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Didier Henrion1,2, Mauricio Junca3, Mauricio Velasco3

Draft of January 14, 2021

Abstract

The moment sum of squares (moment-SOS) hierarchy produces sequences of upper
and lower bounds on functionals of the exit time solution of a polynomial stochastic
differential equation with polynomial constraints, at the price of solving semidefinite
optimization problems of increasing size. In this note we use standard results from
elliptic partial differential equation analysis to prove convergence of the bounds pro-
duced by the hierarchy. We also use elementary convex analysis to describe a super-
and sub-solution interpretation dual to a linear formulation on occupation measures.
The practical relevance of the hierarchy is illustrated with numerical examples.

1 Introduction

This paper deals with the numerical evaluation of functionals of solutions of nonlinear
stochastic differential equations (SDE). Our approach consists of constructing a family of
convex optimization problems (semidefinite programming problems, SDP) of increasing size
whose solutions yield bounds on the given functional. This is an application of the so-called
Lasserre or moment sum of squares (SOS) hierarchy [16, 9]. We are especially concerned
about proving convergence of the bounds to the value of the functional.

The moment-SOS hierarchy was already developed and used in [17, 18] for obtaining bounds
on SDEs coming from finance. However, only lower and upper bounds were obtained, and
the question of convergence was left open.

A key step to construct the moment-SOS hierarchy is the reformulation of the original, typ-
ically nonlinear problem, as a linear problem on occupation measures. This linear reformu-
lation is classical in Markov decision processes (MDP) [2, 15]. In order to prove convergence
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of the bounds obtained with the moment-SOS hierarchy, one has to prove that there is no
relaxation gap between the original nonlinear problem and the linear problem on measures.
This was already achieved in [2, 15] in the context of controlled MDP, but the proofs are
lengthy and technical. Zero relaxation gap for optimal control of SDEs was proven in [3]
with the help of viscosity solutions to Hamilton-Jacobi-Bellman partial differential equations
(PDE).

In [13, 14], bounds on functionals of solutions of SDEs were obtained by a dual approach,
seeking test functions satisfying inequalities. When the functions and the SDE coefficients
are polynomial, the inequalities are replaced by SOS constraints and solved numerically with
SDP. Our occupation measure formulation can be interpreted as a primal approach, from
which the dual on test functions follows from elementary convex analysis arguments. More
recently, a primal-dual moment-SOS hierarchy approach to optimal control of SDEs was
followed in [12], as a stochastic counterpart of [11], and no relaxation gap was ensured by
approximating the value function solving the dual HJB PDE.

In this paper, we focus on a specific class of SDE functional evaluation, namely the exit time
of an uncontrolled SDE. The exit time is a random variable that can be characterized by its
moments. As shown in [8], the exit time moments can be approximated numerically with
occupation measures and linear programming (LP), with convergence guarantees based on
the zero relaxation gap proof of [15].

Our contribution is as follows:

• we provide a new proof of the equivalence, or zero relaxation gap, between the infinite-
dimensional linear formulation on occupation measures and the original nonlinear SDE;
the proof, much shorter and simpler in our opinion than the MDP proofs of [2, 15] or
the HJB proof of [3, 12], relies on standard results from elliptic PDE analysis;

• we describe a neat primal-dual linear formulation with no duality gap, allowing readily
the application of the moment-SOS hierarchy.

The paper is organized as follows. The exit time problem is defined in Section 2. Its
linear reformulation with occupation measures is described in Section 3. Our main result
on zero relaxation gap is described and proved in Section 4. The dual linear formulation is
described in Section 5. Application of the moment-SOS hierarchy and numerical examples
are described in Section 7. Concluding remarks are gathered in Section 8

2 Exit time problem

Let W(t) = (Wk)k=1,...,m denote the m-dimensional Brownian motion and let X(t) denote
the solution of the stochastic differential equation (SDE)

dX = b(X)dt+ B(X)dW, X(0) = x

starting at x ∈ X where X is a given bounded open set of Rn with smooth boundary
∂X and closure X := X ∪ ∂X . Drift functions b = (bi)i=1,...,n : Rn → Rn and diffusion
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functions B = (bij)i=1,...,n, j=1,...,m : Rn → Rn×m are given. We assume that B has full rank,
so that the matrix A = (aij := 1

2

∑m
k=1 bikbjk)i,j=1,...,n : Rn → Rn×n is positive definite.

Assume b and B are continuous on Rn and growing at most linearly outside of X , so that
by standard arguments [7, Chapter 5] there is a unique solution to the SDE, the stochastic
process X(t).

Let g : ∂X → R be a given continuous function. We want to evaluate the function

v∗(x) = E[g(X(τx))] (1)

where τx is the first time X(.) hits ∂X , see e.g. [7, Example 2, Section 6.2.1].

3 Linear reformulation

The generator of the stochastic process is the linear partial differential operator

−Lf :=
n∑

i,j=1

aij∂i∂jf +
n∑
i=1

bi∂if

where ∂i denotes the derivative with respect to the i-th variable. With this sign convention,
and since the matrix A is positive definite, linear operator L is uniformly elliptic [6, Section
6.1.1].

Given a function f ∈ C2(X ), Itô’s chain rule [7, Chapter 4] implies that

f(X(τx)) = f(X(0))−
∫ τx

0

Lfds+

∫ τx

0

Df ·B dW

where

Df ·B dW =
m∑
k=1

n∑
i=1

∂ifbik dWk.

Taking the expected value yields Dynkin’s formula [7, Section 6.1.3]:

E[f(X(τx))] = E[f(X(0))]− E
[∫ τx

0

Lfds

]
that we rearrange as follows

E[f(X(τx))] + E

[∫ τx

0

Lfds

]
= f(x). (2)

Given x ∈ X , define the expected occupation measure µ of the process X up to time τx,
such that

µ(A ) := E

[∫ τx

0

IA (X(s))ds

]
for every set A in the Borel sigma algebra of X , where IA denotes the indicator function
equal to one in A and zero outside. An equivalent analytic definition is

〈f, µ〉 :=E

[∫ τx

0

f(X(s))ds

]
3



for any test function f , where

〈f, µ〉 :=

∫
fµ

denotes the duality pairing of a continuous function f and a measure µ. Define the exit
location measure ν as the law of X(τx) i.e.

ν(∂B) := E[I∂B(X(τx))]

for every set B in the Borel sigma algebra of ∂X . An equivalent analytic definition is

〈f, ν〉 := E [f(X(τx))]

for every test function f . Then Dynkin’s formula (2) becomes a linear partial differential
equation on measures

〈f, ν〉+ 〈Lf, µ〉 = f(x) (3)

which can be written in the sense of distributions as

ν + L′µ = δx (4)

where L′ is the linear operator adjoint to L and δx is the Dirac measure concentrated at x.
This equation is called the Kolmogorov or Fokker-Planck equation.

Following [17, 18], now define

vmin(x) := min
µ,ν
〈g, ν〉 s.t. ν + L′µ = δx (5)

and
vmax(x) := max

µ,ν
〈g, ν〉 s.t. ν + L′µ = δx (6)

which satisfy by construction

vmin(x) ≤ v∗(x) ≤ vmax(x)

for each x ∈ X . Note that (5) and (6) are linear optimization problems over measures µ
and ν supported on X and ∂X respectively.

4 No relaxation gap

Theorem 1 There is no relaxation gap between the nonlinear function evaluation problem
(1) and the linear optimization problems (5) and (6), i.e.

vmin(x) = v∗(x) = vmax(x)

for each x ∈X .

The proof of Theorem 1 is based on the following result.
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Lemma 1 For each x ∈ X there exists a unique exit location measure ν = νx on ∂X
solving the Kolmogorov equation (4) for some expected occupation measure µ on X

Proof of Lemma 1: Given any function p ∈ C(∂X ), let fp ∈ C2(X ) ∪ C(∂X ) be the
solution to the boundary value problem

Lf = 0 in X
f = p on ∂X

which is unique according to [6, Theorem 5, Section 2.2.3]. Plugging fp into (3) yields

〈p, ν〉 = fp(x). (7)

Since ∂X is compact, the space C(∂X ) is separable and by choosing countably many
functions p ∈ C(∂X ) we can generate countably many linear relations (7) that uniquely
specify the measure ν that we denote νx. �

Proof of Theorem 1: Let x ∈ X and let νx denote the exit location measure on ∂X
solving the Kolmogorov equation (4). Notice that the objective function in problems (5) and
(6) depends only on νx. It follows that 〈g, νx〉 = vmin(x) = vmax(x).

Remark 1 It is natural to ask whether there is uniqueness of µ in Lemma 1. The answer is
clearly affirmative whenever the image of the operator L is dense in the continuous functions
on X . For a specific instance when this occurs think of Brownian motion in the unit sphere
in Rn. The operator L coincides with the Laplacian. The Laplacian maps homogeneous
polynomials of degree k surjectively onto homogeneous polynomials of degree k − 2 and in
particular it has dense image even when restricted to polynomials. Uniqueness of µ follows.
By contrast if the image of L is not dense then there are many non-trivial signed measures
µ0 which annihilate 〈Lf, µ0〉 for all f . For any such µ0 the pairs (νx, µ + µ0) are solutions
to the Kolmogorov equation (4). We do not know whether pairs of positive measures exist in
all these cases.

5 Duality

In this section we use elementary notions from convex duality to derive the dual problem
to the minimization resp. maximization problem on measures. We show that admissible
solutions to the dual problem are subsolutions resp. supersolutions to the boundary value
PDE solved by the value function. In particular we show that the concept of supersolution
(resp. subsolution) arises naturally from elementary duality theory.

Lemma 2 The linear problem dual to (5) reads as follows

max
v
v(x) s.t. Lv ≤ 0 in X , v ≤ g on ∂X (8)

where the maximization is with respect to functions v ∈ C2(X ). There is no duality gap,
i.e. the value of (8) is equal to the value of (5).
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Proof: Let us denote by v ∈ C(X ) the Lagrange multiplier corresponding to the equality
constraint in primal problem (5), and build the Lagrangian `(µ, ν, v) := 〈g, ν〉 + 〈v, δx −
ν − L′µ〉 = 〈g − v, ν〉 + 〈v,−L′µ〉 + 〈v, δx〉 = 〈g − v, ν〉 + 〈−Lv, µ〉 + v(x). The Lagrange
dual function is then minµ,ν `(µ, ν, v) = v(x) provided v ≤ g on ∂X , the support of ν, and
Lv ≤ 0 on X , the support of µ. The dual problem (8) then consists of maximizing the dual
function subject to these inequality constraints. To prove that there is no duality gap, we
use [1, Theorem IV.7.2] and the fact that the image through the linear map (〈g, ν〉, ν+L′µ)
of the cone of measures µ resp. ν supported on X resp. ∂X is nonempty and bounded in
the metric inducing the weak-star topology on measures. �

As recalled in [7, Example 2, Section 6.B], the value function v∗ is the solution of the
boundary value problem

Lv = 0 in X
v = g on ∂X .

(9)

Lemma 3 Any admissible function v for linear problem (8) is a subsolution of boundary
value problem (9), in the sense that v∗ ≥ v on X .

Proof: Let v be admissible for (8). Function u := v − v∗ is such that Lu ≤ 0 in X and
u ≤ 0 on ∂X . By the weak maximum principle [6, Theorem 1 page 327], if Lu ≤ 0 in X
then maxX u = max∂X u. Since u ≤ 0 on ∂X , this implies that u ≤ 0 and hence v∗ ≥ v on
X . �

Linear problem (8) selects the subsolution that touches the value function from below at x.

Similarly, the linear problem dual to (6) reads as follows

min
v
v(x) s.t. Lv ≥ 0 in X , v ≥ g on ∂X (10)

where the maximization is with respect to functions v ∈ C2(X ). There is no duality gap, i.e.
the value of (10) is equal to the value of (6). Any admissible function v for linear problem
(10) is a super-solution of boundary value problem (9), in the sense that v∗ ≤ v on X and
∂X . Linear problem (10) selects the supersolution that touches the value function from
above at x.

6 Random initial condition

All the above developments generalize readily to the case that the initial condition X(0)
in the SDE is a random variable whose law is a given probability measure ξ on X . The
previous results can then be retrieved with the particular choice ξ = δx for a given x ∈X .

The quantity to be evaluated becomes

v∗ξ :=

∫
X

E[g(X(τx))]dξ(x).

The Kolmogorov equation (4) becomes

ν + L′µ = ξ
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and exactly the same arguments of the proof of Lemma 1 can be used to prove that it has
a unique solution νξ depending on ξ. As in Theorem 1, it follows that the linear problems

min
µ,ν
〈g, ν〉 s.t. ν + L′µ = ξ (11)

and
max
µ,ν
〈g, ν〉 s.t. ν + L′µ = ξ (12)

have the same value v∗ξ , i.e. there is no relaxation gap. The respective dual problems

max
v
〈v, ξ〉 s.t. Lv ≤ 0 in X , v ≤ g on ∂X (13)

and
min
v
〈v, ξ〉 s.t. Lv ≥ 0 in X , v ≥ g on ∂X (14)

have the same value v∗ξ , i.e. there is no duality gap.

7 Moment-SOS hierarchy and examples

If the SDE coefficients b and B and the functional g are semialgebraic1 in a semialgebraic
set X , we can apply the moment-SOS hierarchy on (5) and (6) with convergence guar-
antees. In the primal, we obtain approximate moments (also called pseudo-moments or
pseudo-expectations) of the occupation measures. They are not necessarily moments of the
occupation measures as we are solving relaxations. In the SOS dual, we obtain polynomial
sub- resp. super-solutions of increasing degrees of the boundary value problem (9). Each
primal-dual problem is a semidefinite optimization problem.

7.1 Semidefinite relaxations

Let us briefly describe the construction of the moment-SOS hierarchy.

A bounded closed semialgebraic set Z of Rn can be written as the union of finitely many
basic semialgebraic sets Zi := {z ∈ Rn : pi,j(z) ≥ 0, j = 1, . . . ,mi}, i = 1, . . . ,m,
described by finitely many polynomials pi,j. Note that polynomial equations can be modeled
by two inequalities of reverse signs. Since Z is bounded, without loss of generality, for each
i = 1, . . . ,m, one of the polynomials defining each Zi can be chosen equal to R2 −

∑n
k=1 z

2
k

for R sufficiently large, and for notational convenience we let pi,0(z) := 1

There are several algebraic characterizations of the set of positive polynomials on Zi. To
describe one such characterization, let r be a positive integer and for each i = 1, . . . ,m
define the truncated quadratic module of degree r of Zi, denoted Q(Zi)r, to be the set of
polynomials which can be written as

∑mi

j=0 pi,jsi,j where the si,j are sums of squares (SOS)
of polynomials such that 2degsi,j + degpi,j ≤ r. Every polynomial in the Minkowski sum

1A function is semialgebraic if its graph is a semialgebraic set. A semialgebraic set is defined by a finite
sequence of polynomial equations and inequalities.
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∑m
i=1Q(Zi)r is obviously nonnegative on Z . Putinar’s Positivstellensatz [19] is the much

deeper statement that every polynomial strictly positive on Z lies in
∑m

i=1Q(Zi)r.

We will now describe a hierarchy of semidefinite optimization problems which depend on the
degree r and provide us with upper and lower bounds on the value v∗ξ . We will show that as
r →∞ these bounds converge to the value v∗ξ .

Let us assume that X is a bounded basic semi-algebraic set. Its boundary ∂X is then a
union of finitely many bounded basic semi-algebraic sets X ∂

i , i = 1, . . . ,m. The primal
(moment) problems are given by

pmin
r := min

∑m
i=1 `νi(g)

s.t. `µ(v) ≥ 0, ∀v ∈ Q(X )r
`νi(v) ≥ 0, ∀v ∈ Q(X ∂

i )r
`µ(Lv) +

∑m
i=1 `νi(v) = 〈v, ζ〉, ∀v ∈ Pr

(15)

and
pmax
r := max

∑m
i=1 `νi(g)

s.t. `µ(v) ≥ 0, ∀v ∈ Q(X )r
`νi(v) ≥ 0, ∀v ∈ Q(X ∂

i )r
`µ(Lv) +

∑m
i=1 `νi(v) = 〈v, ξ〉, ∀v ∈ Pr

(16)

where the unknowns are linear operators `µ, `ν1 , . . . , `νm from Pr to R, for Pr denoting the
vector space of n-variate real polynomials of degree up to r. The dual (SOS) problems are
given by

dmin
r := max 〈v, ξ〉

s.t. −Lv ∈ Q(X )r
g − v ∈

∑m
i=1Q(X ∂

i )r

(17)

and
dmax
r := min 〈v, ξ〉

s.t. Lv ∈ Q(X )r
v − g ∈

∑m
i=1Q(X ∂

i )r

(18)

where the unknowns are polynomials v ∈ Pr.

Theorem 2 Problems (15), (16), (17) and (18) are semidefinite programming problems. For
each r > 0, it holds dmin

r ≤ pmin
r ≤ v∗ξ ≤ pmax

r ≤ dmax
r . Moreover limr→∞(dmax

r − dmin
r ) = 0.

Proof: To show that problems (17) and (18) are semidefinite programming problems, just
observe that a polynomial p(z) of degree at most 2r is a sum of squares of polynomials if and
only if there is a positive semidefinite symmetric matrix S such that p(z) = b(z)′Sb(z) where
b(z) is a vector of polynomials spanning Pr. It follows that the truncated quadratic modules
in (17) and (18) are projections of the semidefinite cone, and optimizing linear functions
over them is an instance of semidefinite programming.

Problems (15) and (17) are in duality. This follows easily from computing the Lagrangian
as in Lemma 2. The constraint in problem (15) that a linear operator is non-negative for
all polynomials in a truncated module can be expressed as a linear matrix inequality, i.e. it
forms a spectrahedron, a linear slice of the semidefinite cone. From weak duality we conclude
that pmin

r ≥ dmin
r . Similarly, problems (16) and (18) are in duality and dmax

r ≥ pmax
r .
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relaxation degree 2 4 6 8 10
lower bound 0.65000 0.92157 0.98118 0.99503 0.99827
upper bound 1.00000 1.00000 1.00000 1.00000 1.00000

Table 1: Scalar example - bounds for increasing relaxation degrees.

To prove that pmin
r ≤ v∗ξ observe that if (ν, µ) are measures satisfying ν + L′µ = ξ then

defining `µ(v) := 〈v, µ〉 and `νi(v) := 〈v, νi〉 where ν =
∑m

i=1 νi for each νi supported on
X ∂

i , we obtain admissible linear operators for the primal problem (15). Coefficients of the
linear operators are moments of the respective measures. It may however happen that linear
operators admissible for problem (15) do not correspond to measures. Since we minimize a
linear function on a possibly larger set, we obtain a lower bound. Similarly, we can prove
that v∗ξ ≤ pmax

r .

The most substantial claim is the convergence result. Given ε > 0 we will show that there
exists an integer rε such that 0 ≤ v∗ξ − dmin

r ≤ ε for r ≥ rε. Similar arguments imply an
analogous convergence result for dmax

r .

Recall from Section 5 that the unique function f ∈ C2(X ) which satisfies Lf = 0 in X
and f = g on ∂X is the value function f = v∗ of the problem and it satisfies v∗ξ = 〈v∗, ξ〉.
The proof proceeds by showing that this value function can be approximated by a sequence
of elements vn which are feasible for problem (17). Since operator L is uniformly elliptic,
there is a polynomial w such that −Lw > 0 in X , take e.g. a quadratic polynomial with
sufficient large leading coefficients. By substracting a sufficiently large constant from w, we
can also ensure that w < g on ∂X . Now let ε > 0 be given and let (wn)n∈N be a sequence of
polynomials which approximate v∗ and its derivatives of order up to 2 uniformly on X . Let
η > 0 be a real number with η < ε

2‖w−v∗‖ and let vn := (1−η)wn+ηw. Due to the uniformity
of the convergence of wn and the definition of vn the following statements hold for all n
sufficiently large: ‖wn− v∗‖ < η‖w− v∗‖, −Lvn > 0 in X and vn < g on ∂X . By Putinar’s
Positivstellensatz [19], for any such n there exists a degree rn such that −Lvn ∈ Q(X )rn
and g−vn ∈ Q(∂X )rn and therefore vn is feasible for problem (17) for r = rn. Furthermore,
for any such n we have |〈vn − v∗, ξ〉| ≤ (1− η)‖wn − v∗‖ + η‖w − v∗‖ ≤ 2η‖w − v∗‖ < ε so
we conclude that v∗ξ − dmin

rn ≤ ε proving the claim since ε > 0 was arbitrary.

7.2 Solving the relaxations

Moment relaxations of these linear problems can be modeled as generalized problems of
moments with the GloptiPoly interface [10] for Matlab. The relaxations are solved with the
SDP solver in MOSEK [5].

7.3 Scalar example

Let us illustrate the application of the moment-SOS hierarchy with an elementary exit time
problem (1) considered in [8, Example 5.1]. The SDE is dXt = (1 + 2Xt)dt +

√
2XtdWt

on the domain X := (0, 1) with initial condition x = 1/2. This process always exits at
the point {1}, so ν = δ1 solves (3) and the value of linear problems (5) and (6) is equal

9



Figure 1: Lower and upper bounds on the functional for increasing relaxation degrees and
dimension n = 2 (left) and n = 3 (right).

dimension n 2 3 4 5 6 7 8
number of moments 73 249 705 1749 3927 8151 15873
CPU time (seconds) 0.15 0.59 1.9 5.6 19 51 195

Table 2: Computational burden for relaxation degree 8 and increasing dimensions.

to g(1). For the choice g(z) = z2 we report in Table 1 the values of the lower and upper
bounds obtained by solving the moment relaxations to problems (5) and (6), for increasing
relaxation degrees. The degree 10 relaxation was solved in 0.15 seconds on our laptop. The
corresponding GloptiPoly script is given in the Appendix.

7.4 Multivariate example

Consider problem (1) with g(z) :=
∑n

k=1 z
2
k for the n-dimensional Brownian motion Xt =

Wt, i.e. b = 0 and B = In, in the convex semi-algebraic domain X := {z ∈ Rn :
∑n

k=1 z
4
k ≤ 1}

with initial condition x = 0.

On Figure 1 we plot for n = 2 and n = 3 the lower resp. upper bounds obtained by
minimizing resp. maximizing the functional, for increasing relaxation degrees. We observe
a fast convergence of the bounds.

In Table 2 we report the number of moments as well as the computational time required to
solve the moment relaxation of degree 8, for increasing values of the dimension n. For this
relaxation degree the gap between the lower and upper bounds on the functional is less than
2%.

8 Conclusion

Using elementary analytic arguments, we proved that there is no relaxation gap between
the original problem and the linear problem on occupation measures in the special case of
evaluating functionals of the exit time of stochastic processes on bounded domains. If the
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domain is basic semialgebraic and the SDE coefficients and the functional are polynomial
or semi-algebraic, we can then readily apply the moment-SOS hierarchy with convergence
guarantees. Tight bounds on the functionals can be obtained with off-the-shelf SDP solvers
at a moderate cost.

Of particular practical interest are approximations to the moments of the exit time distri-
bution, as studied in [8]. In order to have access to these moments, the occupation measure
and the boundary measure, as well as the test functions, should depend explicitly on time,
as in [17, 18].

We would also like to extend these techniques to optimal stopping time [4] and stochastic
optimal control problems [3], with expectation constraints.

Appendix: Matlab script

dmax = 10; % relaxation degree

mpol xmu xnu

mu = meas(xmu); % expected occupation measure

nu = meas(xnu); % exit location measure

x0 = 0.5; % initial condition

momeqs = []; % linear moment equations

for d = 0:dmax

Lfmu = 0;

if d > 0, Lfmu = Lfmu - mom((1+2*xmu)*(d*xmu^(d-1))); end

if d > 1, Lfmu = Lfmu - mom(xmu^2*(d*(d-1)*xmu^(d-2))); end

if d > 0, fnu = mom(xnu^d); else fnu = mass(nu); end

momeqs = [momeqs; fnu+Lfmu == x0^d];

end

g = xnu^2; % functional

% construct moment relaxation

P = msdp(min(g), momeqs, xmu*(1-xmu)>=0, xnu*(1-xnu)==0);

% solve SDP problem

msol(P);

% bound

double(g)

% approximate mass of the occupation measure

double(mass(mu))
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