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Abstract: This paper addresses the problem of synchronizing a group of interacting discrete-time
switched affine systems with centralized control laws. A first time-dependent control law is obtained
directly, and then, two other state-dependent control laws are proposed to improve performance. The
different methods are based on recent literature on switched affine systems and are evaluated on an
academical example with a multi-agent system.
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1. INTRODUCTION

Over the last few decades, problems of consensus and synchro-
nization in multi-agent systems have aroused a great deal of
interest in the systems and control community, mainly moti-
vated by a wide range of applications in physics, biology and
engineering. The nature of these problematics is to reach an
agreement collectively about some quantity of interest. The au-
thors in (Scardovi and Sepulchre, 2008) characterize the terms
consensus and synchronization frequently used in the context
of multi-agent system. In (Sinafar et al., 2020a), the authors
resumed this as a categorization of multi-agent problems: the
complexity in network topology and the complexity in agents
dynamics. In the case of consensus control problems, the focus
is on the communication constraints rather than the individual
system dynamics. Hence, it is common to find in the literature
works where the dynamics of agents are described by integra-
tors (Shi et al., 2013); by double-integrators (Olfati-Saber et al.,
2007; Ren and Beard, 2008); or by linear systems (Fax and
Murray, 2004; Wieland et al., 2008). The challenges are then
to deal with the communication graph features where the con-
nection can be time-dependent (Moreau, 2005) ; the agents can
suffer from communication delay in the network (Olfati-Saber
and Murray, 2004) or switching topology (Cervantes-Herrera
et al., 2012; Wang and Han, 2011). In contrast to consensus,
the emphasis of the research on synchronization is on the indi-
vidual dynamics rather than the communication limitations. It
is possible to find in the literature works on nonlinear multi-
agent systems (Zhang et al., 2018; Liu and Jiang, 2013) or
studies on robust synchronization guarantees (Dal Col et al.,
2018). However, most of the existing works have set aside

? This work has been partially funded under grant projet ANR-18-CE40-0022-
01 (Projet HISPALIS), projet PDI2019-105890RJ-100 (Project HYCAM) and
projet ANR 18-CE40-0010-02 (Project HANDY).

nonlinear systems with switching topology, yet relevant in the
case of microgrid where agents can represent the electronic
power converters (Albea, 2021; De Persis et al., 2018; Meng
et al., 2015).

Switched systems, as a subclass of hybrid systems (Goebel
et al., 2012), consist in the association of a finite set of dy-
namics with a switching rule that assignes at each time instant
which mode is active (Liberzon, 2003). This kind of systems
have generated a rich study concerning their stability to the
origin (Daafouz et al., 2002; Sun and Ge, 2011), stabilization
(Geromel and Colaneri, 2006) or stabilizability (Fiacchini et al.,
2016). Investigations on limit cycles for switched affine systems
were mainly done in the continuous-time domain (Johansson
et al., 1997; Rubensson et al., 1998) and recently, results have
been developed in the discrete-time domain (Egidio et al., 2020;
Serieye et al., 2020).

Since modal control is more challenging, especially for non-
linear systems, only few contributions can be found in the
literature. Recently, works on multi-agent systems where agents
are switched affine systems have aroused. In (Sinafar et al.,
2020b,a), the authors have proposed switching control laws
based on averaged models or based on linear combination
of state matrices. These assumptions are not necessary when
considering the stabilization of switched affine systems as it
has been proposed in (Serieye et al., 2020). Hence, through
this paper, we are aiming at extending the results proposed in
(Serieye et al., 2020) in the case of synchronization of a group
of switched affine systems interacting thanks to an all-to-all
communication configuration. This work has for ambition to be
a first step to distributed control of switched affine multi-agent
systems.

The paper is organized as follows: in Section 2 the problem is
formulated by presenting the switched affine systems and the



multi-agent system. In Section 3, one can find some preliminar-
ies on limit cycle useful afterwards. Then, centralized switching
control laws are proposed in Section 4 where proofs are given
in addition. Finally, before concluding, an academical example
offers illustrations on the effectiveness of our method.

Notations: Throughout the paper, N denotes the natural num-
bers; R, the real numbers; Rn, the n-dimensional Euclidean
space; Rn×m, the set of all real n × m matrices and Sn the set
of symmetric matrices in Rn×n. For any n and m in N, matrices
In, 1n and 0n,m denote the identity matrix of Rn×n, the vector
in Rn, whose components are all equal to 1 and the null ma-
trix of Rn×m, respectively. When no confusion is possible, the
subscripts of these matrices that precise the dimension, will be
omitted. For any matrix M ofRn×n, the notation M � 0, (M ≺ 0)
means that M is symmetric positive (negative) definite and
det(M) represents its determinant. The symbol ⊗ denotes the
Kronecker product, for further details on its properties, please
refer to (Horn and Johnson, 1994). ‖ · ‖ denotes the Euclidean
norm. For a symmetric positive definite matrix P and a vector
x, we denote ‖x‖P =

√
x>Px, the weighted norm.

Let G = (V,E) be a undirected graph.V and E denote respec-
tively the set of nodes and the set of edges. The elements

{
ei, j

}
of E ⊆ V × V specify the incidence relation between distinct
pairs of nodes

(
vi, v j

)
. We denote withN the index set ofV and

with |N| its cardinality.

2. PROBLEM FORMULATION

2.1 Switched affine agents

Consider a set of the discrete-time switched affine systems or
agents governed by

x`,k+1 = Aσ`,k x`,k + Bσ`,k , ∀` ∈ N ,
σ`,k = uk ∈ K

(1)

where, for each ` ∈ N , x`,k ∈ Rn is the state vector considered
at time k in N. Variable σ`,k ∈ K characterizes the active mode
among the K subsystems and matrices Aσ`,k and Bσ`,k present
appropriate dimension. One feature of this class of systems
relies on the fact that the selection of the active mode σ`,k is the
only possible control action available at each agent, achieved
through the selection of the input uk.

2.2 Multi-agent representation

Consider a group of |N| homogeneous switched systems where
each agent i ∈ N follows the dynamic given by (1) and has, a
priori, its own switching rule σi,k. A compact representation of
such multi-agent systems can be defined with an extended state
vector xk =

[
x1,k . . . x|N|,k

]>
∈ Rn|N|.

Then, it is possible to express the collective dynamic as follows
xk+1 = A(σk)xk + B(σk). (2)

In this representation, the active modes are gathered in a single
vector σk =

[
σ1,k, . . . , σ|N|,k

]>
∈ K|N| and the matrices A(σk)

and B(σk) of system (2) are given by
A(σk) = diag(Aσ1,k , . . . , Aσ|N|,k ),
B(σk) =

[
B>σ1,k

, . . . , B>σ|N|,k
]>
.

(3)

The stabilizability of multi-agent systems can depend on the
interaction between agents. We aim at designing a centralized
switching control law that synchronizes some homogeneous
systems. In this view, we consider the following assumption

Assumption 1. The graph G is complete, which roughly speak-
ing means that all agents are connected with all agents.

From Assumption 1, one can simplify the control law as a
global switching control law, i.e. every agent is controlled with
the same switching law u(xk) ∈ K and σk = 1|N| ⊗ u(xk).

Therefore, the dynamics of the overall system are reduced to
A(σk) = I|N| ⊗ Aσk and B(σk) = 1|N| ⊗ Bσk . (4)

The objective throughout this paper is to design a suitable
shared control law that ensures the global asymptotic state
synchronization of system (2), i.e. that all agents converge to
the same trajectory as k tends to infinity. More precisely, this
means that

lim
k→+∞

‖x`,k − x`′,k‖ = 0, ∀(`, `′) ∈ N2. (5)

More importantly, the objective is to design a state-dependent
control law that is based on the model of the agent (1), not on
the collective dynamics (2). Indeed there exist many contribu-
tions dealing with the stabilization of such a class of systems
such as in (Deaecto and Geromel, 2016; Hetel and Fridman,
2013). Most of them relies on the resolution of LMI conditions.
Therefore, if the number of agents is too large, solving such a
problem can be computationally difficult.

As a first step in this direction, Assumption 1 is made so
that some first contributions are provided in the context of
the synchronization of a set of switched affine systems. The
relaxation of this assumption is kept to future work.

3. PRELIMINARIES ON LIMIT CYCLES OF SWITCHED
AFFINE SYSTEMS

3.1 Limit cycles

This subsection clarifies the notion of limit cycle considered in
this paper. Indeed, it is known that hybrid systems can exhibit
a periodic behaviour. Likewise, we are interested in the time-
varying steady states of switched affine systems which seem
to have such behaviour when the control action is constrained
by, for example, periodic updates (Serieye et al., 2020). A limit
cycle generally refers to an isolated closed trajectory (Sun,
2008; Strogatz, 1994) or to a limit set which is a closed orbit
(Rubensson et al., 1998). To fit with the hybrid nature of system
(1), we first need to give few definitions.
Definition 1. A cycle, ν, of a switched affine system refers to a
periodic switching function from N to K. We define

Nν = min N ∈ N∗ s.t. ν(i + N) = ν(i), ∀i ∈ N
Dν = {1, . . . ,Nν}

where Nν stands for the minimum period of the sequence ν and
Dν is its minimum domain.
Definition 2. Denote the set of cycles from N to K by
C := {ν : N→ K, s.t. ∃N ∈ N∗, ∀i ∈ N, ν(i + N) = ν(i)} .

We introduce the following modulo notation to ease the read-
ability :

bicν = ((i − 1) mod Nν) + 1,
for any i ∈ N, i ≥ 1. That is, in particular, bicν = i, for any i ∈ Dν
and bNν + 1cν = 1.
Definition 3. For a given cycle ν ∈ C, if there exists an isolated
closed orbit N → K × Rn, k 7→ (σk, xk) which is a solution of
(1) such that σk = ν(k + δ) (where δ is a possible shift), then



Fig. 1. Illustrative example of Definition 3 .

this hybrid trajectory is a limit cycle where its components are
given by

ρbi+1cν = Aν(i)ρi + Bν(i), ∀i ∈ Dν. (6)

Figure 1 illustrates the previous definition, where one can see
that the application of the cycle ν. Equations (6) can be written
in a more compact formulation as follows

(InNν
−�ν)ρ := �ν, (7)

where ρ =
[
ρ>1 , ρ

>
2 , . . . , ρ

>
Nν

]>
and where matrices �ν and �ν

are given by

�ν =


0 . . . 0 Aν(Nν)

Aν(1)
. . . 0 0

...
. . .

. . .
...

0 . . .Aν(Nν−1) 0

 , �ν =


Bν(Nν)
Bν(1)
...

Bν(Nν−1)

 .
In the sequel, we will first present several results related to the
asymptotic stability of the limit cycle defined by a given cycle
ν selected a priori.

3.2 Stabilization to a limit cycle

In this part, the problem of stabilizing a single agent governed
by (1) to limit cycle is addressed. Therefore in this section, for
the sake of simplicity, the subscript related to the agent will
be omitted (i.e. x`,k = xk). There are few recent contributions
on the subject (Egidio et al., 2020; Serieye et al., 2020) where
the authors share similar methods and come up with different
switching control laws. We invoke here (Egidio et al., 2020,
Theorem 2) to adduce some features about the results the author
have proposed.
Theorem 1. For a given cycle ν in C, assume there exist matri-
ces Pi in Sn, i ∈ Dν solution to the following inequalities

Pi � 0, A>ν(i)Pbi+1cνAν(i) − Pi ≺ 0, ∀i ∈ Dν. (8)
Then, the following statements hold:

(i) Eq. (7) admits a unique solution ρ, defining the limit cycle.
(ii) Attractor Aν =

⋃
i∈Dν {ρi}, is globally exponentially stable

for system (1) with the periodic, time-dependent, switch-
ing control law

u(k) = ν(k + δ), δ ∈ Dν, (9)
(iii) Moreover,

lim
k→+∞

‖xk − ρν(k+δ)‖ = 0.

This theorem refers to the stability analysis of periodic systems
referring to the works of (Bolzern and Colaneri, 1988). In the
present paper, the last item (iii) has been added with respect to
(Egidio et al., 2020, Theorem 2).

Proof. We will do the proof of the theorem item by item.
Proof of (i): Let us consider P̄ = diag (Pi)i=1,...,Nν

solution to (8).
Therefore, we can see that

�
>
ν P̄�ν − P̄ = diag

(
A>ν(i)Pbi+1cνAν(i) − Pi

)
i=1,...,Nν

≺ 0.

Hence, matrix �ν is Schur stable. This implies, in particular,
that 1 is not an eigenvalue of�ν. Consequently, matrix InN−�ν

is nonsingular and equation (7) admits a unique solution.

Proof of (ii): Let us consider, without loss of generality, that
δ = 0 and the following time-dependent Lyapunov function
candidate, Vtd given by

Vtd(xk, k) :=
(
xk − ρν(k)

)> Pν(k)
(
xk − ρν(k)

)
, ∀xk ∈ R

n, (10)
and its forward increment given by ∆Vtd(xk, k) = Vtd(xk+1, k +
1) − Vtd(xk, k). Note that the expression of Vtd(xk+1, k + 1)
exposes the term xk+1 which can be manipulated as follows by
invoking (6)

xk+1 = Aν(k)xk +Bν(k) = Aν(k)
(
xk−ρν(k)

)
+Aν(k)ρν(k)+Bν(k)︸            ︷︷            ︸

=ρbk+1cν

. (11)

Hence, we can obtain the following expression of ∆Vtd(xk, k)

∆Vtd(xk, k)=
(
xk−ρν(k)

)>(A>ν(k)Pbk+1cνAν(k)−Pν(k)

) (
xk−ρν(k)

)
.

The latter expression together with condition (8) respected al-
low us to conclude that the Lyapunov function is decreasing for
all xk ∈ R

n\Aν which proves that Aν is globally exponentially
stable for system (1).

Proof of (iii): This item simply results from the fact that V tends
to zero as k tends to infinity. �

Remark 1. The convergence rate of the solution to system (1)
to the limit cycle is characterized by the eigenvalues of the
monodromy matrix defined by

∏
i∈Dν Aν(i).

The following theorem presents an alternative control law for
the same system. The difference is that the control law does not
depend on the time but is only computed based on the value of
the state. This theorem is taken from (Serieye et al., 2020).
Theorem 2. For a given cycle ν, assume there exist matrices
{Pi}i∈Dν in Sn, solution to (8). Then, the following statements
hold:

(i) Eq. (7) admits a unique solution ρ, defining the limit cycle.
(ii) Attractor Aν =

⋃
i∈Dν {ρi} is globally exponentially stable

for system (1) where {ρi}i∈Dν are given by the solution to
(7) with the state-feedback control law

u(x) ∈
{
ν (θ) , θ ∈ argmin

i∈Dν
(x−ρi)> Pi (x−ρi)

}
⊂ K, (12)

(iii) Moreover, if the {ρi}i∈Dν of a limit cycle associated to ν ∈ C
are two by two different, then there exist k0 ∈ N and an
integer δ ∈ Dν such that

u(xk) = ν(k + δ), ∀k ≥ k0. (13)
and consequently

lim
k→+∞

‖xk − ρν(k+δ)‖ = 0.

Remark 2. It is worth noting that the previous theorem relies
on the same LMI condition (8) but the contribution and inter-
pretation are different.

Proof. The proof of each item is performed below except the
one of (i), which is the same as in Theorem 1.



Proof of (ii): Consider the state-dependent Lyapunov function,
Vsd, given by

Vsd(xk) = min
i∈Dν

(xk − ρi)> Pi (xk − ρi) ,∀xk ∈ R
n. (14)

In order to prove (ii), let us note from the control law (12)
that, at any time k, we have Vsd(xk) = (xk − ρθ)> Pθ (xk − ρθ) .
Likewise, Vsd(xk+1) is

Vsd(xk+1) = min
j∈Dν

(
xk+1 − ρ j

)>
P j

(
xk+1 − ρ j

)
≤

(
xk+1 − ρbθ+1cν

)> Pbθ+1cν
(
xk+1 − ρbθ+1cν

)
,

which is the main difference with respect to the proof of
Theorem 1. Then, the manipulations, as in (11), yield

∆Vsd(xk) ≤ (xk − ρθ)>
(
A>ν(θ)Pbθ+1cνAν(θ) − Pθ

)
(xk − ρθ) ,

where matrices Pi’s are solutions to (8). Therefore, the global
exponential stabilization of the closed-loop system (1),(12) to
attractorAν is proven.

Proof of (iii): The proof of this item is taken from (Serieye
et al., 2020, Theorem 1) but is recalled here for the sake of
consistency. The idea is to first prove that the state-dependent
control law (12) becomes ultimately periodic, i.e. that (13)
holds. The proof is obtained by showing that there exists a
sufficiently small scalar ε > 0 (to be determined in this proof),
such that we have the implication: x ∈ Sε = {x ∈ Rn, V(x) ≤
ε2} and θ ∈ arg mini∈Dν (x − ρi)>Pi(x − ρi) implies

(x − ρbθ+1cν )
>Pbθ+1cν (x − ρbθ+1cν ) < (x − ρ j)>P j(x − ρ j), (15)

for all j ∈ Dν, with j , bθ + 1cν, that is the solution of the next
minimization problem (12) is bθ + 1cν. To sum up, k0 is related
to the time to reach the level set Sε , which is always possible
to reach thanks to the convergence of the Lyapunov function
to zero. The shift δ is determined thanks to the solution θ of
the minimization law at time k0, that is on the initial condition
x0 and the selection of the previous switchings. First, notice
that thanks to the equivalence of weighted norms, there exist
constants ci, j > 0, ∀(i, j) ∈ Dν, such that

‖x‖Pi ≤ ci, j‖x‖P j , (16)

(for instance, select ci, j ≥
√
λM(Pi)/λm(P j)). Thanks to

LMIs (8) and x ∈ Sε , we have
‖xk+1 − ρbθ+1cν‖Pbθ+1cν

≤ ‖xk − ρθ‖Pθ ≤ ε, (17)
and from (6)

‖xk+1 − ρbθ+1cν‖Pθ = ‖Aν(θ)(xk − ρθ)‖Pθ ≤ ‖Aν(θ)‖Pθ‖xk − ρθ‖Pθ ,

≤ ‖Aν(θ)‖Pθε (18)

hold, where ‖Aν(θ)‖Pθ denotes the matrix norm induced by
the weighted norm ‖ · ‖Pθ . That yields, due to the triangular
inequality and relations (16),

‖ρbθ+1cν−ρ j‖Pθ−‖Aν(θ)‖Pθε≤‖ρbθ+1cν−ρ j‖Pθ−‖Aν(θ)(xk − ρθ)‖Pθ ,

≤‖ρbθ+1cν − ρ j + Aν(θ)(xk − ρθ)‖Pθ ,

≤‖xk+1 − ρ j‖Pθ ,

≤cθ, j‖xk+1 − ρ j‖P j , ∀ j ∈ Dν. (19)

Since the {ρi}i∈Dν of a limit cycle associated to ν ∈ C are two by
two different, it is always possible to find a positive scalar ε such
that the strict inequalities 0 < cθ, jε < ‖ρbθ+1cν −ρ j‖Pθ −‖Aν(θ)‖Pθε
hold for any j ∈ Dν, j , bθ + 1cν. Combining the two latter
inequalities leads to ε < ‖xk+1 − ρ j‖P j , for all j ∈ Dν\{bθ + 1cν}.
Merging these inequalities yields, for all j ∈ Dν\{bθ + 1cν}

‖xk+1 − ρbθ+1cν‖Pbθ+1cν
≤ ε < ‖xk+1 − ρ j‖P j . (20)

The proof ends by applying item (iii) of Theorem 1, since the
control law becomes ultimately periodic. �

4. SYNCHRONIZATION OF SWITCHED AFFINE
SYSTEMS

The previous theorems allow stabilizing the set of agents to
the same limit cycle (ν, ρ). This means, that each agent with
one of both control laws, can individually converge to the
limit cycle (ν, ρ). However, these theorems will not ensure the
synchronization of the agent along the limit cycle. To do so,
one has to include to the control law some level of cooperation.
As mentioned in the introduction, in this section, we will
propose three first solutions to solve this problem, consisting
of a centralized control solution. The first time-dependent one
can be seen as a natural extension of Theorem 1. Two additional
solutions, which rely on the state-dependent control law are also
presented.

4.1 Time-dependent open-loop control using a centralized
control law

The main idea of the following theorem is to impose the same
periodic (open-loop) switching control law to every agent. This
first control comes direct from Theorem 1.
Theorem 3. For a given cycle ν ∈ C, assume there exist {Pi}i∈Dν
in Sn for i ∈ Dν solution to (8). Then, the following statements
hold:

(i) Eq. (7) admits a unique solution ρ, defining the limit cycle.
(ii) The periodic, time-dependent, switching control law (9)

exponentially stabilizes the multi agent system (2) to
Aν :=

⋃
i∈Dν {1|N| ⊗ ρi}, and, consequently, the agents are

synchronized, i.e.
lim

k→+∞
‖x`,k − x`′,k‖ = 0, ∀(`, `′) ∈ N .

Proof. This theorem is a direct application of Theorem 1 to
the case of multi-agent systems. The synchronization is ensured
since all the agents converge exponentially to ρν(k+δ), with the
same δ for all agents. �

The centralized time-dependent control law presented in the
previous theorem is finally quite simple. It is indeed a central-
ized solution since all the agents share the same time shift δ.
However, as it will be presented in the example section, this
centralized solution leads to poor performances, because it is
limited by the fact that the control law is finally open loop. In
the sequel, two additional solutions will be presented that are
state-dependent, leading potentially to better performances.

4.2 First state-dependent control law

The first centralized solution consists in building a min-
switching control law that gathers and unifies the min-switching
law of all the agents. This is presented in the next theorem.
Theorem 4. For a given cycle ν ∈ C, assume there exist Pi in Sn

for i ∈ Dν solution to (8). Then, the following statements hold

(i) Eq. (7) admits a unique solution ρ, defining the limit cycle.
(ii) The centralized, state-dependent, switching control law

u(xk) ∈
{
ν (θ) , θ ∈ argmin

i∈Dν

(
xk − ρi

)> Pi
(
xk − ρi

)}
⊂ K,

(21)



where ρi = 1|N| ⊗ ρi and Pi = I|N| ⊗ Pi for all i ∈ N ,
ensures that attractor Aν :=

⋃
i∈Dν {1|N| ⊗ ρi} is globally

exponentially stable for system (2), and, consequently, the
agents are synchronized, i.e.

lim
k→+∞

‖x`,k − x`′,k‖ = 0, ∀(`, `′) ∈ N .

Proof. The proof of item (i) is as in Theorem 1.
Proof of (ii): Consider the state-dependent Lyapunov function,
Vsd, given by

Vsd(xk) := min
i∈Dν

(
xk − ρi

)> Pi
(
xk − ρi

)
, ∀xk ∈ R

n|N|. (22)

This Lyapunov function is the same as in Theorem 2, but
applied to the multi-agent system defined in (2), instead of the
dynamics of one single agent (1) and with ρi = 1|N| ⊗ ρi and
Pi = I|N| ⊗ Pi instead of ρi and Pi. From control law (23),
we have V(xk) =

(
xk − ρθ

)> Pθ
(
x − ρθ

)
, and the min-switching

control law ensures that

V(xk+1) ≤
(
xk+1 − ρbθ+1cν

)>
Pbθ+1cν

(
xk+1 − ρbθ+1cν

)
.

Despite the presence of the Kronecker product, it is still pos-
sible to do similar manipulations as those performed in (11),
achieving

xk+1 = Aθxk + Bθ = Aθ
(
xk − ρθ

)
+ Aθρθ + Bθ.

The properties of the Kronecker product yield
Aθρθ + Bθ =

(
I|N| ⊗ Aθ

) (
1|N| ⊗ ρθ

)
+

(
1|N| ⊗ Bθ

)
=

(
I|N|1|N|

)
⊗ (Aθρθ) +

(
1|N| ⊗ Bθ

)
= 1|N| ⊗ (Aθρθ + Bθ) = 1|N| ⊗ ρbθ+1cν := ρbθ+1cν ,

so that we get

∆V(xk) ≤
(
xk − ρθ

)> (
A>θ Pbθ+1cνAθ − Pθ

) (
xk − ρθ

)
,

=
(
xk − ρθ

)> I|N| ⊗
(
A>θ Pbθ+1cνAθ − Pθ

) (
xk − ρθ

)
,

which is ensured to be negative definite from (8). This means
that xk converges to 1|N| ⊗ ρuk , or equivalently that, for all
(`, `′) ∈ N , the triangular inequality ensures

lim
k→+∞

‖x`,k − x`′,k‖ ≤ lim
k→+∞

(‖x`,k − ρuk‖ + ‖x`′,k − ρuk‖) = 0,

which concludes the proof. �

Remark 3. From item (iii) in Theorem 2, if the components of
the limit cycles are two-by-two different, then there exists δ in
Dν such that

lim
k→+∞

‖x`,k − ρν(k+δ)‖ = 0, ∀` ∈ N .

4.3 Second state-dependent control law

An alternative centralized solution to the synchronization prob-
lem is presented in this second theorem
Theorem 5. For a given cycle ν ∈ C, assume there exist Pi in Sn

for i ∈ Dν solution to (8). Then, the following statements hold

(i) Eq. (7) admits a unique solution ρ, defining the limit cycle.
(ii) If the {ρi}i∈Dν of a limit cycle associated to ν ∈ C are two

by two different, then the centralized, state-dependent,
switching control law

u(xk) ∈
{
ν (θ) , θ ∈ argmin

i∈Dν
(x̄k − ρi)> Pi (x̄k − ρi)

}
⊂ K,

(23)
where x̄k = 1

|N|

(
1|N| ⊗ In

)> xk denotes the mean of xk,
ensures that attractor Aν :=

⋃
i∈Dν {1|N| ⊗ ρi} is globally

x2
x3x1

Fig. 2. All-to-all communication graph between 3 agents

exponentially stable for system (2) and, consequently, the
agents are synchronized, i.e.

lim
k→+∞

‖x`,k − x`′,k‖ = 0, ∀(`, `′) ∈ N .

Proof. Again, the proof of item (i) is as in Theorem 1.
Proof of (ii): Consider the change of variable

x̄k =
1
|N|

(
1|N| ⊗ In

)> xk.

The dynamics of the mean variable verifies

x̄k+1 =
1
|N|

(
1|N| ⊗ In

)> xk+1 =
1
|N|

(
1|N| ⊗ In

)> (Aθxk + Bθ)

= Aθ
1
|N|

(
1|N| ⊗ In

)> xk + Bθ := Aθx̄ + Bθ.

Then, following item (ii) of Theorem 2, one can conclude
that the mean of the agent states converges exponentially to
Aν :=

⋃
i∈Dν {ρi}. However, at this point, the stabilization of

any agent to the attractorAν is not proven. Now, from item (ii)
of Theorem 2, we know that the switching control law u(xk)
converges ultimately to ν or a possibly shifted version of it,
i.e., that after a finite-time, a periodic switching control law is
applied to each agent. Finally, from item (i) of Theorem 1, one
gets that all agent states reach synchronization since the control
law is synchronized. �

5. EXAMPLES

This section is devoted to compare the different results pro-
posed in this paper. To do so, we select an example adapted
from (Fiacchini et al., 2016) and (Serieye et al., 2020). In the
latter, we proposed a solution to the stabilization of switched
affine systems to limit cycle defined a priori, which has been
resumed here to extend it to the synchronization of an homo-
geneous multi-agent system. Let us consider system (2), com-
posed of three homogeneous switched affine systems described
by the following matrices Ai

A1 =

[
1 0
0 0.5

]
, A2 =

[
4 −4
4 4

]
, B1 =

[
0.01

0

]
, B2 =

[
0
0

]
. (24)

Finally, the all-to-all communication, in which each pair of
agents is connected by a unique edge, is illustrated by the
simple graph on Figure 2.

A common assumption to ensure the asymptotic stabilization
of switched affine systems is to have a linear combination of
matrices Ai being Schur stable. Although such condition cannot
be verified for the example considered, there exists a unique
limit cycle (ν, ρ) where ν = {111, 22} as defined in (Fiacchini
et al., 2016; Serieye et al., 2020) and as can be proven from
Theorem 1. Then, the asymptotic stabilization to a limit cycle
can be guaranteed.

On Figures 3, 4 the evolutions of the system variables obtained
in simulation are illustrated, being the switching control laws
those proposed in Section 4. From the left to the right, the
simulations are performed with the centralized control laws
given in Theorems 3, 4 and 5. Figure 3 shows the time-
evolutions of the states and of the control inputs and, Figure 4
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Fig. 3. From left to right, the different columns correspond to simulations results where is applied in first, the periodic control law
(9); in second, the all state-dependent control law (21) and finally, the mean state-dependent control law (23). From top to
bottom, the different rows correspond respectively to the evolution of the first state variable of each agent, the evolution of
the second state variable of each agent and the switching signal σk.

depicts the state evolutions in the state plane. Note as the
system converges to Aν with all proposed control laws, as it
is highlighted in the second row subfigures, which correspond
to the shadow area plotted in Figure 3.

The initial condition was selected such that the agents start from
different positions in the state periodic sequence ρ of the limit
cycle (ν, ρ), i.e. x0 :=

[
x>1,0 x>2,0 x>3,0

]>
=

[
ρ>1 ρ

>
8 ρ
>
11

]>
. It is worth

noting that even if each agent i starts from different positions in
the limit cycle, the initial condition is not inAν.

Even though each control law ensures the synchronization of
the multi-agent system (2), control law (9) provides a slower
transient time than the ones generated from the others control
laws proposed in Section 4.

6. CONCLUSION

In this paper, some centralized switching control laws have
been given to synchronize a set of discrete-time switched affine
systems in a given limit cycle. The controllers are obtained
from the framework given in (Serieye et al., 2020) and (Egidio
et al., 2020). On one hand, we propose a time-dependent control
law, that is related to periodic systems. On the other hand,
two state-dependent control laws that can improve performance
with respect to the first one. An academical example shows
the paper contribution. This work is a first step to progress on
switched affine multi-agent system stabilization and suggests
further study on distributed control for synchronization.
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