
HAL Id: hal-03137722
https://laas.hal.science/hal-03137722

Preprint submitted on 10 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling complex systems with Heterogeneous Petri
Nets (HtPN)

Amaury Vignolles, Elodie Chanthery, Pauline Ribot

To cite this version:
Amaury Vignolles, Elodie Chanthery, Pauline Ribot. Modeling complex systems with Heterogeneous
Petri Nets (HtPN). 2021. �hal-03137722�

https://laas.hal.science/hal-03137722
https://hal.archives-ouvertes.fr


Modeling complex systems with Heterogeneous Petri
Nets (HtPN)

Amaury Vignollesa,b, Elodie Chantherya,b, Pauline Ribota,c

aCNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
bUniv de Toulouse, INSA, LAAS, F-31400 Toulouse, France
cUniv de Toulouse, UPS, LAAS, F-31400 Toulouse, France

Abstract

This article presents a new formalism based on Petri nets to model heteroge-

neous systems and take uncertainties into account: the Heterogeneous Petri

Nets (HtPN). A formal definition of heterogeneous systems is introduced: a

class of systems that can present continuous, discrete or hybrid dynamics by

subparts. After presenting the formalism and how it allows to specify the be-

havior of heterogeneous systems, the formalism is applied on an hybrid example,

a production system from Motorola.

Keywords: Modeling, Simulation, Heterogeneous Systems, Petri Nets

1. Introduction

Modeling correctly a system is paramount, as it allows, among other things,

to precisely specify, control and monitor the considered system. However, with

the global complexification of systems, specially manufacturing systems, it is

necessary for modeling formalisms to evolve as well. For this purpose a new5

formalism based on the well-known Petri Nets formalism [1] is introduced in this

paper. This formalism, named Heterogeneous Petri Nets (HtPN), was created

to fulfill specifics needs, although we claim that it can be used to represent

everything the usual Petri Net can do.

Email addresses: avignolles@laas.fr (Amaury Vignolles), echanthe@laas.fr (Elodie
Chanthery), pribot@laas.fr (Pauline Ribot)

Preprint submitted to Journal of Manufacturing Systems February 10, 2021



The specific needs we focus on are modeling and monitoring the health of a10

heterogeneous system under all kinds of uncertainty. In short, a heterogeneous

system, according to our definition, is a system in which purely discrete, purely

continuous or hybrid parts (i.e. parts mixing discrete and continuous aspects)

are all linked and communicate with each other. For example, in the domain

of manufacturing systems, cyber-physical systems [2] main characteristic is the15

different nature of their elements. They integrate various heterogeneous devices

which have heterogeneous dynamics. Hence, we need a formalism able to rep-

resent any type of system. We also need to be able to represent different types

of uncertainty (on modeling or observations, for example) through parallelism

or noise functions associated to places of the Petri Net. Finally, monitoring20

the health of manufacturing systems has become such an important challenge

for the industry that we wanted to define a formalism that is easy and natural

to understand and appropriate. The formalism must therefore also be able to

represent the aging of the system, through degradation dynamics for example.

To sum up, the new formalism should make it possible to:25

• model and monitor any kind of system, be it discrete, continuous, hybrid

or heterogeneous. This needs includes parallelism representation for multi-

component systems;

• represent uncertainty on the system, be it of modeling or because of prob-

lems on observations (noise or communication problems);30

• monitor the health of the system and follow its degradation process through

dynamics associated to places of the network, for example.

A survey of the existing formalisms will exhibit that classical Petri Nets or

their usual extensions (colored Petri Nets, Hybrid Nets...) do not comply with

these needs. We thus propose the Heterogeneous Petri Nets based on the work35

of [3]. This formalism is not only able to fulfill our needs for health monitoring,

but also to simulate a control system. We implemented a software to simulate

systems modeled with HtPN. This implementation was applied on a production

2



system from Motorola already defined in the literature [4].

To sum up, our main contributions in this article are:40

• the definition of heterogeneous systems;

• the specification of the new HtPN formalism based on Petri Nets able to

monitor the health of complex heterogeneous systems under uncertainty

as well as simulate control systems;

• a software implementation to simulate models of heterogeneous systems45

in the proposed formalism.

This paper is organized as follows. Section 2 defines Heterogeneous systems.

Section 3 surveys related works and shows the need for a new formalism. Sec-

tion 4 introduces our new formalism to represent Heterogenous systems, the

Heterogeneous Petri Nets (HtPN). Finally, Section 5 shows how this new for-50

malism was applied to simulate the model of a control system taken from the

litterature, which represents a production system from Motorola.

2. Heterogeneous Systems

2.1. Definitions

Although the notion of heterogeneous systems (HtS) exists in the literature,55

the formal definition of this type of systems based on their dynamics has not

yet been given to our knowledge or is often too restrictive. For example, in [5],

authors consider systems where discrete models and continuous models have to

communicate during simulation. Hybrid behaviors are not considered. Other

works are not dynamics-based and simply consider heterogeneous systems as60

the integration of diverse specific components in various domains such as the

electrical, mechanical and optical fields [6, 7]. This section aims at proposing

a dynamics-based definition of Heterogeneous systems (HtS). To better under-

stand this definition, the definitions of Discrete Event Systems (DES), Contin-

uous Systems (CS) and Hybrid Systems (HS) must be recalled.65

3



Definition 1 (Discrete Event System). A Discrete Event System [8] is a

system which will only manage discrete data:

• the state space is a discrete set;

• the state transition mechanism is event-driven.

That is its state evolution depends entirely on the occurrence of asynchronous70

discrete events over time.

Some events are observable, whereas some are unobservable (like some spon-

taneous fault events for diagnosis purpose for example). If continuous data are

encountered by a DES, they will be abstracted to generate discrete events.

Definition 2 (Continuous System). A Continuous System [8] is a system75

with continuous time dynamics.

The evolution of such a system can be described by a dynamic equation C of

the form:

C =

 xk+1 = f(xk, uk) + v(xk, uk)

yk = h(xk, uk) + w(xk, uk)
(1)

where xk ∈ Rnx is the continuous state vector of n state variables at time k,

uk ∈ Rnu is the vector of nu continuous input variables at time k, f is the80

noise-free continuous evolution function, v is a noise function, yk ∈ Rny is the

vector of ny continuous output variables at time k, h is the noise-free output

function and w is the noise function associated with observation.

Definition 3 (Hybrid System). A Hybrid System [9] is a system that will

encounter both discrete and continuous data at any time.85

Now that the definitions of these three kinds of systems have been reminded,

we can introduce our definition of a HtS.

Definition 4 (Heterogeneous System). A Heterogeneous System is a sys-

tem that can be divided into different sub-systems. These sub-systems can be

either purely discrete, purely continuous, or hybrid, and communicate together.90

4



From a data point of view, a HtS will sometimes be affected solely by discrete

data, sometimes only by continuous data and sometimes by both continuous and

discrete data.

In the context of health monitoring, the aging of the system plays an important

role on the evolution of its health state. We then define aging Heterogeneous95

Systems (aHtS):

Definition 5 (Aging Heterogeneous System). An aHtS is a HtS which in-

cludes the aging of the system as a continuous time function. This aging process

is usually represented through degradation dynamics.

2.2. Running Example of an HtS100

Our running example is a heterogeneous system that can be found in any

manufacturing process involving a water tank. A water pump has two operating

modes: either it is on and pumps water, or it is off. In this system, the pump

can get stuck and the system will enter a faulty state and shut down. When

the pump is on, there are three ways for the system to stop: the user manually105

turns it off, the observed (i.e. measured) water level exceeds a given threshold

(50 liters here) or a fault occurs on it. The only way to turn on the pump is for

the user to start it by pressing the ON button. The system can enter the faulty

state from both the on and off states. When in the faulty state, the pump is

considered unavailable and can not be started. When a repair action is made,110

the system returns into its off state.

This example falls under our definition of a Heterogeneous System. Indeed,

one part of the system is hybrid (when the system is on, we consider both discrete

and continuous data or observations) and another part is purely discrete (when

the system is off, we only consider discrete data and observations). Both parts115

communicate with each other. An illustration of how this system works will of

course be given with the new HtPN formalism we propose.

5



3. Related Work

This section aims at studying existing solutions and formalisms to deal with

heterogeneous systems. Since few works deal with heterogeneous systems, we120

will also study the formalisms developed for hybrid systems. We will try to

identify a priori solutions likely to satisfy the needs stated in the introduction:

parallelism in various systems, representation of uncertainty both in the model

and in the observations, representation and monitoring of system aging.

The theory of hybrid automata has been published in [9] but the preliminary125

version was published in 1996 in the Proceedings of the 11th Annual IEEE

Symposium on Logic in Computer Science (LICS96). In hybrid automata [10],

each discrete state represents a possible state of the automaton, i.e. of the

system. It is associated with continuous dynamics defining the evolution of the

continuous space. In this model, only one state can be active at a time. By130

definition, this is incompatible with the idea of parallelism. The transitions are

defined by 5-tuples of the form (q,Guard, σ, Jump, q′) with q the state before

the transition, q′ the state after the transition, Guard the condition to fulfill in

order to fire the transition, σ the event received or emitted during the transition

firing and Jump the changes on the variables taking place during the firing135

(whether it is a reset to zero or the application of a function to compute a new

value). Concepts such as Guard and Jump are very interesting. However, even

if hybrid automata composition is possible, they cannot share a common state.

Therefore it is impossible to represent uncertainty concerning observations or

on the current system state.140

Petri nets are widely used to manage manufacturing systems [11, 12, 13, 4],

even for hybrid aspects. Petri nets have the advantages to be very intuitive for

modeling and designing systems and are recognized for their compactness and

their relevance in decision-making and system monitoring. They are also used

for proving some properties on systems. This is why this section will now focus145

on Petri Net based formalisms. They all have in common the use of places,

transitions and tokens.

6



Figure 1: Example of Hybrid Petri net [4]

In hybrid Petri nets [4] there are two types of places: continuous places, rep-

resented by double line, and discrete places as shown on Figure 1. Tokens situ-

ated in continuous places are real numbers, whereas tokens in discrete places are150

integer. Two types of transitions can be distinguished. Continuous transitions

(as a rectangle) and discrete transitions. In the case of continuous transitions, a

crossing quantity is defined and acts like a weight on the arcs. It is possible for

transitions to have both types of places as inputs, but the discrete place must

be an input and an output of the transition, and the weights of the ingoing and155

outgoing arcs must be the same. This can be seen on Figure 1 with T1 and

P2. In case of conflict between continuous and discrete transitions, the discrete

transition has the priority. The idea of parallelism is applicable as different

tokens can evolve simultaneously in the model. However, continuous places are

not associated with any dynamics. It is therefore impossible to associate to a160

state variable an evolutionary dynamic according to the state of the system and

to monitor it, or to make a degradation variable evolve according to a level of

stress associated with a state of the system.

In mixed Petri nets, proposed by [14], a place can be continuous and associ-

ated to dynamics. In this case, one, or few, differential equation is associated to165

the place. A place can also represent a discrete phenomenon. The continuous

variables evolution is modeled through two sets giving the set of equations acti-

7



vated when a place is marked or when a marking is true. One contains the set of

the equations activated when a place is marked whilst the other contains a set of

equations activated for a specific marking. The idea of Jump and Guard from170

hybrid automaton is also present. The idea of parallelism is applicable as long

as the marked places do not change the value of the same variable through equa-

tions. The continuous variables are shared with the whole system and evolve

following the active equations. This is still kind of restricting according to our

needs, with the idea of parallelism and uncertainty, as this formalism does not175

allow two places in parallel to modify the same variables.

A Petri net based model to represent heterogeneous embedded systems

(PRES) was introduced in [15]. In this formalism, a token is a pair k = (vk, rk),

where vk is the token value, of any type, and where rk is the token time. Places

are associated with a single token type. This means that a place containing a180

token whose value is an integer will be considered as an integer type place: this

type will not change during the entire dynamic behavior of the net. In PRES, a

transition is associated with an output function, which will make the token value

evolve, a function delay, which will make the token time evolve and a guard,

which is the condition for the transition to be fired. Although interesting ideas185

can be found in this work, such as the output function, the function delays and

the guard, some aspects do not fit our requirements. For example, a place in

PRES is of a particular type, and will not accept a token which is not of the

type of the place. This implies that the combination of discrete and continuous

behaviors is difficult. Moreover, the token value does not evolve in the places,190

it only evolves using the transitions and their output functions. We would like

the value of the tokens to evolve even while they are in a place.

In previous works, we proposed a formalism named Hybrid Particle Petri

Nets (HPPN) in [16, 17]. A diagnostic method was developed based on this

formalism that can be applied only on hybrid systems. It represents uncertainty195

both in the model and in the observations and system aging can be represented

and monitored. However, the HtPN formalism was hard to figure out, so we

worked on the simplification of the concepts for a better understanding and on

8



R
ef
er
en
ce
s

Fo
rm

al
is
m

H
yb

ri
d?

H
et
er
og
en
eo
us
?

P
ar
al
le
lis
m
?

M
od

el
un

ce
rt
ai
nt
y?

O
bs
er
va
ti
on

un
ce
rt
ai
nt
y?

Sy
st
em

ag
in
g
re
pr
es
en
ta
ti
on

?

[9] [10] Hybrid Automata no no no no no

[11] [12] [13] Petri Nets no X no no no

[4] Hybrid Petri nets Hybrid only X no X no

[14] Mixed Petri nets Hybrid only ' no X X

[15] PRES ' X no no '

[16] [17] HPPN Hybrid only ' X X X

Table 1: Related Work Summary

the evolution of HPPN towards design and monitoring of heterogeneous systems.

Table 1 summarizes the work described in this section, focusing on impor-200

tant criteria. It indicates if the cited formalism is able to represent and monitor

hybrid systems and/or heterogeneous systems; if parallelism is possible; if uncer-

tainties on the model (resp. on the observations) may be taken into account ; if

the system aging may be represented and monitored. The symbol ' means that

the property is well taken into account in the formalism but in a way that does205

not fullfill our needs for our health monitoring problem and for encompassing

any type of Petri nets.

It emphasizes that even if each formalism can bring some interesting ideas

for our approach, the definition of a new formalism dedicated for aging hetero-

geneous systems will answer a need.210

9



4. The HtPN formalism

As we have seen with the related works, the existing formalisms do not

fulfill our particular needs. Hence, we had to define a new formalism, extended

from the classical Petri Nets. This section presents this new formalism, the

Heterogenous Petri Nets (HtPN), their semantics and their firing rules.215

The HtS presented in Section 2.2 was modeled using HtPN and will be used

as a running example to illustrate the different notions of the proposed formalism

(see Figure 2).

4.1. General Presentation

A HtPN is formally defined as follows.220

Definition 6 (HtPN). A HtPN is a set of 11 elements:

< P, T,A,Guard, Jump,E,X,Γ, C,D,M0 > gathering information to describe

discrete, continuous and degradation dynamics through places and the relation-

ships linking these places through transitions:

• P is the set of places;225

• T is the set of transitions;

• A ⊂ (P × T ∪ T × P ) is the set of arcs;

• Guard is the set of conditions associated with incoming arcs connecting

the places to the transitions;

• Jump is the set of assignments associated with outgoing arcs connecting230

the transitions to the places;

• E is the set of event labels. It is the union of the set Eo of the labels

of observable events and the set Euo of the labels of unobservable events:

E = Eo ∪ Euo.

• X ⊂ RnN is the state space of the continuous state vector, where nN ∈ N+235

is the finite number of continuous state variables;

10



p1
p2

p3

t1

(−, > 50,−); 1

t2(= OFF,−,−); 1

t3
(= ON,−,−); 1

t4

(−,−, > 100); 1

t5

(−,−, > 100); 1

t6

(= REPAIR,−,−); 1

(−,−,= 0); 1

(a)

places continuous dynamics degradation dynamics

p1 xk+1 = xk + 1 γk+1 = γk + 3

p2 - γk+1 = γk + 1

p3 - -

(b)

Figure 2: Example of an HtPN (a) and dynamics associated to its places (b)

• Γ ⊂ RnD is the state space of the degradation state vector, where nD ∈ N+

is the finite number of degradation state variables;

• C is the set of continuous dynamics of the system;

• D is the set of degradation dynamics of the system;240

11



• M0 is the initial marking of the network.

4.1.1. Places

In HtPN, a place is an object with a continuous dynamic, and a dynamic of

degradation. Discrete information is represented by the place itself.

Hence, to a place p are associated a set of equations Cp ∈ C modeling245

continuous dynamic of the system and the associated noise (uncertainties on

the evolution and on the measurements) as well as a set of equations Dp ∈ D

modeling degradation dynamic of the system:

p =

Cp

Dp

 (2)

The set of equations Cp is defined as:

Cp =

xk+1 = f(xk, uk) + v(xk, uk)

yk = g(xk, uk) + w(xk, uk)
(3)

where xk ∈ X is the continuous state vector at time k, uk ∈ Rnu is the vector250

of the nu continuous input variables, f is the noiseless continuous evolution

function, v is the noise function of the continuous evolution, yk ∈ Rny is the

vector of the ny continuous output variables, g is the noiseless continuous output

function, and w is the noise function of the continuous output. Functions f , v,

j and w are dependent on the considered p place.255

The set of equations Dp is defined as:

Dp =
{
γk+1 = d(γk, bk, xk, uk) + z(γk, bk, xk, uk) (4)

where γk ∈ Γ is the degradation state vector and d is the noiseless hybrid degra-

dation function. It depends on discrete events represented by bk and continuous

events represented by xk, and z is the noise function of the degradation evo-

lution. The functions d and z are dependent on the considered p place. In260

the example in Figure 2, there are 3 places: p1, p2 and p3 and the associated

continuous and degradation dynamics are explained in Table 2 (b).

12



A place may have no associated continuous and/or degradation dynamics.

In this case, the − symbol is used. This is illustrated in Table 2 (b) with the

continuous dynamics of p2 or the degradation dynamics of p3.265

By default, if no dynamics are specified, the place p is defined as:

p =

−−
 (5)

4.1.2. Tokens

A place p contains nH(p) tokens (nH(p) ≥ 0). Each token h have three

attributes: a discrete attribute, a continuous attribute and a degradation at-

tribute. These three attributes are represented as a set < δk, πk, φk >, with δk270

representing discrete information at time k, πk representing continuous infor-

mation at time k and φk representing degradation information at time k. These

attributes evolve according to discrete events and dynamics associated to the

place p the token belongs to.

The discrete information carried by a token h is called a configuration. The275

configuration of a token is the set of events that have occurred in the system up

to the time k and whose occurrence explains the existence of the token. More

formally, δk is the set bk of events that occurred up to time k:

bk = {(v, κ)|κ ≤ k}

where (v, κ) represents an event v ∈ E that occurs at time κ.280

The continuous information carried by a token is called the state of the

token. The state πk represents the continuous state vector xk ∈ X of the

system at time k. The state of a token h evolves according to the continuous

dynamics Cp (see Equation 3) of the place it belongs to. If no continuous

dynamic is specified, the state of the token will not evolve and will therefore285

remain constant.

The degradation information carried by a token is called the status of the

token. The status φk represents the degradation status vector γk ∈ Γ at time k.

The status of a token h evolves according to the degradation dynamics Dp (see

13



Equation 4) of the place it belongs to. If no degradation dynamic is specified,290

the status of the token will not change and will therefore remain constant.

Definition 7 (Marking). The marking Mk of a HtPN at time k is the distri-

bution of tokens in the different places of the network.

Initial marking M0 represents the initial conditions of the system. Each

token carries its initial configuration (the set of events that have occurred until295

time 0), its initial continuous state and its initial degradation status.

4.1.3. Arcs

The set of arcs is divided into two subsets: A•t which contains all incoming

arcs connecting the places to the transitions and At• which contains all outgoing

arcs connecting the transitions to the places:300

A = A•t ∪At• (6)

Incoming arcs. An arc ap,t ∈ A•t connecting a place p ∈ P to a transition t ∈ T

wears a set Ωp,t ∈ Guard. This set is composed of two elements:

Ωp,t =
{

(ΩS
p,t,Ω

N
p,t,Ω

D
p,t); ρp,t

}
(7)

• a triplet of conditions (a symbolic condition ΩS
p,t, a numerical condition

ΩN
p,t and a degradation condition ΩD

p,t)

• a weight ρp,t ∈ N+.305

By default, this set is Ωp,t = {(>,>,>); 1}, which means that if nothing is

specified, the symbolic, numerical and degradation conditions are set to TRUE

(i.e. they are basically satisfied), and the weight to 1. If an element is omitted

in the definition of the arc, either the triplet of conditions or the weight, this

element will take its default value.310

The symbolic condition ΩS
p,t is a condition related to the configuration

of the tokens located in the input places of a transition t. This condition can

be set to TRUE (>), FALSE (⊥) or tests the occurrence of one (or more, in

14



the case of a logical equation) event v ∈ E. In this case, it takes the form

ΩS
p,t(δk) = occ(bk, v) (which is true if v ∈ bk).315

The numerical condition ΩN
p,t is a condition related to the state of the

tokens in the input places of the transition t. It can be set to TRUE (>),

FALSE (⊥) or represents a constraint on the continuous state vector. In this

case, ΩN
pt(πk) = c(xk) is a test on the continuous state vector xk.

The degradation condition ΩD
p,t is a condition related to the status of320

the tokens in the input places of the transition t. It can be set to TRUE (>),

FALSE (⊥), or represents a constraint on the degradation status vector. In this

case, ΩD
p,t(φk) = c(γk) is a test on the degradation state vector γk.

Examples of guards can be seen in the running example (see Figure 2 (a)):

1. Ωp1,t1 contains a numerical condition to test if the continuous state vector325

is xk > 50 and no symbolic or degradation conditions,

2. Ωp1,t2 contains a symbolic condition to check if the event OFF occurred

and no numerical or degradation conditions,

3. Ωp1,t4 contains only a degradation condition to test if the degradation

state vector is γk > 100.330

Pre is the matrix containing the values of weights of arcs connecting the

places to the transitions, of dimensions P×T . Pre(t) is thus a vector containing

the values of weights of arcs connecting the input places to a given transition t.

Pre(p, t) represents the value of the weight of the arc connecting a place p to

a transition t. The value of Pre(p, t) allows to know if an arc ap,t exists in the335

HtPN:

(Pre(p, t) 6= 0) ≡ ∃ap,t (8)

Definition 8 (Accepted token). A token h is said to be accepted by an in-

coming arc if it satisfies:

• either the set of symbolic and numerical conditions of the arc,

• or the degradation condition of the arc.340

15



More formally, let p ∈ P be a place such that p ∈ P ∧ Pre(p, t) 6= 0:

∀h ∈ p,Accept(h, ap,t) ≡(
< δk, πk, φk > | ((ΩS

p,t(δk) = >) ∧ (ΩN
p,t(πk) = >)) ∨ (ΩD

p,t(φk) = >)
) (9)

We note Ha(ap,t, p) the set of tokens in the place p which are accepted by

the arc ap,t:

h ∈ Ha(ap,t, p) ≡ (Accept(h, ap,t) = >) (10)

The weight ρp,t of an arc connecting a place p to a transition t represents

the minimum number nHa of accepted tokens required to validate the arc t.345

Definition 9 (Validated arc). Let consider an arc ap,t, nHa the number of

tokens accepted by ap,t present in the input place of the arc t and ρp,t the weight

of the arc. The arc ap,t is said to be validated if nHa ≥ ρp,t.

Outgoing arcs. An arc at,p ∈ At• connecting a transition t ∈ T to a place p ∈ P

carries a set Ωt,p =
{

(ΩS
t,p,Ω

N
t,p,Ω

D
t,p); ρt,p

}
∈ Jump. As for the incoming arcs,350

this set has two elements:

• a triplet of assignments (a symbolic assignment ΩS
t,p, a numeric assignment

ΩN
t,p and a degradation assignment ΩD

t,p),

• and a weight ρt,p ∈ N+.

The symbol − for an assignment means that no change is made to the355

concerned attribute. By default, Ωt,p = {(−,−,−); 1}, which means that no

assignment is specified. A weight equals to 1 means that only one token will be

put in the output place of t.

Configuration evolution The symbolic assignment ΩS
t,p concerns the

configurations of the tokens passing through the arc at,p. Let δk be the config-360

uration of a token h passing through this arc at time k and wearing the value

bk:

16



• if ΩS
t,p = v, where v ∈ E, the event v is concatenated with the current

configuration of the token passing through the arc:

bk+1 ←− bk ∪ (v, k + 1) (11)

• if ΩS
t,p = bnew, where bnew is a set of timed events, the configuration is365

completely reset and only contains bnew:

bk+1 ←− bnew, (12)

• else if ΩS
t,p = − :

bk+1 ←− bk. (13)

State assignment The numerical assignment ΩN
t,p concerns the state of

the tokens passing through the arc at,p. Let πk be the state of a token h crossing

the arc at time k. Suppose that πk carries xk,370

• if ΩN
t,p = xnew, where xnew represents a new numerical value for the token

state πk then:

xk+1 = xnew, (14)

• else if ΩN
t,p = − :

xk+1 = xk. (15)

The numerical assignment ΩN
t,p provides the initial condition for the state of

the token passing through the arc, then the set of equations Cp ∈ C defined375

in Equation 3 determines the evolution of the state of the token in the output

place p.

Status assignment The degradation assignment ΩD
t,p concerns the status

of tokens passing through the arc at,p. Let φk be the status of a token h crossing

the arc at time k and γk be the value of φk,380

• if ΩD
t,p = γnew, where γnew is a numerical value:

γk+1 = γnew, (16)

17



• else if ΩD
t,p = − :

γk+1 = γk. (17)

The degradation assignment ΩD
t,p provides the initial condition for the status

of the token passing through the arc, then the set of equations Dp defined in

Equation 4 determines the evolution of the status of the token in the output385

place p.

An example of a status assignment can be seen in Figure 2 (a) : Ωt6,p2 sets

the status of the token to 0.

Weights Post is the matrix containing the values of weights of arcs con-

necting the transitions to the places, of dimensions P × T . Post(t) is thus a390

vector containing the values of weights of arcs connecting the given t transition

to the output places. Post(t, p) corresponds to the weight of the arc connecting

the transition t to the place p. The value of Post(t, p) allows to know if an

output arc at,p exists:

(Post(t, p) 6= 0) ≡ ∃at,p (18)

The weight ρt,p defines the number of tokens to be put in the output place395

of the arc at,p, i.e. whether tokens will be duplicated or destroyed, and, if so,

in what quantity. A weight ρt,p less than the number of tokens used to fire the

transition will cause the deletion of some of those tokens. A weight greater than

the number of tokens used to fire the transition will result in the duplication of

some of the tokens. This deletion or duplication will be performed randomly.400

In Figure 3, we observe both a case of deletion of tokens (a-b) and a case of

duplication of tokens (c-d). In the first case, three tokens (h1, h2 and h3) are

used to fire the transition t, but the arc at,p2 having a weight ρt,p2 equal to 1,

two tokens will be deleted during the transition firing. In the second case, only

one token (h) is used to fire the transition, but the arc at,p2
having a weight405

ρt,p2 equal to 3, this token will be duplicated, until 3 tokens (h, h1 and h2) are

drawn.

18



p1

h1 = h2 = h3 =< δ0, π0, γ0>

p2

t

Ωt,p2
= {(−,−,−); 1}

Ωp1,t = {(−,−,−); 3}

(a)

p1

p2

h1 =< δ0, π0, γ0>

t

Ωt,p2
= {(−,−,−); 1}

Ωp1,t = {(−,−,−); 3}

(b)

p1

h =< δ0, π0, γ0>

p2

t

Ωt,p2
= {(−,−,−); 3}

Ωp1,t = {(−,−,−); 1}

(c)

p1

p2

h = h1 = h2 =< δ0, π0, γ0>

t

Ωt,p2
= {(−,−,−); 3}

Ωp1,t = {(−,−,−); 1}

(d)

Figure 3: Weights ρt,p examples

4.2. Firing rules

4.2.1. Enabled Transition

A transition t ∈ T is said to be enabled at time k if all incoming arcs of t410

are validated (see Definition 9):

enabled(t) ≡ (∀p s.t ap,t ∈ A•t, nHa ≥ ρp,t) (19)

where nHa is the number of tokens accepted by the arc ap,t, and ρp,t is the

weight carried by the Ωp,t condition set present on ap,t.

19



4.2.2. Set of fired tokens

Let Card(Ha(ap,t, p)) be the number of accepted tokens in the place p by

the arc ap,t. When Card(Ha(ap,t, p)) > ρp,t, a choice function has to be defined

to select ρp,t tokens to be fired among the tokens Ha(ap,t, p):

•ζ : N+ ×Ha → Ha.

Let p such that p ⊂ P ∧Pre(p, t) 6= 0, the set of selected tokens in the place415

p among accepted tokens is noted Ψ(p, t) and is formally defined as follows:

Ψ(p, t) =

 •ζ(ρp,t, Ha(ap,t, p)) if Card(Ha(ap,t, p)) > ρp,t

Ha(ap,t, p) otherwise.
(20)

From Ψ(p, t) can be defined Ψ(•t) which is the set of tokens fired by the tran-

sition t.

Let p1, p2, ..., pi be the set of input places of transition t:

Ψ(•t) = Ψ(p1, t) ∪Ψ(p2, t) ∪ ... ∪Ψ(pi, t) (21)

Another choice function ζ• can be defined to select which tokens will be kept,

duplicated or deleted among the set of fired tokens Ψ(•t):

ζ• : N+ ×Ψ(•t)→ Ψ(•t).

4.2.3. Transition firing420

During a transition firing, the tokens fired by the transition t are moved into

the output places of t. The attributes of fired tokens are either kept or updated.

As specified in Section 4.1.3, this update, as well as the possible deletion or

duplication of tokens, are defined by the set of assignments Ωt• ∈ Jump carried

by the outgoing arc. As a reminder, if Ωt• carried by the outgoing arc carries no425

information, the attributes of the tokens are kept and no duplication will take

place. However, deletion of tokens may occur if the number of tokens fired is

greater than the weight ρt• = 1.

20



The firing of a transition t at time k is formally defined as follows: ∀p ∈

P ∧ Pre(p, t) 6= 0 and ∀p′ ∈ P ∧ Post(t, p′) 6= 0,430

Mk+1(p) = Mk(p)− ρp,t
Mk+1(p′) = Mk(p′) + ρt,p′

(22)

where ρp,t is the weight carried by the arc connecting the place p to the transition

t, ρt,p′ is the weight carried by the arc connecting t to the place p′, andMk(p) is

the number of tokens in the place p at time k. Mk(p) represents all the tokens

in the place p at time k:

Mk+1(p) = Mk(p) \Ψ(p, t)

Mk+1(p′) = Mk(p′) ∪ ζ•(ρt,p′ ,Ψ(•t))
(23)

THe HtPN formalism has been formally defined and can be used to model435

an heterogeneous system. In the next section, the HtPN formalism is used to

model and simulate the behavior of a production system from Motorola.

5. Application

5.1. System description

To exhibit the formalism and show that it can represents any type of Petri440

Nets, an example of an Hybrid Petri Nets taken from [4] was represented. To

reduce the computation time, the numbers in the original example were divided

by 10. The chosen system represents a production system from Motorola. This

production system can take care of two types of pieces coming in batch, which

are called L-type and R-type. When a L-type batch arrives, it is immediately445

transformed into 3000 pieces, which will be continuously taken care of, and put

in an upstream buffer. When 50 pieces are in this buffer, the processing of the

L-type pieces will begin after waiting 30 time units (which corresponds to the

set-up of the system for an L-type batch). Once all pieces of the batch are

taken care of, the system goes back into an idle state and is available to process450

another batch.

For an R-type batch, the process is almost the same. The main difference is

21



p1 p2

p3p4 p5

p6 p7

p8 p9

p10 p11

p12 p13

t1

(−,−,−); 3000

t2

(−, > 100,−); 1

(−,= 1,−); 2000

t3

(−,−,−); 50

(−,−,−); 50 t4

(−,−,−); 60

(−,−,−); 60

t5

(−, > 30,−); 1

(−,= 1,−); 1

t6

(−, > 36,−); 1

(−,= 1,−); 1

t7
(−,−,−); 3000 t8

(−,−,−); 2000

t9 t10

t11 t12

Figure 4: HtPN modeling the behavior of a production system

that the beginning of the process is delayed by 100 time units, and that the

delay time before processing is set to be 36 time units.

The system is neither purely discrete, as the time is represented by continuous455

22



dynamics, nor purely continuous, as the system cannot be solely represented by

continuous dynamics and is in need of discrete events: it is a hybrid system. As

this model was initially developed for system control, the monitoring aspect with

degradation dynamics is not considered and is not represented in this model.

5.2. Modeling with HtPN460

5.2.1. Model description

This system was modeled with HtPN and can be seen in Figure 4. The left

part of the figure represents the L-type pieces, while the right part of the figure

represents the R-type pieces. The set P of places is composed of 13 places:

P = {p1, . . . , p13}. The model is heterogeneous, as it is composed of places465

without any continuous dynamics (purely discrete) communicating with places

having continuous dynamics (p2, p4 and p5).

The initial marking is M0 = [p1, p2, p3]T . At M0, the tokens have an empty

configuration (which will stay empty as the set of events E is empty), a state

π = [1] which represent the time elapsed in each place: xhk represents the time470

that the token h has passed in the place p at time k. As there are not any

degradation dynamics (as the system is being controlled and its health state is

not being monitored), the status φ of the token is set to 0.

The set of continuous dynamics C is composed of continuous dynamics in-

crementing the tokens state by 1 in the places p2, p4 and p5, which are the475

places concerned by the elapsed time requirement:

Cpi
=
{
πk+1 = πk + 1, i = 2, 4, 5 (24)

The set T of transitions is composed of 12 transitions: T = {t1, . . . , t12}.

A numerical condition ΩN
p,t was used to represent the elapsed time since the

arrival of the token in the place requirement. It is for example the case for

conditions Ωp2,t2 , Ωp4,t5 , Ωp5,t6 which will be detailed latter in this section.480

23



To simulate the numbers of pieces, the weights on the arcs were set to the

needed values. For example, ρt1,p8
was set at 3000, to simulate the fact that the

batch is transformed into 3000 pieces.

The set of conditions Guard is mostly set at −, except for the following ones:

• Ωp2,t2 = {(−, πk > 100,−); 1} to represent the 100 time units waiting in485

p2

• Ωp10,t3 = {(−,−,−); 50} to represent the fact that 50 pieces have to be in

p10 before the system begins processing the L-type pieces

• Ωp11,t4 = {(−,−,−); 60} to represent the fact that 60 pieces have to be in

p11 before the system begins processing the R-type pieces490

• Ωp4,t5 = {(−, πk > 30,−); 1} to represent the 30 time units waiting in p4

• Ωp5,t6 = {(−, πk > 36,−); 1} to represent the 36 time units waiting in p5

• Ωp12,t7 = {(−,−,−); 3000} to represent the end of the processing of the

3000 L-type pieces

• Ωp13,t8 = {(−,−,−); 2000} to represent the end of the processing of the495

2000 R-type pieces.

The set of conditions Jump is:

• Ωt1,p8
= {(−,−,−); 3000} to represent the transformation of an L-type

batch into 3000 pieces

• Ωt2,p9
= {(−, π = 1,−); 2000} to represent the transformation of an R-500

type batch into 2000 pieces and reset the state of the tokens

• Ωt3,p10 = {(−,−,−); 50} is associated with Guard Ωp10,t3 and is the second

part of the verification of the number of pieces in p10

• Ωt4,p11
= {(−,−,−); 60} is associated with Guard Ωp11,t4 and is the second

part of the verification of the number of pieces in p11505

24



• Ωt5,p6 = {(−, π = 1,−); 1} to reset the state of the token

• Ωt6,p7
= {(−, π = 1,−); 1} to reset the state of the token.

The duration of the simulation is 6000 time units, as it is sufficient for the

system to process both R-type and L-type batch, and return to its idle state.

5.2.2. Model evolution510

When the system is idle, a token is in the place p3. A token in p1 represents

the fact that a L-type batch is available and waiting to be transformed into

pieces. This batch is turned immediatly into 3000 pieces, which will be put

into the place p8. This action is represented through the firing of the transition

t1. Transition t9 occurs and represents the placement in the upstream buffer515

represented by p10. When the number of pieces in p10 is 50, transition t3 is fired

leading to the initialisation of the system for the L-type pieces, represented by

the place p4. Then, t5 will be fired 30 time units later, which corresponds to the

duration of the initialisation for a L-type batch. A token in p6 shows that the

system’s initialisation for the L-type pieces is over and that the system is ready520

to deal with the L-type pieces. Transition t11 is then enabled, meaning that the

L-type pieces will be processed. Once all 3000 pieces have been processed, t7 is

fired and the systems goes back into an idle state.

For the R-type batch, the process is quite similar putting aside the delay of a

100 time units before the beginning of the process.525

5.3. Results

The results of the HtPN model simulation can be found as a video available

on this link: https://www.youtube.com/watch?v=RZ8yhZum_Pw&feature=youtu.

be.

530

After the software is launched, we can notice that the marked places are p1,

p2 and p3 which represent that a L-type and a R-type batchs are waiting to be

processed and that the system is available. Then, the processing of the L-type

25

https://www.youtube.com/watch?v=RZ8yhZum_Pw&feature=youtu.be
https://www.youtube.com/watch?v=RZ8yhZum_Pw&feature=youtu.be
https://www.youtube.com/watch?v=RZ8yhZum_Pw&feature=youtu.be


batch begins as it is divided into 3000 pieces, placed in p8. These pieces are

immediatly transferred, one by one, to the place p10. Then, when 50 pieces are535

in p10, the transition T3 is fired, leading to a token in p4 (at 0min04secs on the

video). After 30 time units in p4, T5 is fired, and a token is placed in p6, which

will lead to the repeated firing of T11. The L-type batch pieces are then being

processed. When the 100th time unit has passed, T2 is fired (at 0min06secs on

the video). 2000 pieces from the R-type batch are placed into p9 and transferred540

to p11 one at a time. However, the R-type pieces will stop here as the system is

still manufacturing the L-type pieces. At 2min15sec, all the R-type pieces are

waiting in p11 for the system to be available. It still has 900 L-type pieces to

process before. At 3min12sec, all the L-type pieces have been manufactured.

T7 is then fired, and the system is available. As the 2000 R-type pieces are545

waiting to be processed, T4 is fired immediatly and a token is placed into p5.

The system waits 36 time units and T6 is fired, leading to the processing of the

R-type pieces represented by the firing of T12. After all the pieces are processed,

T8 is fired. The system is then back into its idle state and the simulation stops,

as 6000 time units have passed.550

6. Conclusions and future work

A definition for a heterogeneous system has been provided in this paper. For

health monitoring purposes, this definition has been extended to aging Hetero-

geneous Systems (aHtS) in order to take into account the degradation dynamics

of the system.555

A new formalism based on well-known Petri Nets has been introduced and

specified, the Heterogeneous Petri Nets (HtPN). This formalism can represent

everything the usual Petri Net can do and more. It can represent the behavior

of a complex heterogeneous system to simulate control systems for example or

monitor the system health state as well. This representation allows to take into560

account different types of uncertainty about modeling and observations.

A software implementation (HeMU) has been realized to simulate models

26



of heterogeneous systems in the proposed formalism and an application to a

production system from Motorola has been proposed.

A benchmark with photovoltaic panels charging batteries is being developed565

to apply this formalism on a real case study, simulate it and compare the sim-

ulation results to real observations.

Future work will focus on the development of the health monitoring function

of such complex heterogeneous systems under uncertainty. This function will

integrate diagnostic and prognostic capabilities to estimate the current health570

state of the system and to predict its remaining useful life.

References

[1] J. L. Peterson, Petri nets, ACM Computing Surveys (CSUR) 9 (3) (1977)

223–252.

[2] A. Napoleone, M. Macchi, A. Pozzetti, A review on the characteristics of575

cyber-physical systems for the future smart factories, Journal of Manufac-

turing Systems 54 (2020) 305 – 335. doi:https://doi.org/10.1016/j.

jmsy.2020.01.007.

[3] Q. Gaudel, E. Chanthery, P. Ribot, Health Monitoring of Hybrid Systems

Using Hybrid Particle Petri Nets, in: Annual Conference of the Prognostics580

and Health Management Society 2014, Proceedings of The Annual Confer-

ence of the Prognostics and Health Management Society 2014, 2014, p. 51.

[4] H. Alla, R. David, Continuous and hybrid petri nets, Journal of Circuits,

Systems, and Computers 8 (01) (1998) 159–188.

[5] F. Bouchhima, G. Nicolescu, E. M. Aboulhamid, M. Abid, Generic585

discrete–continuous simulation model for accurate validation in heteroge-

neous systems design, Microelectronics journal 38 (6-7) (2007) 805–815.

[6] M. B. Ayed, F. Bouchhima, M. Abid, Codis+: Co-simulation environment

for heterogeneous systems, Journal of Control Engineering and Applied

Informatics 20 (1) (2018) 98–107.590

27

https://doi.org/https://doi.org/10.1016/j.jmsy.2020.01.007
https://doi.org/https://doi.org/10.1016/j.jmsy.2020.01.007
https://doi.org/https://doi.org/10.1016/j.jmsy.2020.01.007


[7] P. Ribot, E. Bensana, A generic adaptive prognostic function for heteroge-

neous multi-component systems: application to helicopters, in: European

Safety & Reliability Conference, Troyes, France, 2011.

[8] C. G. Cassandras, S. Lafortune, Introduction to discrete event systems,

Springer Science & Business Media, 2009.595

[9] T. A. Henzinger, The theory of hybrid automata, in: Verification of digital

and hybrid systems, Springer, 2000, pp. 265–292.

[10] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,

X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, The algorithmic analysis of

hybrid systems, Theoretical computer science 138 (1) (1995) 3–34.600

[11] M. Zhou, F. DiCesare, A. A. Desrochers, A hybrid methodology for syn-

thesis of petri net models for manufacturing systems, IEEE transactions

on robotics and automation 8 (3) (1992) 350–361.

[12] F. DiCesare, G. Harhalakis, J.-M. Proth, M. Silva, F. Vernadat, Practice

of Petri nets in manufacturing, Springer, 1993.605

[13] F. Balduzzi, A. Giua, C. Seatzu, Modelling and simulation of manufac-

turing systems with first-order hybrid petri nets, International Journal of

Production Research 39 (2) (2001) 255–282.

[14] C. Valentin-Roubinet, Hybrid systems modelling: mixed petri nets, in:

IEEE Conference CSCC, Vol. 99, 1999.610

[15] L. A. Cortés, P. Eles, Z. Peng, A petri net based model for heterogeneous

embedded systems, in: Proc. NORCHIP Conference, 1999, pp. 248–255.

[16] Q. Gaudel, E. Chanthery, P. Ribot, M. J. Daigle, Diagnosis of hybrid sys-

tems using Hybrid Particle Petri nets: theory and application on a plan-

etary rover, in: M. Sayed-Mouchaweh (Ed.), Fault Diagnosis of Hybrid615

Dynamic and Complex Systems, Springer Verlag, 2018, pp. 209–241.

28



[17] Q. Gaudel, E. Chanthery, P. Ribot, Hybrid Particle Petri Nets for Systems

Health Monitoring under Uncertainty, International Journal of Prognostics

and Health Management 6 (Jun. 2015).

URL https://hal.archives-ouvertes.fr/hal-01229083620

29

https://hal.archives-ouvertes.fr/hal-01229083
https://hal.archives-ouvertes.fr/hal-01229083
https://hal.archives-ouvertes.fr/hal-01229083
https://hal.archives-ouvertes.fr/hal-01229083

	Introduction
	Heterogeneous Systems
	Definitions
	Running Example of an HtS

	Related Work
	The HtPN formalism
	General Presentation
	Places
	Tokens
	Arcs 

	Firing rules
	Enabled Transition
	Set of fired tokens
	Transition firing 


	Application
	System description
	Modeling with HtPN
	Model description
	Model evolution

	Results

	Conclusions and future work

