As for Theorem 1, we can show that ∆V(x) ≤
∥x+−ζ⌊θ+1⌋ν∥

2
W−1
⌊θ+1⌋ν

−∥x−ζθ∥2W−1
θ

and we write

x+ − ζ⌊θ+1⌋ν = Aν(θ)(x − ζθ) + Bν(θ), (17)

where Bν(θ) = Aν(θ)ζθ + Bν(θ) − ζ⌊θ+1⌋ν , which are not neces-
sarily zero, compared to the proof of Theorem 1 because
vectors ζi’s are now decision variables in inequalities (14).
In order to find an alternative solution, we introduce χ⊤θ =
[(W−1

θ (x − ζθ))⊤1], so that x+ − ζ⌊θ+1⌋ν = [Aν(θ)Wθ Bν(θ)]χθ.
Hence, ∆V(x) can be rewritten in a more compact form

∆V(x) ≤ −χ⊤θ Φθ
(
Aν(θ), Bν(θ)

)
χθ, (18)

1 For simplicity, variables {(Wi, ζi)}i∈Dν are omitted in Ψi.
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withΦθ
(
Aν(θ), Bν(θ)

)
=

Wθ 0

0 0

−
WθA⊤ν(θ)
B⊤ν(θ)

 W−1
⌊θ+1⌋ν

WθA⊤ν(θ)
B⊤ν(θ)


⊤

.

Note that ∆V is not required to be negative in the whole state
space, but only outside of set Sν. From the definition of the
Lyapunov function, the control law given in (16) ensures
that V(x) = ∥x − ζθ∥2W−1

θ

. Therefore, x being outside of Sν,
inequality V(x) ≤ 1 writes

x − ζθ

1


⊤ W−1

θ 0

0 −1


x − ζθ

1

 = χ⊤θ
Wθ 0

0 −1

 χθ > 0. (19)

Then, the problem can be summarized as the satisfaction
of χ⊤θ Φθ

(
Aν(θ), Bν(θ)

)
χθ > 0 for all x such that (19) holds.

Using an S-procedure, if there exists µ ∈ (0, 1) where

(1 − µ)Wθ 0

0 µ

 −
WθA⊤ν(θ)
B⊤ν(θ)

 W−1
⌊θ+1⌋ν

WθA⊤ν(θ)
B⊤ν(θ)


⊤

≻ 0, (20)

then, ∆V(x) < 0 for all x < Sν. Finally, a Schur’s com-
plement yields Ψθ

(
Aν(θ), Bν(θ)

)
≻ 0, for a fixed param-

eter µ, where matrix Ψθ is defined in (15). Since ma-
trices Aν(θ) and Bν(θ) are uncertain, it is not yet possi-
ble to evaluate numerically these LMIs for all possible
values of θ. However, since they belong to the poly-
topic set (13), one can define those matrices as con-
vex combinations, with possibly time-varying weights
Aν(θ) =

∑
ℓ∈L λℓAℓν(θ) and Bν(θ) =

∑
ℓ∈L λℓBℓν(θ), where

parameters λℓ ∈ [0, 1] and hold
∑
ℓ∈L λℓ = 1. Since

Ψθ are affine with respect to Aν(θ) and Bν(θ), it follows
Ψθ

(
Aν(θ), Bν(θ)

)
=

∑
ℓ∈L λℓΨθ

(
Aℓ
ν(θ), B

ℓ
ν(θ)

)
≻ 0, which is

guaranteed by conditions (14). This guarantees that ∆V(x)
is negative definite outside of Sν. Exponential stability is
obtained thanks to the strict inequalities (14).
To conclude the proof, it remains to prove that the attrac-
tive set Sν is invariant. By noting that item (i) ensures that
∆V(x) + µ(V(x) − 1) < 0, for all x ∈ Rn. This establishes

V(x+)=V(x)−µ(V(x)−1)+∆V(x)+µ(V(x)−1)≤ (1−µ)V(x)+µ.

Since x belongs to Sν and µ in (0, 1), V(x+) ≤ (1−µ)+µ = 1
holds true, guaranteeing that x+ also belongs to Sν.

Proof of (ii): The proof of this result is omitted because is
similar to the proof of item (iii) in Theorem 1. □

A relevant byproduct of this theorem is an extension of the
definition of limit cycles in equation (2) to the case of uncer-
tain switched affine systems, which can be now expressed in
terms of series of inclusions. More specifically, Theorem 2
states that the invariance of the attractor Sν ensures that

Aℓν(i)E(W−1
i , ζi) + Bℓν(i) ⊂ E(W−1

⌊i+1⌋ν , ζ⌊i+1⌋ν ), ∀(i, ℓ) ∈ Dν × L,
(21)

where the left-hand-side of the inclusion means, with a slight
abuse of notations, that, for any i ∈ Dν and for all x ∈
E(W−1

i , ζi), vector Aℓν(i)x + Bℓν(i) belongs to E(W−1
⌊i+1⌋ν
, ζ⌊i+1⌋ν )

for all ℓ ∈ L. This inclusion can be seen as the natural ex-
tension of (2) to uncertain systems. The union of E(W−1

i , ζi),
i ∈ Dν, can be viewed as a stable robust limit cycle. It is
also relevant to understand how conservative the previous
theorem is with respect to the nominal case, presented in
Theorem 1. The following proposition is stated.

Proposition 2 For a given cycle ν in C, consider (Pi, ρi) in
Sn×Rn for i ∈ Dν solution to (4) for a nominal system. Then,
(Wi, ζi) = (βP−1

i , ρi) is solution to (14), for any arbitrary
scalar β > 0, with a sufficiently small value of µ ∈ (0, 1).
Moreover limβ→0+ Sν = Aν.

Proof. For matrices Pi and vectors ρi solution to inequalities
(4) and to Lemma 1, respectively, let us definite (Wi, ζi) =
(βP−1

i , ρi), for any scalar β > 0. Then Bν(i) = Aν(i)ρi +
Bν(i) − ρ⌊i+1⌋ν = 0, as defined in (17). For any µ ∈ (0, 1),
Ψi

(
Aℓν(i), B

ℓ
ν(i)

)
≻ 0 in (14) is equivalent to A⊤ν(i)P⌊i+1⌋νAν(i)

−Pi ≺ −µPi by application of the Schur complement. The
latter inequality being true for a small enough value µ > 0,
thanks to the strict inequality (4). Moreover, by noting that
the attractor Sν is composed by the ellipsoids given by
E(Pi/β, ρi), for all i ∈ Dν, it reduces to Aν, as β tends to
zero. □

The previous proposition states that there is no conservatism
induced by Theorem 2 with respect to Theorem 1. Therefore,
in the following section dealing with the introduction of
optimization problems, only the LMI constraints presented
in Theorem 2 (for a fixed parameter µ) will be considered for
the sake of simplicity, knowing that the same optimization
problem could also be presented using the LMI constraints of
Theorem 1. Then, in the sequel, we will refer to the attractor
only as Sν knowing that in the nominal case, Sν = Aν.

6 Optimization algorithms

The objective of this section is to include to the previous
developments some additional constraints to conditions (14)
aiming at selecting the decision variables {Wi, ζi}i∈Dν that op-
timize a given cost function, evaluated for each cycle under
consideration. In practical situations such as in power con-
verters, an additional objective to stabilization could be to
drive the solutions to the system as close as possible to a
desired reference position, xd ∈ R

n, referring to a desired
voltage. Hence, it appears highly relevant that the cost func-
tion does not only reflect the “size" of the attractor in order
to limit the amplitude of the trajectories within the attractor
but also the “distance" between the reference position to the
attractor.

To go further in this direction, let us introduce the ellipsoid
E(Q−1

ν , hν) defined for some positive definite matrix Qν in
Sn and some shifting vector hν in Rn to be optimized for
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a given cycle so that E(Q−1
ν , hν) is the “smallest" ellipsoid

verifying ({xd} ∪ Sν) ⊂ E(Q−1
ν , hν). The following lemma

helps expressing this inclusion as a matrix inequality.

Lemma 3 For some (Q, h) in Sn × Rn, define

KQ,h(W, ζ, η) =


ηW 0 W

∗ 1 − η ζ⊤ − h⊤

∗ ∗ Q

, (22)

for some matrix 0 ≺ W ∈ Sn, a shifting vector ζ and a
positive scalar η. Then, the following statements hold

(i) ζ belongs to E(Q−1, h) if and only if KQ,h(0, ζ, 0) ⪰ 0.
(ii) E(W−1, ζ) is included in E(Q−1, h) if and only if there

exists η > 0 such that KQ,h(W, ζ, η) ⪰ 0.

Proof. The proof relies on the Schur complement (i) and an
S-procedure (ii) and is omitted due to space limitations. □

Inclusion ({xd} ∪ Sν) ⊂ E(Q−1
ν , hν) is equivalent to

Qν≻0, KQν,hν (0,xd,0)⪰0, KQν,hν (Wi,ζi,η)⪰0, i ∈ Dν. (23)

In the nominal case, inequalities KQν,hν (Wi,ζi,η)⪰0, i ∈ Dν
can be reduced to KQν,hν (0, ρi, 0) ⪰ 0, for all i ∈ Dν. A
possible way to formalize the notion of a cost related to a
“distance" and/or a “size", can be formulated as follows

J∗(ν, xd) := min
{Wi,ζi}i∈Dν

J(ν, xd, {Wi, ζi}i∈Dν ) (24)

s.t. (14) and potential additional inequalities.

where J is the cost function to be optimized and is defined
as a barycenter of several families of not exhaustive costs

J(ν, xd, {Wi, ζi}i∈Dν ) =
4∑

m=1

αmJm(ν, xd, {Wi, ζi}i∈Dν ), (25)

where αm ≥ 0 and
∑4

m=1 αm = 1 and where Ji’s are given by
(i) J1(ν, xd, {Wi, ζi}i∈Dν ) = Tr (Qν) with the additional in-
equalities given in (23), which aim at optimizing the attrac-
tor, or more precisely at evaluating the “chattering" effect
when the solution reaches the attractor.
(ii) J2(ν, xd, {Wi, ζi}i∈Dν ) =

∑N
i=1 Tr (Wi), which aims at min-

imizing Sν, in the uncertain case.
(iii) J3(ν, xd, {Wi, ζi}i∈Dν ) = ω3 with

[
ω3 (ζi−ζ j)⊤

∗ I

]
≻ 0, ∀(i, j) ∈

D2
ν , i , j, which aims at enforcing the shifts ζi’s to be the

same value, that is to have a single shift for the ellipsoids.

(iv) J4({ζi}i∈Dν , xd) = ω4 with either
[
ω4 x⊤d −

1
Nν

∑
i∈Dν ζ

⊤
i

∗ In

]
≻ 0,

which minimizes the distance between the average value of
the limit cycle and the desired reference. In [16], another but
similar cost function was presented with a projection matrix
Γ. Here, J4 will allow to select a limit cycle closed to a de-
sired position that is predefined by the designer.
The optimization problem can now be properly stated.

Cycles (C) Associated limit cycles J∗(νi, 0)

ν1

[
1.66
−0.2
−0.04

]
,
[

2.24
−0.81
−1.01

]
2.37

ν2

[
3.2
0.99
−0.3

]
,
[

4.49
−0.81
−2.8

]
,
[

3.3
−1.15
−0.26

]
,
[

2.67
−0.03
0.24

]
8.88

ν3

[
−0.65
1.06
0.08

]
,
[

1.32
0.71
−0.89

]
,
[

2.42
−0.64
−1.63

]
,
[

2
−2.1
−1.08

]
,
[

0.59
−2.48
0.39

]
,
[
−0.98
−0.55
1.03

]
5.17

Table 1
Limit cycles generated by a selection of cycles, which verify the
assumption of Lemma 1 for system (1) with (26). The cost function
(25) was computed with α = [0.5 0 0 0.5] and xd = [0 0 0]⊤.

Proposition 3 For a given bounded subset Ω ⊂ C and a
given desired reference xd, the optimal control law with re-
spect to J is the one associated to ν∗ = argminν∈Ω J∗(ν, xd).

7 Numerical applications

Example 1: Consider system (1), borrowed from [14], where
the matrices Ai and Bi are defined as follows

Ai = eFiT , Bi =

∫ T

0
eFiτdτgi, ∀i ∈ {1, 2} , (26)

where T = 1 refers to the sampling period and with

F1=

[
0 1 0
0 0 1
−1 −1 −1

]
, F2=

[
0 1 0
0 0 1
0 −1 −1

]
, g1= [ 1 0 0 ]⊤, g2= [ 0 1 0 ]⊤.

For this example, there exists a linear combination of ma-
trices Ai which is Schur as shown in [14]. Fig. 3 shows on
different graphs the limit cycles {ρi}i∈Dν , represented by the
red crosses, obtained thanks to Lemma 1 for three different
cycles. The figure also shows the trajectories of the closed-
loop system, initialized at x0 = [2,−5,0]⊤, with control law
(5) from Theorem 1. Each trajectory converges to different
limit cycles. The control signal is represented at the bottom
of Fig. 3 and tends to the presumed cycle after a small
transient time as pointed out in item (iii) of Theorem 1.
The results are interestingly very similar to the ones in [16]
and [32]. However, the method provided in [32] is limited
by the length of the cycle that needs to be equal to the
number of mode. i.e. restricted to ν1. In addition, the sta-
bilization condition of [32] have a higher complexity since
the size of each LMI increases with the number of modes.
Finally compared to [16], our control law does not depend
on time even though it converges to a periodic signal.
Table 1 provides informations on the cycles and their as-
sociated limit cycle as in Fig. 3. A cost function (25)
has been also considered according to Section 6 with
α = [α1, α2, α3, α4] = [0.5, 0, 0, 0.5] in (25). The cycle, for
which the cost function, is minimized is ν1 as in Table 1.

Example 2: Consider system (1) with A1 =
[

0.3 0.1
0.1 0.7

]
, A2 =[

0.9 0.5
0 −0.8

]
, A3 =

[
0.4 0
1 −0.1

]
, and A4 = A1 + 0.2

[
1 0
−1 0

]
to il-

lustrate the comparison made in Section 4.3. The affine
terms are built so that (ν, ρ) are ν = {1, 2, 3} and vectors
ρ = {[0,1]⊤, [1,1]⊤, [−1,0]⊤}. Hence, we have B1 = B4 =
−A1ρ1 + ρ2, B2=−A2ρ2 + ρ3, and B3=−A3ρ3 + ρ1.
Fig. 4 shows the state trajectory (x, σ) in a phase plane. The
trajectories of system (1) with the switching control law (5)
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(a) ν1 = {1, 2} (b) ν2 = {1, 2, 2, 2} (c) ν3 = {1, 1, 1, 1, 2, 2}
Fig. 3. Evolution of the state variables and of the control input for three different cycles ν1, ν2 and ν3 with the limit cycles (red crosses).

seems to have a better convergence rate. However, one must
notice the differences on the switching signals. Whereas the
given limit cycle should only involve three of the system
functioning modes, the mode associated to the matrices A4
and B4 is selected periodically instead of the mode 1 with
the control law from [16, Th.2]. Hence, this example ex-
poses the remark made in Section 4.3 concerning the pos-
sible cases where at least two modes can steer one vector
ρi to its successor. Control (5) provides for this example a
better result than control (11), as illustrated in Fig. 4c.

Example 3: Consider system (1) with

A1=

1 0

0 0.5

 , A2=4
√

2

cos
(
Π
4

)
− sin

(
Π
4

)
sin

(
Π
4

)
cos

(
Π
4

)  (27)

and with B1 = [0.01, 0]⊤ and B2 = [0, 0]⊤. This example is
adapted from [18], in which affine terms have been included.
As noticed in [18], the monodromy matrix with cycle ν =
{111, 22} is Schur, guaranteeing then, from Lemma 2, that a
solution to Theorem 1 exists. However, there does not exist
a linear combination of A1, A2 that is Schur stable. Fig. 5
depicts the evolution of the state variables converging to
the limit cycle associated to ν, as well as the state-space
partition where the dark areas are the regions where mode
2 is activated.
To illustrate the uncertain case, consider now

A1=

1 0

0 0.5 ± κ1δmax

, B1=

 0.01

±κ2δmax

. (28)

where (κ1, κ2) = 10−3(10, 5) and where δmax is a parameter.
Matrices A2 and B2 remain the same. Fig. 6 shows the dif-
ferent attractors Sν obtained for various values of δmax after
performing a gridding procedure on parameter µ ∈ (0, 1) to
optimally solve conditions (2) minimizing the cost function
J with α = [0, 1, 0, 0]. As expected, the size of the attrac-
tor grows with δmax. Vectors ζi’s, solution to Theorem 2, are
very close to the limit cycle {ρi}i∈Dν of the nominal case (for
example, with δmax = 0.01, ∥ ρi − ζi ∥∞ ≤ 10−3), which il-
lustrates Proposition 2. The attractor obtained for the two

smallest values of δmax is the union of disjoint ellipsoids, so
that the control law converges ultimately to a periodic law,
verifying item (ii) of Theorem 2. Lastly, a trajectory of the
closed-loop system affected by a perturbation of amplitude
δmax = 0.01 is plotted on Fig. 7 (in a semi-log scale). The
figure shows the convergence of the state into the attractor
and to the limit cycle.

8 Conclusion

A new solution to the problem of stabilizing SAS’s has been
derived based on a control Lyapunov function. For an a pri-
ori selected sequence of modes, LMI conditions, related to
existing results on periodic systems, ensure the convergence
to a limit cycle characterized by system’s matrices and this
sequence. Interestingly, this solution is suitable to be ex-
tended to the uncertain case, where the notion of limit cycles
was necessarily modified. Then, keys to embed optimization
problems have been provided, especially to select the opti-
mal cycle or limit cycle that minimizes a given cost function.
Finally, several examples have been presented, emphasizing
the potential of the contributions.
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