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Continuous quaternion based
almost global attitude tracking

with LMI multi-objective tuning

Thomas Conord1 and Dimitri Peaucelle1∗

January 22, 2021

Abstract

This paper considers the attitude control problem of a generic ro-
tating 3 degrees of freedom fully actuated rigid object. The specific
studied problem is the deviation control of this object around a theo-
retically feasible attitude trajectory. The rotation motion has an in-
trinsic non linear behaviour (trigonometric, 2π-periodicity) that may
lead to build non linear and hybrid controllers. This paper considers
the opportunity to use the quaternion framework to build a continu-
ous non linear controller that reaches an almost global asymptotical
stability.

∗1LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
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1 Introduction

This paper studies the attitude control problem of a rigid fully actuated ob-
ject in the unit quaternion framework. The attitude control of a rigid object
is a widely studied problem as it is a central issue of all moving robots: air-
crafts, drones, spacecrafts, satellites, manipulators.

The attitude control presents some specific complexity linked to the topol-
ogy of the rotational motion : its trigonometric behaviour and its 2π-periodicity.
The paper [5] describes quite exhaustively the various mathematical frame-
works existing to model the attitude of an object: Euler angles, rotation
matrix, unit quaternion. As demonstrated in [4], this topological issue leads
to not be able to build a global stable static or dynamic continuous linear
time invariant control law for the attitude control of a rigid object.

The unit quaternion framework is chosen here because of its efficiency
and compactness: 4 parameters against 9 for the rotation matrix, it does not
involve direct trigonometry developments, and it suits the state space frame-
work. The topological issue remains and appears as a singularity problem
called double coverage: a unit quaternion q and its opposite −q represents the
same object attitude (cf. [15] for detailed quaternion algebra). This quater-
nion singularity problem may generate an unwinding phenomenon: the con-
trolled object flips back all the way around whereas it was just nearby the
required attitude, but it had done the travel rotating from the other side and
it does again the same travel backwards.

From the general mathematical ”stability of motion” problem which can
be formalized with the Lyapunov theory as in [9], the motion control of a
rigid object is included in the class of Lagrangian mechanical non linear sys-
tems as shown in [17]. For this class of systems, many control strategies have
been studied, starting with a reference result [18] in 1988 with a dynamics
reinjection input and a Proportional Derivative (PD) deviation controller ar-
chitecture.

The quaternion-based attitude control problem is still nowadays widely
studied. Some approaches study similar strategy as previous Lagrangian PD
control architecture [12, 2]. Others build some non linear controllers that
match the non linearities and singularities of the quaternion attitude kine-
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matics with specific Lyapunov function [22, 10, 23, 24, 1]. The singularity
issue is also managed with an hybrid control strategy depending on the sign
of the first component of the unit quaternion as in [13]. Some others address
the robustness of the controller against disturbance input or parametric un-
certainties [11, 8, 14].

As developped in section 2, the novelty of this paper is to consider the
attitude trajectory deviation dynamics as a single quaternion-based non lin-
ear state space system. It brings out in section 3 the opportunity to build
continuous non linear controller structure. The demonstration of the closed
loop system almost global asymptotic stability as defined in [16] is done with
a relaxation of conditions of Input to State Stability (ISS) as demonstrated
in [7]. We illustrate the system almost global stability property in section 4
with an equivalent physical assembly and a phase-plane simulation. We even-
tually propose in section 5 an LMI procedure as in [6] to make the synthesis
of the controller according to multi-objective performances requirements, il-
lustrated with a real time simulation in 6.

2 Attitude deviation model

2.1 Newton’s law for the rotation motion

The Newton’s law for the attitude dynamics applied to the center of gravity
of an object of inertia Jb ∈ R3×3, constant symmetric definite positive matrix,
corresponds to the following set of differential equations (cf. [15] for details
on rotation motion and quaternion):

d(q)

dt
=

1

2

(
−qV
Sq(q)

)
ωb

Jb
d(ωb)

dt
+ SV (ωb)Jbωb = Cactb + Cextb

(1)

With all the variables without index expressed in the earth referential,
and all the variables with the index ”b” expressed in the rigid body referential,
with:
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• the instantaneous attitude represented as the unit quaternion:

q =

(
qo
qV

)
=


qo
q1

q2

q3

 =


cos(θ/2)

sin(θ/2)

nxny
nz


 ∈ R4

which corresponds to a rotation of the object of an angle θ around the
axis defined by the unit vector n = (nx ny nz)

> ∈ R3. qo is generally
called the scalar part of the quaternion and qV the vector part. The
double coverage issue appears in this definition as q and −q represents
the same attitude. A complete non ambiguous attitude position with
these terms can be defined by sign(qo)qV .

• Sq(q) is the skew symmetric matrix of the quaternion q defined as
follows:

Sq(q) =

 qo −q3 q2

q3 qo −q1

−q2 q1 qo

 = qoI3 + SV (qV )

The skew symmetric matrix SV is equivalent to the vectorial product
of two vectors V1 and V2 of R3 such that : SV (V1)V2 = V1 ∧ V2. The
matrix inverse of the quaternion skew symmetric matrix is equal to
(not defined at qo = 0):

Sq(q)
−1 =

1

qo
I3 −

1

1 + q2
o

SV (qV ) +
1

qo(1 + q2
o)
SV (qV )2

• ωb ∈ R3 is the rotation speed vector,

• Cactb , Cextb ∈ R3 are respectively the torques applied by the actuators and
the external environment (air drag, objects or walls in contact with the
object).

The second equation is expressed in the rotating rigid body referential so
that the inertia appears as the constant Jb. In this referential, the inputs
are also directly equal to actuators actions (actuators attached to the ro-
tating object). We assume to have a fully actuated object, actuators acting
independently on the three components of the control input torque Cactb .
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2.2 State space attitude deviation model

Assumption 1. The optimal command problem (cf. [3]) is considered solved
for the theoretical system (1) for a thoretical inertia J∗b , without any external
disturbances (Cextb = 0), giving a theoretically feasible trajectory (q∗, ω∗b )
with its optimal input C∗actb solution of (1):

d(q∗)

dt
=

1

2

(
−q∗V
Sq(q

∗)

)
ω∗b

J∗b
d(ω∗b )

dt
+SV (ω∗b )J

∗
b ω
∗
b = C∗actb

(2)

All the theoretical values are noted with a ∗ exponent.

Proposition 1. The tracking deviation of (1) with respect to (2) has the
following almost linear representation:

H : ẋ = A(x)x+Bww +Buu

zq = Cqx

zω = Cωx

y = x

(3)

With the state x =
(
qε>V ωε

∗>
b

)> ∈ R6 and the state space matrices:

A(x) =

(
0 1

2
Sq(q

ε)
0 0

)
, Bu = Bw =

(
0
I3

)
Cq =

(
I3 0

)
, Cω =

(
0 I3

)
The scalar part of the quaternion qεo inside the matrix Sq(q

ε) = qεoI3 +
SV (qεV ) in A(x) is the non linear function of the state solution of:

dqεo
dt

= −1

2
qε>V ωε

∗

b = −1

4
x>
(

0 I3

I3 0

)
x (4)

It is not considered as a state of the system. It also respects the unit norm
constraint: qεo

2 + ||qεV ||2 = 1.
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Proof: The attitude deviation system H is obtained performing the non
linear difference between (1) and (2) giving the following variables definitions:

• the state x =
(
qε>V ωε

∗>
b

)> ∈ R6 defined by:

– qεV the vector part of the attitude error in the quaternion format
corresponding to:

qε =

(
qεo
qεV

)
=

(
qo −qV
qV Sq(q)

)(
q∗o
−q∗V

)
(5)

Which correponds to qε = q ? q∗−1, with the operation ? corre-
sponding to the quaternion multiplication of the quaternion alge-
bra (cf. [15]). It can also be written : q = qε?q∗, meaning qε is the
rotation correction to be performed to bring the object from the
theoretical attitude q∗ to the real current attitude q. The object is
on the trajectory meaning q = q∗, if and only if qε = (±1 0 0 0)>,
both values (double coverage) representing the same reference at-
titude corresponding to no rotation correction.

– ωε
∗

b the rotation speed error:

ωε
∗

b = Qq(q
∗)ωεb = Qq(q

∗)(ωb − ω∗b ) (6)

The multiplication of the rotation speed error vector ωεb = ωb−ω∗b
by the rotation matrix Qq(q

∗) does not change its norm which is
equal to: ||ωεb || = ||ωb − ω∗b || = ||ωε∗b ||. Therefore, when ωε

∗

b = 0,
we get ωb = ω∗b which corresponds to be on the trajectory for the
rotation speed.

• The usual rotation matrix Qq(q) ∈ R3×3 corresponding to the rotation
defined by the quaternion q, such that any vector Vb expressed in the
rigid body referential is obtained in the earth referential as follow: Ve =
Qq(q)Vb, can be computed with the following relationships:

Qq(q) =
(
qV Sq(q)

)( q>V
Sq(q)

)
= I3 + 2qoSV (qV ) + 2SV (qV )2

= I3 + sin(θ)SV (n) + (1− cos(θ))SV (n)2

(7)
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The inverse rotation matrix, in the sense of the opposite rotation −θ
around n, corresponding to the unit quaternion ”inverse” q−1 = (qo −
q>V )>, is therefore directly:

Qq(q)
−1 = Qq(q

−1) = I3 − 2qoSV (qV ) + 2SV (qV )2

• the correction input u defined such that the total torque command Cactb
of (1) is equal to:

Cactb = J∗b ω̇
∗
b + SV (ω∗b )J

∗
b ω
∗
b

+ SV (ω∗b )(2J
∗
b − Tr(J∗b )I3)ωεb

+ SV (ωεb)J
∗
b ω

ε
b + J∗bQq(q

∗)−1u

(8)

• the perturbation input w = w∆ + wext such that:

– w∆ is the internal perturbation input generated by the model ap-
proximation done when computing the theoretical input command
C∗actb with J∗b = Jb −∆Jb:

w∆ = Qq(q
∗)J−1

b

[
−∆Jbω̇

∗
b − SV (ω∗b )∆Jbω

∗
b

− SV (ω∗b )(2∆Jb − Tr(∆Jb)I3)ωεb

− SV (ωεb)∆Jbω
ε
b −∆JbQq(q

∗)−1u
] (9)

– wext is the external disturbance input due to the external interac-
tions (winds, walls) :

wext = Qq(q
∗)J−1

b Cextb (10)

• the trajectory tracking performance output zq corresponding to the
attitude deviation position qεV .

• the trajectory tracking performance output zω corresponding to the
rotation speed deviation ωε

∗

b .

• the measurments y = x considered available through physical sensors
measures and data fusion post processing (thus qεo is also available
thanks to (4)).
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Comment: qεV describes entirely the attitude position of the object except
to a sign ambiguity, the double coverage. To take away this ambiguity, the
following complete state is used for the results analysis:

xc = (sign(qεo)q
ε>
V ωε

∗>
b )> ∈ R6 (11)

However, this ambiguity does not affect the definition of the attraction
point : the attraction point is the single value xo = (0 0 0 0 0 0)>, meaning
the object is exactly on the attitude trajectory when the state is zero.

With this definition of deviation model, we can thus look for a structure
of controller that makes the single attraction point xo asymptotically stable
with specific requirements, minimizing the transfer between the perturbation
input w and the rotation speed performance output zω, and garanteeing that
the attitude remains in a tolerance tube of range δ∗θ around the trajectory
(||zq|| < 1) for a worst case maneuver.

3 Attitude tracking control

3.1 Preliminaries

In this paper, the control strategy is to look for a controller that would be
the closest to a static state feedback u = Kx, with K a constant matrix of
R1×6, and to take care of the sign ambiguity of qεV by considering continuous
multiplication by qεo (which is of the needed sign) of the controller terms in-
side this static state feedback K that need to flip when the object is backside.

Moreover, as the deviation system (3) appears to be completely homoge-
nous in the three rotation directions of space, it implies that the three com-
ponents of the attitude and rotation speeds behave identically. That is why
we can look for scalar structures of controllers (one scalar gain for each term
qεV and ωε

∗

b ) and of corresponding Lyapunov functions without loss of control
capacity.

Lemma 1. The stability property of the attraction point xo and the output
performances related to ||zq|| for H with any controller of the form u =
urn

ε, ur ∈ R a scalar control input and nε(t) the vector defined by qεV =
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sin(θε/2)nε, are equivalent to the ones of the reduced non linear second order
system defined by:

Hr : ẋr = Ar(xr)xr +Bwrwr +Burur

zqr = Cqrxr

zωr = Cωrxr

yr = xr

(12)

With xr = (qεVr ω
ε∗

br
)> = (sin(θε/2) θ̇ε)> ∈ R2, wr ∈ R scalar input

projection of the original input w on the instantaneous axis nε,

Ar(xr) =

(
0 1/2qεo
0 0

)

Bwr = Bur =

(
0
1

)
, Cqr =

(
1 0

)
Comment: Hr corresponds to the projection of H on the direction of the

unit vector nε, which is the 1-dimension control problem, meaning the con-
trol of an object rotating around one single fixed axis. The ”complement”
system (H −Hr ⊗ nε) could be defined specifically to study the influence of
the perturbation on the trajectories instantaneous projection on the tangent
of the attitude position output zq equipotentials, meaning trajectories pro-
jection orthogonal to the straight direction towards the attraction point.

Proof: Let us notice that the state matrix A(x) of (3) can be decomposed
as follow :

A(x) = Ar(x)⊗ I3 + AV (x) (13)

With ⊗ the Kronecker product and with:

AV =

(
0 1/2SV (qεV )
0 0

)
The matrix AV (x) is composed of the single term 1/2SV (qεV ) which corre-

sponds to a vectorial product of qεV with ωε
∗

b , so the result is orthogonal to qεV
and ωε

∗

b . The matrix SV (qεV ) is also skew symmetric : SV (qεV )> = −SV (qεV ).
These properties make the matrix AV (x) canceling out in the derivative
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of a quadratic Lyapunov function of the form x>P (x)x. Indeed, for any
P (x) = P (x)>:

x>(AV (x)>P (x) + P (x)AV (x))x = 0

Besides, by multiplying on the left side the first line of the differential equa-
tion q̇εV = 1/2(qεo + SV (qεV ))ωε

∗

b of (3) by 2qε
>
V , we can notice that the term

SV (qεV ) vanishes giving:

d||qεV ||2/dt = qεoq
ε>

V ωε
∗

b

So the term SV (qεV ) does not change the norm of qεV , thus the norm of zq.
It corresponds to a rotation orthogonal to the direction leading to the at-
traction point, which is consistent with its disappearance in the Lyapunov
function derivative.

That’s why we can simplify the system (3) to the second order non linear
system Hr to study its stability and its output performance related to the
||zq||.

3.2 Almost global asymptotical stable controller

Definition 1. As defined in [16], an autonomous system defined by ẋ = f(x),
where f : Rn 7→ Rn is C1 (enough to ensure the existence and uniqueness of
solutions to the initial value problem) and f(0) = 0, is almost global asymp-
totical stable if all the trajectories but a reduced set of zero Lebesgue measure
converge asymptotically to the origin.

Proposition 2. A non linear state feedback controller of the form:

u(x) = −2kpq
ε
oq
ε
V − kdωε

∗

b = K(x)x (14)

Giving the closed loop non linear system without perturbations (w = 0):

Hcl : ẋ = Acl(x) = A(x) +BK(x)

=

(
0 1/2 Sq(q

ε)
−2kpq

ε
oI3 −kdI3

)
(15)

with K(x) = (−2kpq
ε
oI3 − kdI3), kp, kd > 0 scalar constants, makes this

closed loop system almost global asymptotical stable with a compact invariant
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set defined by W = {xo, X̄}, with X̄ = {x̄ = (q̄ε>V 0 0 0)> : ||q̄εV || = 1}.

Comment: Hcl is a periodic system for which the exact flipped backside
attitudes set X̄ from the attraction point xo = 0, rotating around any axis,
is a set of unstable equilibrium points with the controller u (this set is equiv-
alent to the condition q̄εo = 0).

This controller structure is similar to a Proportional Derivative controller
with respect to the attitude position qεV and the rotation speed ωε

∗

b , that is
why the constants are noted kp as a ”proportional” gain, and kd as a ”deriva-
tive” gain. It is close to common quaternion based control approaches devel-
oped in other papers, as in [21], that propose similar controllers which are
constant linear combinations of the errors of the quaternion vector part and
of the rotation speed (mostly after the same feedforward of the inverse kine-
matics terms (8)). The main difference is in the continuous multiplication
by qεo of the attitude deviation qεV . This operation realizes in a continu-
ous way the sign switch of the hybrid control laws developed in [13], taking
care of the double coverage getting rid of the unwinding phenomenon, and
without creating conditions for chattering around the unstable equilibrium
point. Nonetheless, this controller decreases up to vanish its authority to
bring back the object to the attraction point when the object is around the
unstable equilibrium points. However these unstable equilibrium points are
at the opposite from the tracking tolerance tube in which the controller shall
maintain the object (meaning far away from the actuators range sizing).
Thus this controller structure could also be a good strategy to deal smoothly
with actuators saturation.

The multiplication by 2 of the proportional like term allows to get a nice
formulation of the 1-dimension control of a rotating object around one single
fixed axis in function of the deviation angle θε = θ − θ∗, which gives the
1-dimension closed loop system (directly equivalent to Hr):

θ̈ε = −kp sin(θε)− kdθ̇ε + wr (16)

Proof: The proof of the propostion 2 is performed using the properties
of almost global asymtotic stability as defined in [16], previously mentioned
as a dual to Lyapunov’s stability theorem [20], which is a derivative of the

12



Lyapunov stability theorem [9] for systems with several equilibria or invari-
ant sets. We precisely use directly the recent derivative result presented in
[7] which is a relaxation of conditions of ISS for multi stable periodic sys-
tems (the example in [7] is precisely the demonstration of the stability of the
1-dimension control problem).

Using the Lemma 1, one may define for any α ∈]0; 1[, the class of Lya-
punov function V (x) = x>P (x)x with the matrix P (x) affine in qεo equal
to:

P (x) =

(
4(kp + αk2

d)I3 2αkdq
ε
oI3

2αkdq
ε
oI3 I3

)
� 0 (17)

The derivative of the Lyapunov function V (x) for the trajectories of the
closed loop system (15) is equal to:

V̇ (x) = x>[Acl(x)>P (x) + P (x)Acl(x) + Ṗ (x)]x

= x>
(
−8αkpkdq

ε
o

2I3 0
0 −2kd(1− αqεo2)I3

)
x

− 8αkd(q̇
ε
o)

2 < 0 ∀x /∈ W

(18)

From the expression of V and V̇ and the definition 7 of [7], we can see
that V is an ISS Lyapunov function. Therefore it is a practical ISS Leonov
function (def. 11 of [7]), which is equivalent to have the closed loop system
(15) ISS with respect to the invariant set W (cf. theorem 14 of [7]), thus the
almost global asymptotic stability property.

4 Closed loop system analysis

4.1 Physical representation of the controller

The figure 1 gives a physical assembly representing the action of the ”Pro-
portional Derivative” like controller u for the 1-dimension rotation control
problem.

The closed loop system with the controller structure u is assimilated to
the motion of a blue cylinder of normalized inertia equal to one, which is
rotating inside a fixed grey cylinder, sliding in contact with it with an overall
friction damping coefficient kd. A mechanical spring of stiffness kp attached

13



Figure 1: Equivalent physical assembly representing the behaviour of the
1-dimension closed loop system.

on both extremes to the points of each cylinder that have to coincide, brings
back the rotating blue cylinder to the required attitude.

4.2 1-dimension closed loop system phase plane

A representation in the phase plane of the 1-dimension closed loop system
with the complete state xc defined by (11) (qεV corrected with the sign of qεo)
is given figure 2.

A particular care shall be taken to read the figure 2 : it represents the evo-
lution of the complete state xc which has a mathematical hybrid behaviour,
jumping from +1 to −1 or reversely. However this mathematical singularity
does not represent any physical discontinuous behaviour: with the definition
of the quaternion, a complete rotation is spaned for qεVr over [−1; 1], and the
multiplication by sign(qεo) makes this value jumps when the object crosses
backside. It is a way to represent the 2π-periodicity of the rotation motion
with the quaternion.

For the theoretical system without perturbations (w = 0 in (3)), we can
numerically compute the set of initial conditions leading to the unstable
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Figure 2: Phase plane for the 1-dimension closed loop system with the pro-
portional derivative like attitude controller, with kp = 1 and kd = 1.

equilibrium attitude set X̄. As we are in two dimensions, they correspond to
the two symmetric trajectories (the object can turn both sides) integrating
backwards the deviation system (3) from the final points x̄r = (±1 0)>.
These trajectories are drawn in red on the figure 2. The blue and green
trajectories are random trajectories converging asymptotically to zero, the
stable equilibrium.

5 Controller synthesis

5.1 Performances requirements

The controller shall garantee over a given attitude tolerance tube θε ∈
[−δ∗θ ; δ∗θ ], equivalent to qεo ∈ [qε∗o ; 1] = [cos(δ∗θ/2); 1], that:

• the overall time constant of the closed loop system is bounded between
[τmin; τmax] with no oscillations around the trajectory (damping ratio
greater than

√
2/2).

• the attitude position remains in the tolerance tube for a worst case
sizing maneuver, meaning the output zq of the input-free closed loop
system Hcl remains bounded as follow (also called impulse-to-peak per-
formance [6]):

supt≥0,||α||=1||zq(t)|| = γIP < sin(δ∗θ/2) (19)
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For a given worst rotation speeds initial conditions δωmaxb > 0 such

that x(0) = B0α =

(
0

δωmaxb I3

)
α with α ∈ R3, ||α|| = 1.

• the feedback interaction between the performance output zω and the
bias perturbation input w∆ defined by (9), which has many terms func-
tion of ωεb , is minimized. It means to minimize the induced L2 norm of
the closed loop system Hcl defined by:

||Hcl||2 = supw∈L2,||w||2 6=0

||zω||2
||w||2

= γ2 (20)

5.2 Robust multi-objective synthesis

As we cannot solve directly for the non linear state feedbackK(x) = (−2kpq
ε
oI3 −

kdI3), similarly to a partial linearization, we first solve for a static state feed-
back Kr = [k1 k2] ∈ R1×2 which bounds the performances of the reduced non
linear system Hr defined by the lemma 1 in closed loop with ur(t) = Krxr(t).
Thus we look for a static state feedback with a common Lyapunov function
over the polytopic set defined by the two vertices:

Ar1 = Ar(q
ε
o = 1)

Ar2 = Ar(q
ε
o = qε∗o )

(21)

embedding the non linear evolution of Ar(xr) over the tolerance tube θε ∈
[−δ∗θ ; δ∗θ ], meaning qεo ∈ [qε∗o ; 1]. We solve simultaneously for the three previ-
ous requirements (5.1) which can be derived into Lyapunov LMI constraints
for static state feedback synthesis as developped in [6]. We eventually pick
for the non linear state feedback gains:

kop = k1/(2q
ε∗
o ), kod = k2

An optimization of the proportional term can be done by looking for a
maximum of qε

o

o over the range [qε∗o ; 1] such that kop = k1/(2q
εo

o ) makes the
original polytopic system (21) verifies independently the two first require-
ments of paragraph 5.1.
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6 Simulations

6.1 Tools and parameters

The Romuloc toolbox [19] for Matlab proposing precoded command to per-
form multi objective controller synthesis for polytopic systems is used to
perform the static state feedback synthesis. The real time simulations are
performed with Matlab Simulink.

For the system simulations, the complete input command (8) with the
controller (2) is injected in the original non linear system (1) with the fol-
lowing parameters values and hypothesis:

• J∗b = diag((0.025 0.03 0.02)>),

• δ∗θ = 0.635rad(' 36o = 0.1tr), qεo ∈ [0.95; 1],

• [τmin; τmax] = [1s; 1.5s],

• δωbmax = 0.5rad/s(' δ∗θ
3τmax

),

• (q∗(t), ω∗b (t)) the target trajectory is a rotation at constant speed around
the axis n = (1 1− 1)> with θ∗(t) = t,

• The real system is biased with ∆Jb = diag((0.1 −0.1 0.1)>)J∗b (10%
bias),

• The sampling time is 10ms and the sensors measures have a 10ms
delay.

• The object undergoes an impulse deviation from the trajectory at t =
1s such that xr(1) = (0 − δωbmax)>.

6.2 Results

The multi-objective controller synthesis gives : kmp = 2.976 and kmd = 3.543.

The robust multi-objective synthesis (in green on below figures) is com-
pared to the manually tuned linearized reference controller kop = 0.67 and

kod = 1.63, corresponding to the linearized pulsation ωoo =
√
kop = 1/

√
τminτmax
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and damping ratio ξo =
kod

2ωoo
= 1 at the attraction point (in purple on below

figures).

Figure 3: Real time trajectories of the rotation speeds ωb for the non linear
system (1) with previous hypothesis (theoretical trajectory in blue, manually
tuned controller in purple, multi objective controller in green).

Figure 4: Real time attitude performance output zq corresponding to previ-
ous rotation speed trajectories (manually tuned controller in purple, multi
objective controller in green).
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7 Conclusion

The results show that a proportional derivative like controller of the form
(14) with the non linear complete command (8) allows to perform almost
global asymptotical stable tracking of a given feasible attitude trajectory (2)
for the original system (1) given multi-objective performances requirements.
The chosen performances are arbitrary and many other requirements could
be considered (energy input constraint, actuators saturation, perturbation
rejection (wind),...). The synthesis procedure takes partially into account
the non linearity of the closed loop system, linearizing the proportional like
term of the controller itself. In furter research work, an LMI method with S-
variables as defined in [6] could be set up to solve structured output feedback
design for the original non linear problem. Moreover, the proposed controller
has the behavior of a Proportional Derivative controller : a remaining static
error appears on the real system with uncertainty. In future work we intend
to look for an integral term of the attitude error to be added to the controller
to cancel static errors.
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