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Draft of March 14, 2024

Abstract

The moment sum of squares (moment-SOS) hierarchy produces sequences of upper
and lower bounds on functionals of the exit time location of a polynomial stochastic
differential equation with polynomial constraints, at the price of solving semidefinite
optimization problems of increasing size. In this note we use standard results from
elliptic partial differential equation analysis to prove convergence of the bounds pro-
duced by the hierarchy. We also use elementary convex analysis to describe a super-
and sub-solution interpretation dual to a linear formulation on occupation measures.
Finally, we introduce a novel Christoffel-Darboux approach for the recovery of the exit
location and occupation measures. The practical relevance of these results is illustrated
with numerical examples.

1 Introduction

This paper deals with the numerical evaluation of functionals of solutions for nonlinear
stochastic differential equations (SDE). Our approach consists of constructing a family of
convex optimization problems (semidefinite programming problems, SDP) of increasing size
whose solutions yield bounds on the given functional. This is an application of the so-called
Lasserre or moment sum of squares (SOS) hierarchy [17, 9]. We are especially concerned
about proving convergence of the bounds to the value of the functional.

The moment-SOS hierarchy was already developed and used in [19, 20] for obtaining bounds
on SDEs coming from finance. However, only lower and upper bounds were obtained, and
the question of convergence was left open.
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A key step to construct the moment-SOS hierarchy is the reformulation of the original, typ-
ically nonlinear problem, as a linear problem on occupation measures. This linear reformu-
lation is classical in Markov decision processes (MDP) [2, 16]. In order to prove convergence
of the bounds obtained with the moment-SOS hierarchy, one has to prove that there is no
relaxation gap between the original nonlinear problem and the linear problem on measures.
This was already achieved in [2, 16] in the context of controlled MDP, but the proofs are
lengthy and technical. Zero relaxation gap for optimal control of SDEs was proven in [3]
with the help of viscosity solutions to Hamilton-Jacobi-Bellman partial differential equations
(PDE).

In [13, 14], bounds on functionals of solutions of SDEs were obtained by a dual approach,
seeking test functions satisfying inequalities. When the functions and the SDE coefficients
are polynomial, the inequalities are replaced by SOS constraints and solved numerically with
SDP. Our occupation measure formulation can be interpreted as a primal approach, from
which the dual on test functions follows from elementary convex analysis arguments. More
recently, a primal-dual moment-SOS hierarchy approach to optimal control of SDEs was
followed in [12], as a stochastic counterpart of [11], and no relaxation gap was ensured by
approximating the value function solving the dual HJB PDE.

In this paper, we focus on a specific class of SDE functional evaluation problems, namely
the exit location of an uncontrolled SDE. The exit location is a random variable that can be
characterized by its moments. As shown in [8], the exit time moments can be approximated
numerically with occupation measures and linear programming (LP), with convergence guar-
antees based on the zero relaxation gap proof of [16].

Our contribution is as follows:

� we provide a new proof of the equivalence, or zero relaxation gap, between the infinite-
dimensional linear formulation on occupation measures and the original nonlinear SDE;
the proof, much shorter and simpler in our opinion than the MDP proofs of [2, 16] or
the HJB proof of [3, 12], relies on standard results from elliptic PDE analysis;

� we describe a neat primal-dual linear formulation with no duality gap, allowing readily
the application of the moment-SOS hierarchy.

� we propose a novel use of Christoffel-Darboux polynomial kernels [18] to approximate
the densities of occupation measures and characterizing the exit location measure.

The paper is organized as follows. The exit location problem is defined in section 2. Its linear
reformulation with occupation measures is described in section 3: we start with the primal
formulation in subsection 3.1; our main result on zero relaxation gap is described and proved
in subsection 3.2; the dual linear formulation is described in subsection 3.3. Application of
the moment-SOS hierarchy and numerical examples are described in section 4. Section
5 describes how Christoffel-Darboux polynomial kernels can be used to approximate the
densities of the occupation measures. Concluding remarks are gathered in section 6.
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2 Exit location problem

Let X be a given open connected bounded set of Rn with smooth boundary ∂X and
compact closure X := X ∪ ∂X . Let W(t) = (Wk)k=1,...,m denote the m-dimensional
Brownian motion and let X(t) denote the solution of the stochastic differential equation
(SDE)

dX = b(X)dt+ B(X)dW, X(0) = x

starting at x ∈ X where drift functions b = (bi)i=1,...,n : Rn → Rn and diffusion functions
B = (bij)i=1,...,n, j=1,...,m : Rn → Rn×m are given. We assume that B has full rank on X ,
so that the matrix A = (aij := 1

2

∑m
k=1 bikbjk)i,j=1,...,n : Rn → Rn×n is positive definite.

Assume b and B are continuous on Rn and growing at most linearly outside of X , so that
by standard arguments [7, Chapter 5] there is a unique solution to the SDE, the stochastic
process X(t).

Let g : ∂X → R be a given continuous function. We want to evaluate the function

E[g(X(τx))] (1)

where τx is the first time X(.) hits ∂X , see e.g. [7, Example 2, Section 6.2.1].

3 Linear reformulation

The generator of the stochastic process is the linear partial differential operator

−Lf :=
n∑

i,j=1

aij∂i∂jf +
n∑
i=1

bi∂if

where ∂i denotes the derivative with respect to the i-th variable. With this sign convention,
and since the matrix A is positive definite, linear operator L is uniformly elliptic [6, Section
6.1.1].

Given a function f ∈ C2(X ), Itô’s chain rule [7, Chapter 4] implies that

f(X(τx)) = f(X(0))−
∫ τx

0

Lfds+

∫ τx

0

Df ·B dW

where

Df ·B dW =
m∑
k=1

n∑
i=1

∂ifbik dWk.

Taking the expected value yields Dynkin’s formula [7, Section 6.1.3]:

E[f(X(τx))] = E[f(X(0))]− E
[∫ τx

0

Lfds

]
that we rearrange as follows

E[f(X(τx))] + E

[∫ τx

0

Lfds

]
= f(x). (2)
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Given x ∈ X , define the expected occupation measure µ of the process X up to time τx,
such that

µ(A ) := E

[∫ τx

0

IA (X(s))ds

]
for every set A in the Borel sigma algebra of X , where IA denotes the indicator function
equal to one in A and zero outside. An equivalent analytic definition is

〈f, µ〉 :=E

[∫ τx

0

f(X(s))ds

]
for any test function f , where

〈f, µ〉 :=

∫
fµ

denotes the duality pairing of a continuous function f and a measure µ. Define the exit
location measure ν as the law of X(τx) i.e.

ν(∂B) := E[I∂B(X(τx))]

for every set B in the Borel sigma algebra of ∂X . An equivalent analytic definition is

〈f, ν〉 := E [f(X(τx))]

for every test function f . Then Dynkin’s formula (2) becomes a linear partial differential
equation on measures

〈f, ν〉+ 〈Lf, µ〉 = f(x) (3)

which can be written in the sense of distributions as

ν + L′µ = δx (4)

where L′ is the linear operator adjoint to L and δx is the Dirac measure concentrated at x.
This equation is called the Kolmogorov or Fokker-Planck equation.

So far we have assumed that the initial condition is deterministic. All the above developments
generalize readily to the case when the initial condition X(0) in the SDE is a random variable
whose law is a given probability measure ξ on X .

The quantity (1) to be evaluated is now averaged with respect to the distribution of initial
conditions:

v∗(ξ) :=

∫
X

E[g(X(τx))]dξ(x) (5)

and the Kolmogorov equation (4) becomes

ν + L′µ = ξ. (6)

This general formulation allows us to recover the deterministic initial condition of starting
at a given point x ∈X by making the particular choice ξ := δx.
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3.1 Primal formulation

Following [19, 20], now define

vmin(ξ) := min
µ,ν
〈g, ν〉 s.t. ν + L′µ = ξ (7)

and
vmax(ξ) := max

µ,ν
〈g, ν〉 s.t. ν + L′µ = ξ (8)

which satisfy by construction

vmin(ξ) ≤ v∗(ξ) ≤ vmax(ξ).

Note that (7) and (8) are linear optimization problems over measures µ and ν supported on
X and ∂X respectively.

3.2 No relaxation gap

Let us make the following regularity assumptions on the problem data, see [23, Sections 3
and 4] for definitions.

Assumption 1 The boundary ∂X has class C2,α and the coefficients aij, bi have class
C0,α(X ) for some α ∈ (0, 1).

Theorem 1 Under Assumption 1, there is no relaxation gap between the nonlinear function
evaluation problem (5) and the linear optimization problems (7) and (8), i.e.

vmin(ξ) = v∗(ξ) = vmax(ξ)

for each probability measure ξ on X .

The proof of Theorem 1 is based on the following result.

Lemma 1 Under Assumption 1, for each probability measure ξ on X there exists a unique
exit location measure ν = νξ on ∂X and a unique expected occupation measure µ = µξ on
X solving the Kolmogorov equation (6).

Proof of Lemma 1: Let α ∈ (0, 1) be the regularity exponent of Assumption 1. Given
any function p ∈ C2,α(X ), let fp ∈ C2,α(X ) be a solution to the Dirichlet boundary value
problem

Lf = 0 in X
f = p on ∂X .

(9)

Existence, uniqueness and regularity of the solution follows from [23, Theorem 4.5]. Inte-
gating fp with respect to (6) yields

〈p, ν〉 = 〈fp, ξ〉. (10)
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Since X is compact, the space C(X ) is separable and by choosing countably many functions
p ∈ C2,α(X ) – e.g. polynomials – we can generate countably many linear relations (10) that
uniquely specify the measure ν that we denote νξ.

Uniqueness of the measure µ also holds. Indeed, if h ranges over a countable dense set of
functions in C2,α(X ) and the fh are the unique solutions in C2,α(X ) of the Poisson problem

Lfh = h in X
fh = 0 on ∂X

then the Kolmogorov equation (6) yields the equality

〈h, µ〉 = 〈fh, ξ〉 − 〈fh, ν〉 = 〈fh, ξ〉

and the moments of µ with respect to the functions in h are uniquely specified. By density,
this implies the uniqueness of µ that we denote µξ. �

Proof of Theorem 1: Let νξ denote the exit location measure on ∂X solving the Kol-
mogorov equation (6). Notice that the objective function in problems (7) and (8) depends
only on νξ. It follows that 〈g, νx〉 = vmin(ξ) = vmax(ξ).

Remark 1 Existence and uniqueness of a regular solution to the Dirichlet problem (9) also
follows from the uniformly ellipticity of L and weaker conditions on the data, as stated in [21,
Theorem 9.2.14]. Uniqueness of the solution follows from [21, Theorem 9.2.13] under Hunt’s
condition and also under the assumption that all points of ∂X are regular, see [21, Definition
9.2.8]. Hunt’s condition holds for all Itô diffusions whose diffusion coefficient matrix has a
bounded inverse and whose drift coefficient satisfies the so-called Novikov condition. For
our purpose however, we prefer to stick with stronger assumptions and the self-contained
statement and proof of [23, Theorem 4.5].

3.3 Duality

Now let us use elementary notions from convex duality to derive the dual problem to the
minimization resp. maximization problem on measures. We show that admissible solu-
tions to the dual problem are subsolutions resp. supersolutions to the boundary value PDE
solved by the value function. In particular we show that the concept of supersolution (resp.
subsolution) arises naturally from elementary duality theory.

Lemma 2 The linear problem dual to (7) reads as follows

max
v
〈v, ξ〉 s.t. Lv ≤ 0 in X , v ≤ g on ∂X (11)

where the maximization is with respect to functions v ∈ C2(X ). There is no duality gap,
i.e. the value of (11) is equal to the value of (7).

Proof: Let us denote by v ∈ C(X ) the Lagrange multiplier corresponding to the equality
constraint in primal problem (7), and build the Lagrangian `(µ, ν, v) := 〈g, ν〉 + 〈v, ξ −
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ν − L′µ〉 = 〈g − v, ν〉 + 〈v,−L′µ〉 + 〈v, ξ〉 = 〈g − v, ν〉 + 〈−Lv, µ〉 + 〈v, ξ〉. The Lagrange
dual function is then minµ,ν `(µ, ν, v) = 〈v, ξ〉 provided v ≤ g on ∂X , the support of ν, and
Lv ≤ 0 on X , the support of µ. The dual problem (11) then consists of maximizing the dual
function subject to these inequality constraints. To prove that there is no duality gap, we
use [1, Theorem IV.7.2] and the fact that the image through the linear map (〈g, ν〉, ν+L′µ)
of the cone of measures µ resp. ν supported on X resp. ∂X is nonempty and bounded in
the metric inducing the weak-star topology on measures. �

As recalled in [7, Example 2, Section 6.B], the value function w is the solution of the boundary
value problem

Lv = 0 in X
v = g on ∂X .

(12)

Lemma 3 Any admissible function v for linear problem (11) is a subsolution of boundary
value problem (12), in the sense that w ≥ v on X .

Proof: Let v be admissible for (11). Function u := v − w is such that Lu ≤ 0 in X and
u ≤ 0 on ∂X . By the weak maximum principle [6, Theorem 1 page 327], if Lu ≤ 0 in X
then maxX u = max∂X u. Since u ≤ 0 on ∂X , this implies that u ≤ 0 and hence w ≥ v on
X . �

Linear problem (11) selects a subsolution of maximal averaged value with respect to ξ. In
particular, if ξ = δx for some x ∈ X , an optimal subsolution touches the value function
from below at x.

Similarly, the linear problem dual to (8) reads as follows

min
v
〈v, ξ〉 s.t. Lv ≥ 0 in X , v ≥ g on ∂X (13)

where the maximization is with respect to functions v ∈ C2(X ). There is no duality gap, i.e.
the value of (13) is equal to the value of (8). Any admissible function v for linear problem
(13) is a super-solution of boundary value problem (12), in the sense that w ≤ v on X and
∂X . Linear problem (13) selects the supersolution of minimal averaged value with respect
to ξ. In particular, if ξ = δx for some x ∈ X , an optimal subsolution touches the value
function from above at x.

4 Moment-SOS hierarchy and examples

If the SDE coefficients b and B and the functional g are semialgebraic1 in a semialgebraic
set X , we can apply the moment-SOS hierarchy on (7) and (8) with convergence guar-
antees. In the primal, we obtain approximate moments (also called pseudo-moments or
pseudo-expectations) of the occupation measures. They are not necessarily moments of the
occupation measures as we are solving relaxations. In the SOS dual, we obtain polynomial
sub- resp. super-solutions of increasing degrees of the boundary value problem (12). Each
primal-dual problem is a semidefinite optimization problem.

1A function is semialgebraic if its graph is a semialgebraic set. A semialgebraic set is defined by a finite
sequence of polynomial equations and inequalities.
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4.1 Semidefinite relaxations

Let us briefly describe the construction of the moment-SOS hierarchy.

A bounded closed semialgebraic set Z of Rn can be written as the union of finitely many
basic semialgebraic sets Zi := {z ∈ Rn : pi,j(z) ≥ 0, j = 1, . . . ,mi}, i = 1, . . . ,m, described
by finitely many polynomials in a vector pi = (pi,j)j=1,...,mi

. Note that polynomial equations
can be modeled by two inequalities of reverse signs. Since Z is bounded, without loss of
generality, for each i = 1, . . . ,m, one of the polynomials defining each Zi can be chosen equal
to R2 −

∑n
k=1 z

2
k for R sufficiently large, and for notational convenience we let pi,0(z) := 1

There are several algebraic characterizations of the set of positive polynomials on Zi. To
describe one such characterization, let r be a positive integer and for each i = 1, . . . ,m define
the truncated quadratic module of degree r generated by the polynomials in pi defining Zi,
denoted Q(pi)r, to be the set of polynomials which can be written as

∑mi

j=0 pi,jsi,j where
the si,j are sums of squares (SOS) of polynomials such that 2degsi,j + degpi,j ≤ r. Every
polynomial in the Minkowski sum

∑m
i=1Q(pi)r is obviously nonnegative on Z . Putinar’s

Positivstellensatz [22] is the much deeper statement that every polynomial strictly positive
on Z lies in

∑m
i=1Q(pi)r for some r.

We will now describe a hierarchy of semidefinite optimization problems which depend on the
degree r and provide us with upper and lower bounds on the value v∗(ξ). We will show that
as r →∞ these bounds converge to the value v∗(ξ).

Let us assume that X is a bounded basic semi-algebraic set with definining polynomials p.
Its boundary ∂X is then a union of finitely many bounded basic semi-algebraic sets X ∂

i

with defining polynomials p∂i , i = 1, . . . ,m. The primal (moment) problems are given by

pmin
r := min

∑m
i=1 `νi(g)

s.t. `µ(q) ≥ 0, ∀q ∈ Q(p)r
`νi(q) ≥ 0, ∀q ∈ Q(p∂i )r
`µ(Lq) +

∑m
i=1 `νi(q) = 〈q, ζ〉, ∀q ∈ Pr

(14)

and
pmax
r := max

∑m
i=1 `νi(g)

s.t. `µ(q) ≥ 0, ∀q ∈ Q(p)r
`νi(q) ≥ 0, ∀q ∈ Q(p∂i )r
`µ(Lq) +

∑m
i=1 `νi(q) = 〈q, ξ〉, ∀q ∈ Pr

(15)

where the unknowns are linear operators `µ, `ν1 , . . . , `νm from Pr to R, for Pr denoting the
vector space of n-variate real polynomials of degree up to r. The dual (SOS) problems are
given by

dmin
r := max 〈q, ξ〉

s.t. −Lq ∈ Q(p)r
g − q ∈

∑m
i=1Q(p∂i )r

(16)

and
dmax
r := min 〈q, ξ〉

s.t. Lq ∈ Q(X )r
q − g ∈

∑m
i=1Q(X ∂

i )r

(17)

where the unknowns are polynomials q ∈ Pr.
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Theorem 2 Problems (14), (15), (16) and (17) are semidefinite programming problems. For
each r > 0, it holds dmin

r ≤ pmin
r ≤ v∗(ξ) ≤ pmax

r ≤ dmax
r . Moreover limr→∞(dmax

r − dmin
r ) = 0.

Proof: To show that problems (16) and (17) are semidefinite programming problems, just
observe that a polynomial p(z) of degree at most 2r is a sum of squares of polynomials if and
only if there is a positive semidefinite symmetric matrix S such that p(z) = b(z)′Sb(z) where
b(z) is a vector of polynomials spanning Pr. It follows that the truncated quadratic modules
in (16) and (17) are projections of the semidefinite cone, and optimizing linear functions
over them is an instance of semidefinite programming.

Problems (14) and (16) are in duality. This follows easily from computing the Lagrangian
as in Lemma 2. The constraint in problem (14) that a linear operator is non-negative for
all polynomials in a truncated module can be expressed as a linear matrix inequality, i.e. it
forms a spectrahedron, a linear slice of the semidefinite cone. From weak duality we conclude
that pmin

r ≥ dmin
r . Similarly, problems (15) and (17) are in duality and dmax

r ≥ pmax
r .

To prove that pmin
r ≤ v∗(ξ) observe that if (ν, µ) are measures satisfying ν + L′µ = ξ then

defining `µ(q) := 〈q, µ〉 and `νi(q) := 〈q, νi〉 where ν =
∑m

i=1 νi for each νi supported on
X ∂

i , we obtain admissible linear operators for the primal problem (14). Coefficients of the
linear operators are moments of the respective measures. It may however happen that linear
operators admissible for problem (14) do not correspond to measures. Since we minimize a
linear function on a possibly larger set, we obtain a lower bound. Similarly, we can prove
that v∗(ξ) ≤ pmax

r .

The most substantial claim is the convergence result. Given ε > 0 we will show that there
exists an integer rε such that 0 ≤ v∗(ξ) − dmin

r ≤ ε for r ≥ rε. Similar arguments imply an
analogous convergence result for dmax

r .

Recall from Section 3.3 that the unique function f ∈ C2(X ) which satisfies Lf = 0 in X
and f = g on ∂X is the value function f = w of the problem and it satisfies v∗(ξ) = 〈w, ξ〉.
The proof proceeds by showing that this value function can be approximated by a sequence
of elements vn which are feasible for problem (16). Since operator L is uniformly elliptic,
there is a polynomial u such that −Lu > 0 in X , take e.g. a quadratic polynomial with
sufficient large leading coefficients. By substracting a sufficiently large constant from u, we
can also ensure that u < g on ∂X . Now let ε > 0 be given and let (wn)n∈N be a sequence of
polynomials which approximate w and its derivatives of order up to 2 uniformly on X . Let
η > 0 be a real number with η < ε

2‖u−w‖ and let vn := (1− η)wn + ηu. Due to the uniformity
of the convergence of wn and the definition of vn the following statements hold for all n
sufficiently large: ‖wn −w‖ < η‖u−w‖, −Lvn > 0 in X and vn < g on ∂X . By Putinar’s
Positivstellensatz [22], for any such n there exists a degree rn such that −Lvn ∈ Q(X )rn
and g−vn ∈ Q(∂X )rn and therefore vn is feasible for problem (16) for r = rn. Furthermore,
for any such n we have |〈vn − w, ξ〉| ≤ (1− η)‖wn − w‖+ η‖u− w‖ ≤ 2η‖u− w‖ < ε so we
conclude that v∗(ξ)− dmin

rn ≤ ε proving the claim since ε > 0 was arbitrary.

In the above formulation of semidefinite programming problems (14) and (15), the moment
constraints are represented by positivity conditions on the corresponding linear functionals.
This is a basis independent formulation. Now if polynomials q are expressed in a given
basis, the positivity conditions become explicit positive semidefinite conditions on symmetric
matrices depending linearly on the moments, i.e. linear matrix inequalities. For example,
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relaxation degree 2 4 6 8 10
lower bound 0.65000 0.92157 0.98118 0.99503 0.99827
upper bound 1.00000 1.00000 1.00000 1.00000 1.00000

Table 1: Scalar example - bounds for increasing relaxation degrees.

Figure 1: Lower and upper bounds on the functional for increasing relaxation degrees and
dimension n = 2 (left) and n = 3 (right).

if monomials are used represent polynomials, the matrices have Hankel structure, see e.g.
[17, Chapter 3] for explicit expressions. Software interfaces such as GloptiPoly [10] construct
these matrices automatically. The resulting semidefinite relaxations are solved with the SDP
solver in MOSEK [5].

4.2 Scalar example

Let us illustrate the application of the moment-SOS hierarchy with an elementary exit
time problem (1) considered in [8, Example 5.1]. The SDE is dX(t) = (1 + 2X(t))dt +√

2X(t)dW(t) on the domain X := (0, 1) with initial condition x = 1/2. This process
always exits at the point {1}, so ν = δ1 solves (3) and the value of linear problems (7)
and (8) is equal to g(1). For the choice g(z) = z2 we report in Table 1 the values of the
lower and upper bounds obtained by solving the moment relaxations to problems (7) and
(8), for increasing relaxation degrees. The degree 10 relaxation was solved in 0.15 seconds
on our laptop. The corresponding GloptiPoly script in Matlab can be downloaded at home-
pages.laas.fr/henrion/software/exittime.m

4.3 Multivariate example

Consider problem (1) with g(z) :=
∑n

k=1 z
2
k for the n-dimensional Brownian motion X(t) =

W(t), i.e. b = 0 and B = In, in the convex semi-algebraic domain X := {z ∈ Rn :
∑n

k=1 z
4
k ≤ 1}

with initial condition x = 0.

On Figure 1 we plot for n = 2 and n = 3 the lower resp. upper bounds obtained by
minimizing resp. maximizing the functional, for increasing relaxation degrees. We observe
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dimension n 2 3 4 5 6 7 8
number of moments 73 249 705 1749 3927 8151 15873
CPU time (seconds) 0.15 0.59 1.9 5.6 19 51 195

Table 2: Computational burden for relaxation degree 8 and increasing dimensions.

a fast convergence of the bounds.

In Table 2 we report the number of moments as well as the computational time required to
solve the moment relaxation of degree 8, for increasing values of the dimension n. For this
relaxation degree the gap between the lower and upper bounds on the functional is less than
2%.

5 Approximating occupation and exit location densi-

ties

As described in the previous section, the moment-SOS hierarchy allows us to obtain estimates
of the moments of our occupation and exit location measures, together with error bars on
those estimates. For many applications however, it could be more useful to know the densities
of the occupation and exit location measures with respect to some natural measures on X
and ∂X respectively. In this section we outline a method, based on Christoffel-Darboux
kernels [18], which allows us to construct sequences of functions converging to such densities.
For simplicity we will state our results when X is the unit ball, but the same method can
be applied more generally as discussed below.

5.1 Background on Christoffel-Darboux kernels

Let U be a compact topological space and let µ be a probability measure supported on U .
The set C(U) of continuous, real-vaued functions on U becomes a Hilbert space via the
inner product 〈f, g〉U := Eµ[fg] =

∫
U
f(u)g(u)dµ(u). If V ⊆ C(U) is a finite-dimensional

vector space of functions then this space inherits a Hilbert space structure and in particu-
lar, for each u ∈ U there exists a unique element φu ∈ V which reproduces the evaluation
at u in the sense that the equality 〈f, φu〉U = f(u) holds for every f ∈ V . Such opera-
tors determine the reproducing kernel function K : V × V → R, defined via the formula
K(u, v) := 〈φu, φv〉U . This function satisfies, and is determined by, the following key re-
producing property: f(u) =

∫
V
K(u, v)f(v)dµ(v) = 〈K(u, .), f〉U valid for all f ∈ V and

all u ∈ U. The kernel is completely determined by the measure µ and the vector space V
and we write Kµ,V instead of K when trying to make this dependence explicit. The fol-
lowing two formulas are very useful for computing and understanding the basic properties
of reproducing kernels: 1) If g1, . . . , gm is any µ-orthonormal basis for the subspace V then
Kµ,V (u, v) =

∑m
j=1 gj(u)gj(v) and furthermore 2) If h1, . . . , hm is any basis for the subspace

V and M is the corresponding moment matrix given by Mij := 〈hi, hj〉U then Kµ,V (u, v) =
(h1(u), . . . , hm(u))M−1(h1(v), . . . , hm(v))T . Finally a key quantity associated to a kernel is
the Christoffel function Λµ,V (u) = K−1µ,V (u, u), whose importance stems from the following
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variational characterization Λµ,V (u) := inff∈V 〈f, f〉Uf−2(u) = inff∈V {〈f, f〉U : f(u) = 1}
which follows readily from the Cauchy-Schwartz inequality and the reproducing property.

In the special case when U ⊆ Rn and Vd is the subspace of polynomials of degree up to d
in Rn restricted to U , the asymptotic behavior of the Christoffel function can often be used
for density estimation [18]. A concrete set-up where these estimations can be carried out is
described in [18, Theorem 5.3.4] as an extension of [15].

Theorem 3 Suppose U ⊆ Rn is compact, ω ∈ C(U) is positive, λ is a probability measure
supported on U and d 7→ N(d) is a polynomial such that limd→∞ supu∈U |N(d)Λλ,Vd(u) −
ω(u)| = 0. If µ is a probability measure on U which is absolutely continuous with respect to

λ, having a positive density ρ ∈ C(U), then limd→∞ supu∈U

∣∣∣N(d)Λµ,Vd(u)− ρ(u)
ω(u)

∣∣∣ = 0.

Example 1 A basic example for which the hypotheses of Theorem 3 hold is the sphere
Sn−1 ⊆ Rn with its normalized area measure λ. In this case the invariance of the mea-
sure with respect to rotations implies that the function K(u, u) is constant. The expression
for K(u, u) in terms of λ-orthonormal polynomials shows that the constant is the dimension
of the space of polynomials restricted to the unit sphere. Since the sphere is defined by a single
quadric, this dimension is given by the formula N(d) :=

(
n+d
d

)
−
(
n+d−2
d−2

)
so N(d)Λλ,Vd(u) = 1

for all u ∈ U and we can use w(u) = 1 in the formula of Theorem 3 to conclude that for any
measure µ which is absolutely continuous with respect to λ with a positive and continuous
density ρ, this density can be estimated uniformly via the limit limd→∞N(d)Λµ,Vd(u) = ρ(u).

Example 2 A similar result to Theorem 3 is available for the unit Euclidean ball Bn ⊆ Rn.
It is known [15, Theorem 1.3] that if N(d) :=

(
n+d
n

)
and λ is the measure on Bn with

Lebesgue density ω(u) = 2ω−1n (1− ‖u‖22)−1/2 where ωn := 2π
n+1
2 Γ−1(n+1

2
) is the surface area

of Sn−1 ⊆ Rn then for any regular measure µ on Bn having a positive and continuous density
ρ we have limd→∞N(d)Λµ,Vd(u) = ρ(u)

ω(u)
where the equality holds uniformly on compact subsets

of the interior of Bn.

5.2 Computing occupation and exit location densities

To estimate the occupation density on the unit ball and the exit location density on its
boundary we propose the following procedure. As before, let Vd denote the subspace of
polynomials of degree up to d in Rn. Let Wd be the vector space of functions obtained by
restricting the elements of Vd to the unit sphere Sn−1 ⊆ Rn.

Procedure 1 Given a diffusion with generator L and initial location X(0) = x ∈ Bn ⊆ Rn,
a total degree d > 0, an approximation degree r > 0 and an integer offset s > 0, carry out
the following steps:

1. Fix a basis g1, . . . , gng for Wd. For each pair of elements gi, gj, let g := gigj and

compute our estimate for 〈g, ν〉 =
∫
gν as the average Âij := (pmin

r + pmax
r )/2 of the

values of the optimization problems (14) and (15).
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2. Fix a basis h1, . . . , hnh
for Vd−s. For each pair of elements hi, hj, find a polynomial g

which solves the equation Lg = hihj and compute our estimate for 〈g, µ〉 =
∫
gµ as the

shifted average B̂ij = g(x) + (pmin
r + pmax

r )/2 of the values of the optimization problems
(14) and (15).

3. Define our estimate for the exit location density on the unit sphere by

σ̂(z) :=
dimWd

(g1(z), . . . , gng(z))T Â−1(g1(z), . . . , gN(z))

and our estimate for the occupation density on the unit ball by

β̂(z) =
dim Vd−s ω(z)

(h1(z), . . . , hnh
(z))T B̂−1(h1(z), . . . , hnh

(z))

with ω defined in Example 2.

Theorem 4 If the following conditions hold

1. The exit location measure has a positive and continuous density σ with respect to the
Lebesgue measure on the unit sphere Sn−1.

2. The occupation measure has a positive and continuous density β with respect to the
Lebesgue measure on the unit ball Bn.

3. There exists a sequence s(d) of positive integers with d − s(d) → ∞ such that, for all
sufficiently large d, the inclusion LVd ⊇ Vd−s(d) holds.

4. The chosen approximation degrees r(d) grow sufficiently quickly so as to guarantee

lim
d→∞

sup
g∈Vd
|pmax
r(d)(g)− pmin

r(d)(g)| → 0

then the estimates σ̂ resp. β̂ defined in Procedure 1 converge uniformly to the true exit
location density σ resp. occupation density β as d→∞.

Proof: If µ, ν denote the occupation measure and the exit location measure respectively and
X(0) = x then the Kolmogorov equation implies that for any twice-differentiable function f
we have

〈f, ν〉+ 〈Lf, µ〉 = f(x)

If LVd ⊇ Vd−s(d) then this equation allows us to compute the polynomial moments of the
occupation measure with respect to the functions in Vd−s(d). More concretely, if h ∈ Vd−s(d)
then there exists p ∈ Vd, which can be easily computed with linear algebra, with Lp = h.
As a result

〈h, µ〉 = p(x)− 〈p, ν〉
so estimates of the exit location moments 〈p, ν〉 can be used to obtain certified estimates
for the occupation moments as in Procedure 1. Such computations, which can become as
good as we want by increasing the approximation degree r(d), allow us to estimate the
corresponding Christoffel functions as accurately as we wish. The result now follows from
Theorem 3 and [15, Theorem 1.3]. �
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Remark 2 Procedure 1 can be carried out to estimate occupation densities for sets whose
Equilibrium measure is well understood, playing the role of the density ω from Example 2.
See [18, Section 4.2] for several such instances. Similarly, the assumption of Theorem 3
holds for several geometries beside spheres, see [18, p. 71] for some interesting instances.

5.3 Some computational examples in the unit disc

In this section we illustrate the usefulness of Procedure 1 for estimating occupation den-
sities in the unit ball and exit location densities on the unit sphere for some diffusions.
The Julia code used for computing the examples in this Section is available via github at
github.com/mauricio-velasco/Exit location density estimation.git.

Example 3 (Brownian motion in the unit disc). Let W (t) be the two-dimensional brownian
motion, let X(t) be a solution of the SDE{

X(0) = (0, 1/2)

dX(t) = dW (t) for t ≥ 0.

The generator of the process is Lf = −1
2
∆f . We study the behavior of X(t) on or before

its exit time from the unit disc in Figure 2. Figure 2, parts (a) and (b) show five and one
hundred approximate sample paths of the process. Figure 2, part (c) shows the unnormalized
Christoffel-Darboux kernel estimates in degrees r = 6, 8 for the exit location density in the
unit circle represented as the axis −π/2 ≤ θ ≤ 3π/2. Figure 2, part (d) shows the Christoffel-
Darboux kernel estimates in degree r = 2 for the occupation density of X(t) before reaching
the boundary in the unit disc.

Example 4 (Brownian motion with drift in the unit disc). Let W (t) be the two-dimensional
brownian motion, let X(t) be a solution of the SDE

(X1(0), X2(0)) = (0, 1/2)(
dX1(t)

dX2(t)

)
=

(
0

2

)
dt+

(
1 0

0 1

)
dW (t).

The generator of the process is Lf = −2 ∂f
∂x2
− 1

2
∆f . We study the behavior of X(t) on

or before its exit time from the unit disc in Figure 3. Figure 3, parts (a) and (b) show
five and one hundred approximate sample paths of the process. Figure 3, part (c) shows the
unnormalized Christoffel-Darboux kernel estimates in degrees r = 4, 6 for the exit location
density in the unit circle represented as the axis −π/2 ≤ θ ≤ 3π/2. Figure 3, part (d) shows
the Christoffel-Darboux kernel estimates in degree r = 2 for the occupation density of X(t)
before reaching the boundary of the unit disc.

Example 5 (Square root Bessel process in the unit disc). Let W (t) be the two-dimensional
brownian motion, let X(t) be a solution of the SDE

(X1(0), X2(0)) = (0, 1/2)(
dX1(t)

dX2(t)

)
=

(
0

1

)
dt+

(
1 0

0 2
√
X2(t)

)
dW (t).
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Figure 2: Example 3: brownian motion

Figure 3: Example 4: brownian motion with upward drift
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Figure 4: Example 5: square root Bessel process

The generator of the process is Lf = − ∂f
∂x2
− 1

2

(
∂2f
∂x21

+ 4x2
∂2f
∂x22

)
. We study the behavior of

X(t) on or before its exit time from the unit disc in Figure 3. Figure 4, parts (a) and
(b) show five and one hundred approximate sample paths of the process. The example is
particularly interesting because, by the presence of the square root the process is forced to
remain in the upper half of the disc producing a discontinuity in the exit location density.
Although outside the domain of our theoretical guarantees, Figure 4, part (c) shows the
unnormalized Christoffel-Darboux kernel estimates in degrees r = 4, 6 for the exit location
density which seem to have the correct qualitative behavior. Extending our results to cover
such densities will be topic of further work. Figure 4, part (d) shows the Christoffel-Darboux
kernel estimates in degree r = 2 for the occupation density of X(t) before reaching the
boundary of the unit disc.

6 Conclusion

Using elementary analytic arguments, we proved that there is no relaxation gap between
the original problem and the linear problem on occupation measures in the special case of
evaluating functionals of the exit time of stochastic processes on bounded domains. If the
domain is basic semialgebraic and the SDE coefficients and the functional are polynomial
or semi-algebraic, we can then readily apply the moment-SOS hierarchy with convergence
guarantees. Tight bounds on the functionals can be obtained with off-the-shelf SDP solvers
at a moderate cost.

Of particular practical interest are approximations to the moments of the exit time distri-
bution, as studied in [8]. As we have shown, any sufficiently accurate method of moment
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estimation can be leveraged to recover the exit location and occupation densities allow-
ing us to gain both a quantitative and qualitative understanding of diffusion processes on
sufficiently well-behaved geometric domains.

As pointed to us by one of the reviewers of the article, it is natural to ask whether the
linear operators arising in our moment relaxation satisfy a flat extension condition. When
the ambient space dimension is at least two, both the occupation and exit location measures
of a diffusion are typically supported on sets of positive measure (resp. positive measure
in the boundary) and a flat extension condition never holds since this would imply that
the corresponding measures are supported at points. This is one of the reasons why the
Christoffel-Darboux kernel approach we introduce is not only useful but necessary.

We would also like to extend these techniques to optimal stopping times [4] and stochastic
optimal control problems with expectation constraints [3], and to develop theoretical guar-
antees for success of the proposed Christoffel-Darboux kernel approach on general diffusions.
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