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ABSTRACT

Cobotic applications require a good knowledge on human behaviour in order to
be cleverly, securely and fluidly performed. For example, to make a human and a
humanoid robot carry and move a table together, a model of human walking trajec-
tories is essential to make the robot follow or even anticipate the human movements.
This paper aims to study the Center of Mass (CoM) path during gait and gener-
ate human-like trajectories thanks to an optimal control scheme. It also proposes a
metric which allows to assess this model compared to the human behaviour. CoM
trajectories during gait of 10 healthy subjects were recorded and analysed as part of
this study. Inverse optimal control was used to find the optimal cost function which
best fits the model to the measurements. Then, the measurements and the generated
data were compared in order to assess the performance of the presented model. Even
if the experiments show a great variability in human behaviours, the model presented
in this study gives an accurate approximation of the average human walking trajec-
tories. Furthermore, this model gives an approximation of human locomotion good
enough to improve cobotic tasks allowing a humanoid robot to anticipate human
behaviour.

KEYWORDS
gait analysis; modeling; optimal control; model-based simulation; human-robot
interaction

1. Introduction

Every interaction between a humanoid robot and a human is a great challenge as
humanoid robots are very complex systems due to their numerous degrees of freedom
and their natural instability. These interactions go from avoiding the humans to
assisting them when doing complex tasks. In the context of collaborative tasks,
humanoid robots classically follow passively the humans (Kosuge et al. 1993).
Nevertheless, those tasks could be performed more efficiently if the robot can predict
and anticipate the human motions. Making a robot actively cooperate with a human
requires a good knowledge of the human behaviour. Thus, in the context of the French
ANR-COBOT project, dedicated to a collaborative table handling task between
a human and a humanoid robot, models of human walking trajectories and forces
applied by the human on the table are needed to allow the robot to real time assist
the human. This work, conducted as part of the ANR-COBOT, focuses on modeling
and generating human trajectories during gait to make the robot walk to the table in
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a human-like way. The way humans walk with a table will be handle in further works.
Nevertheless, the method is aimed to be the same.

In biomechanics, numerous authors study and describe healthy human gait (Kim
and Bertram| [2018)). Some authors are interested in human walking trajectories,
especially during collision or obstacles avoidance (Basili et al. 2013} |[Heijnen et al.
2012). However, to the best of our knowledge, the problem of the modeling and
the simulation of common human trajectories during gait is not frequently raised.
On the opposite, the generation of a path between a starting and a goal position
is a commonly tackled problem in robotics. For mobile wheeled robot, numerous
ways exist to generate paths. The easiest one is following a straight line while more
complicated ones include B-splines (Elbanhawi et al.|2015)) or curves generated with
an Optimal Control (OC) model called the unicycle model (Soueres and Laumond
1996; Laumond [1998). For humanoid robots, some solutions use parametric curves
called clothoids (Rakovi¢ et al.|2019)), as clothoid arcs have been showed to fit well
human behaviour (Arechavaleta et al.|2008)), or curves generated with an OC model
based on Inverse Optimal Control (I0C) (Mombaur et al.[2010).

First of all, the unicycle model and the clothoid based model are non-holonomic
locomotion models. This kind of model describes the locomotion of systems, called
non-holonomic systems, which always move forward, never sideward, with their
direction always tangent to their trajectory. The human can be approximated by a
non-holonomic system when walking a straight line (Arechavaleta et al. 2001). This
is why those models can be used to generate human walking paths (Papadopoulos
et al. 2013; Arechavaleta et al.|2008]). However, humans can also take sideward or
oblique steps to avoid obstacles or go to close goals as explained in Mombaur et al.
(2010). Those sideward motions are not taken into account by non-holonomic models.
Thus, holonomic locomotion models allow more degrees of freedom in the human
gait, like the one described in [Mombaur et al. (2010]), and should better describe
human locomotion. Moreover, in |Maroger et al. (2020b) and Maroger et al. (2020a)),
we already showed that an OC model adapted from Mombaur et al. (2010) better
fits human trajectories than a clothoid based model according to a metrics which
evaluates the distance between generated trajectories and measurements on human
subjects. Both models aimed to generate smooth CoM trajectories. That is to say
these trajectories did not take into account the medio-lateral oscillations due to the
steps.

In this article, we aim to study human trajectories during gait in order to improve
this OC model. To achieve this goal, an IOC scheme will be used to find a suited
cost function which allows to generate the most human-like trajectories. The model
implementation will use open-source software with the aim to ease reproducibility. We
hypothesise that this new model will be more efficient and accurate than the previous
one according to the defined metrics. We believe this model will allow to better predict
human behaviour and improve humanoid robot-human cooperation.



2. Methods

2.1. Participants

Ten subjects (8 males and 2 females) volunteered for this study with a mean (4
standard deviation) age of 23.30 =+ 2.32 years, height of 1.77 + 0.06 m and mass
of 73.90 + 12.59 kg. They all have no pathological disorders or medical conditions
likely to alter their gait. Every participant was informed of the experimental procedure
and gave its written consent before the experiment. However, they were not informed
of the expected results in order to preserve their natural behaviour. This study was
conducted in accordance with the declaration of Helsinki and with the approval of the
University of Toulouse ethical committee.

2.2. Ezxperimental protocol

The participants were instructed to walk from 10 starting positions with 4 different
starting orientations (—7 rad, Orad, 7 rad, mrad) to one goal position placed in front
of table always with the same orientation (5 rad). These positions are represented on
Fig[la] The subjects were asked to freely walk at a self selected normal speed. The
starting positions were chosen to measure a set of typical locomotion path within a
range of 0.6 to 5.5 m from the goal. The distance between the starting position and
the goal position is denoted d and called global distance in what follows.

In order to record the kinematics data of the subjects during gait, four passive
markers were fixed on their pelvis. The 3D positions of these markers were collected
thanks to a motion capture system (15 infrared VICON cameras sampling at 200 Hz).
Then, the horizontal CoM position (x,y) was approximated by the middle of the
two markers placed on the postero-superior iliac spine (Gard et al. 2004) and the
orientation of the pelvis v was computed as the angle between the vector tangent to
the trajectory and the cross product of the vector constructed with the two markers
placed on the antero-superior iliac spine and the vertical direction. The laboratory
configuration is represented in Fig[Th]

Kinematics data were filtered with a 4th order, zero phase-shift, low-pass butter-
worth with a 10 Hz cutoff frequency.

2.3. Model description

To simulate CoM trajectory during the gait in the horizontal plane, we used an
OC scheme similar to the one proposed in |Mombaur et al. (2010). The novelty of
our work lies in the fact that we adapted the OC model presented in Mombaur
et al. (2010) in order to solve it with a multiple shooting method with no strict
equality final constraint. More precisely, we used a Differential Dynamic Program-
ming (DDP) solver (Tassa et al.[2014) from the Crocoddyl library (Mastalli et al.
2020). This modification implied changes in the problem formulation, especially
in some constraints which can no longer be strict equality constraints. This solver
was chosen because it is open-source, which eases the reproducibility of this work,
and is also efficient to solve OC problems for real time applications (Tassa et al.|2014]).

As in Mombaur et al.| (2010), a human subject was considered as a full holonomic
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and the goal position with their orientations.

Figure 1. Experimental setup

locomotor system with the following dynamics:

(& = cos 0.V 0w — SIN 0. Vg4,
Y = Sin 0.V fory + €OS 0004,
h = M)
Vforw = U1
Vorth = U2
. W = us

(z,y) is the position of the human CoM in the horizontal plane. € is the posterio-
anterior orientation of his pelvis in a global frame. vfory and voy, are the forward
and sideward velocities of the subject CoM in the local frame, in other words they
are the tangent and orthogonal velocities with respect to the orientation of the pelvis.
w is his angular velocity. All the frames and variables involved here are represented
on Figl2l In what follows, u1, uy and us are respectively named the forward, the
orthogonal and the angular accelerations. As part of the formulation of the OC model
X = (x,y,@,vfomwmth,w)T is called the state and U = (u1,us,u3)” is called the
control. The aim of the OC problem is to optimize the state, from which can be
deduced the position (x,y) and the orientation 6 of the CoM, along a trajectory
between a start and a goal positions. This dynamics does not take into account the
medio-lateral oscillations due to the steps. It only allows to generate smooth CoM
trajectories (Maroger et al.2020Db)).

Then, we considered an OC model of the following form:
T
min (X (1), U(t)) dt + ép(X(T P
i o0, 00) e+ au(x () )

with ¢, and ¢; the running and terminal cost function. 7" is the time needed to go
from the starting position to the goal position. This problem was solved under the
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Figure 2. Coordinate systems in the trajectory problem to solve

following constraints:

X = f(t,X(t),U(t)) Dynamical constraint (EqlT) (3)
X(0) = Xo Initial constraint

with Xo = (x0, Yo, 0o) the initial state.
¢, and ¢, were chosen as follows:

or(X (1), U(t) = a0 + aruf(t) + agu3(t) + azu3(t)

+agp(X (), X)? (1)
oe(X(T),U(T)) = Bo((xy — x(T))* + (ys — y(T))?)
+81(05 = 0(T))* + B2(Vforw(T)? + vortn(T)?) + Baw(T)?

Xy = (xy,y5,0y) is the goal state. a« = (ap, 1, a2, a3,a4) are the weights of the
running cost and 8 = (Bo, f1, B2, f3) the weights of the terminal cost. The function

P(X(t), Xf) = arctan g;%z((?) — 0(t) is the difference between the current orientation
of the system and the angular difference between the orientation of the system and
of its target. Thanks to this ¢ function, there is no symmetry between back and
forth trajectories. This is representative of human locomotion as humans usually do
not take the same path going from a start to a goal and from this goal to this start

(Mombaur et al.|[2010).

The function ¢, was already proposed to simulate CoM locomotion path (Mombaur
et al.|2010). Moreover, ¢, was added here to act as a final constraint which impose the
system to reach the goal position and orientation with a zero velocity. In Mombaur
et al. (2010]), the weights a were set to (1,1.2,0.7,1.7,5.2) using IOC. A similar
method, described in Sec2.5] was used to compute the weights o and 8 of the cost
functions in order to make the model best fit to the human behaviour. However,
first, a metric needed to be defined to assess if the model generates trajectories which



demonstrate a behaviour close to the measurements (Sec. [2.4)).

Moreover, as stated in the Eq2] 7" was to be optimized. However, the DDP solver
only optimizes the state and the control. Thus, the OC problem must be solved with the
DDP solver for different 7" in order to find the best 7' which minimizes the cost function.
As T represents the duration of the path between the start and the goal, we assumed
that T > ¢ with d = /(25 — 79)%2 + (ys — ¥0)? and v = 0.1m/s. The limit velocity v
was chosen in accordance with the actual velocity displacement of the humanoid robot
TALOS build by PAL Robotics (Stasse et al. 2017). Thus, the optimization of T' was
done with the Nelder-Mead method of the Scipy library (Virtanen et al. [2020).

2.4. Comparison between generated and measured trajectories

The goal of this study is to design a model which generates trajectories as close from
CoM human trajectories as possible. Thus, we needed to define a way to assess the
closeness between the experimental and the generated trajectories, for example a
distance between curves. This is why, we defined a distance between measured and
generated trajectories similar to the one proposed in |Arechavaleta et al. (2008]). To
this end, all the trajectories were normalized from 1 to 100% with a step of 0.1.
Then, for every of the 40 possible paths, from a starting position with one of the 4
orientations to the goal, a reference human trajectory was defined as the mean of the
measured trajectories: X" = %0 231'21 X718 where X% = (270%, yi"e®, 7[%) with
§ € [1,10] standing for the j** subject and i € [1, N] with N = 1000 for the i** point
along the trajectory. This trajectory is called the average human trajectory.

Now, the following distances can be computed:

N — —
dzy = Tlr E i1 \1/(17;(71@3 xlgen)Q (ylmes yigen)Q ( )
N— — en 5
d. = 1 L (,Ylmes ,yz.f] )2

(z'es, g™e®) is the average human trajectory over one path and (9", y9¢") is the

corresponding generated trajectory. 4™ is the average human orientation over one
path and 49" corresponds to the angle between the vector tangent to the trajectory
and the forward direction computed from the 6 generated with the OC model as follows

Yit1 —Yi 9, (6)
Tit1 — Ti

Vi+1 = arctan

In concrete terms, d,, represents the mean distance between two trajectories and d,
the mean angle between the experimental and the generated pelvis orientation. In the
rest of the article, d, and d, are, respectively, called linear and angular distances.

To assess a trajectory generated with the OC model, we stated that the best gen-
erated trajectory minimizes the distances d;, and d,. Furthermore, we hypothesized
here that the best model is the one which lower the mean distances over all the paths,
namely dy = 75 S0 dyy, and d, = = S°4  d,,. Those mean distances are called
linear and angular errors.



Moreover, statistical tests needed to be performed in order to determine if the model
is sensitive to the initial orientation or to the global distance. Thus, ANOVA (ANalysis
Of VAriance) tests were performed to detect the influence of those criteria on the errors
defined above (p < 0.05). Those tests were performed after checking the normality of
the data with a Kolmogorov-Smirnov test. Mann-Whitney tests were also conducted
to know if the distances between the generated trajectories and the average human
trajectory and the distances between the measured trajectories for every subjects and
the average human trajectories are significantly different (p < 0.05). Furthermore, a
Kruskal test was performed to assess the variability of the chosen trajectory between
the 10 subjects (p < 0.05).

2.5. Inverse Optimal Control

In Mombaur et al.| (2009), the authors presented an inverse OC scheme based on the
optimality criteria of human locomotion. They captured human walking paths to
identify the weights of their OC cost function. This is called IOC. In this study, we
applied the same method in order to find the weights o and 8 of the cost functions
defined in Eqf4]

IOC problems aim to determine the optimization parameters, here the weights of
the cost functions, so that they make the solutions of the corresponding OC problem
(X9en U9°") best fit the measurements (X™¢, U™). As mentioned previously, the
best fitting method minimizes the defined errors. Thus, the IOC problem can be defined
as follows:

40
: 1 v mes en
min o > DX, X0 (@, 5)) (7)
’ n=1

with D the cost function associated with this problem such as:
_ 1 _
D = day, (Xp™, X537 (a0, B)) + 5y, (X", X57 (@, ) (8)

This sum is weighted in order to have d;,, and d,, of the same magnitude.

This kind of problem can be solved with a derivative free method like the Powell
method (Powell [1964)) of the Scipy library (Virtanen et al.2020). The IOC problem
that we solved in this paper is represented in Fig[3]

3. Results

3.1. Human data analysis

The mean and standard deviation of the linear and angular distances between the
individual measurements and the average human trajectories are 0.1073 £ 0.06519 m
and 0.4842 + 0.1788rad. Moreover, the measurements present a great variability
according to the subjects as one can see on Figldl A Kruskal test demonstrates
significant differences between the subjects for the linear distance (p = 3.09 x 1077)
and for the angular distance (p = 2.54 x 107%). However, some subjects are not
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solved with a Powell method

l (e, B)
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XU Ty

1 (T2
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Figure 3. Algorithm to solve our IOC problem
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Figure 4. Comparison between human trajectories (average in bold green and measurements in lime green)
and generated trajectories (in red) for the start 3 (6p = 5 rad) , 6 (o = —5 rad), 8 (6o = 7 rad), 9 (6o =0
rad) from the left to the right. The arrows represent the orientation of the pelvis during gait.

statistically distinguishable. Indeed, when performing a Kruskal test on 6 over the 10
subjects the obtained p-value is 0.31 for the linear distance and 0.34 for the angular
distance. To conclude, some subjects have a similar behaviour while the others are
totally distinguishable.

The box and whisker plots for linear and angular distances between the measure-
ments and the average human trajectories are represented on Fig (on the right).
These plots show the median, the lower and upper quartile values (Q; and Q3) and ex-
tend from the maximum to the minimum within [@Q1 —1.5(Q3—Q1), Q3+1.5(Q3—Q1)].
The other values are considered as outliers.

3.2. I0C results

The weights of the cost function presented in EqH] were optimized with the IOC
problem described in Secf2.5] Thus, the weights allowing the best fitting to human
trajectories according to our metrics and our model are the followings:

(ap, a1, 2, a3, aug) ~ (7.87,4.00,20.15,1.00 x 1075, 10.00) (9)
(Bo, B1, Ba, B3) = (10.00, 10.00,0.38, 3.36)

3.3. Distance computation

With these optimal weights, 40 trajectories corresponding to the same starts and goal
than the human trajectories were generated using the OC model in order to evaluate
this model. The average computational time of these generations scored to 1.45s.
Four examples of these generated curves, one for each starting orientation, are shown

in Fig[]

The linear and angular distances were computed for each 40 generated trajectories
and the computed errors (+ standard deviation) are dg, = 0.0767 £ 0.0450 m and
J«, = 0.3786 4 0.1336 rad. Thus, the results of the described OC model are close to
the average human behaviour. However, the Mann-Whitney test comparing these
errors and the distance between the measured trajectories and the average human
trajectories demonstrates there is significant differences between the two data sets
(p = 6.19 x 10~ for the linear error and p = 3.56 x 10~* for the angular error). On
the contrary, when performing a kruskal test with the linear error and the distance

between the measured trajectories of the 6 indistinguishable subjects and the average



human trajectories, the p-value is superior to the threshold (p = 0.07). Thus, it can
be asserted that the OC model precisely describes the average human behaviour.
Nevertheless, it cannot fit every individual behaviours (6 over 10 in this study).

The box and whisker plots for linear and angular distances are represented on
Fig (on the left). Similar plots are presented in Fig where the linear distances
are split into 4 groups one for each starting orientations and in Figl5d where they are
split into 2 groups according to the global distance superior or inferior to 3 m. As
these diagrams present similar medians, they show no significant differences between
those groups. ANOVA tests confirmed this assumption. Indeed, the p-value was
superior to the threshold when applying the test to the 4 orientation-discriminated
groups (pzy = 0.68), to the 2 global distance-discriminated groups (py, = 0.24) and
to every groups (pyy = 0.71). This demonstrates that the presented model provides
homogeneous results for every global distance (within the chosen range) and every
orientation (among the chosen ones).

All the presented results are reproducible as all the libraries are open-source and the
source code and the data are available on: https://github.com/imaroger/walking_
human_trajectory_models|

4. Discussion

First, the present work proposes a study of human walking trajectories. The CoM
trajectories in the horizontal plane and posterio-anterior orientations of the pelvis
of 10 subjects walking freely from one start to a goal were collected. The analysis
of the measured trajectories shows a great variability between the subjects. This
paper also implements a new OC model solved with DDP to simulate human-like
trajectories without taking into account the medio-lateral oscillations. This model was
optimized using the measured trajectories through an IOC scheme. The assessment
of the model shows mean linear and angular errors around, respectively, 0.08 m
and 0.38rad. Those results are of the same order of magnitude than the mean
distances between the average human trajectories and the measured trajectories.
Thus, this model provides a close approximation of the average human CoM tra-
jectory and pelvis orientation during gait. Moreover, its computational time allows
real-time application on a humanoid robot which was not the case in Maroger et al.
(2020b)). However, it is still too slow to fluidly assist a human due to the present
limits of humanoid robot. Further works on the TALOS walking pattern genera-
tor may push those limits to make the robot reach a more human-like walking velocity.

In this paper, the weights of the cost function (Eq were optimized. A quick
analysis of this result shows that the weight factor corresponding to the angular accel-
eration is very low, close to zero. This means that either the orientation of the pelvis
does not influence human walking trajectories, which does not seem reasonable, or,
more certainly, this factor is redundant with the forward and orthogonal accelerations
and the ¢ function which all depend on 6. On the opposite, the weight associated
to the orthogonal acceleration is quite important in regard to the the weight of the
forward acceleration. This demonstrates the importance of the possibility for sideward
motions which is totally missing in non-holonomic models, like the unicycle model.
This corroborates the starting hypothesis to consider a model with additional degrees

10
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of freedom rather than a non-holonomic model to best fit human locomotion. Thus,
a holonomic system is an accurate approximation of a human subject. Those weights
can be compared to the ones computed in Mombaur et al.| (2010)). They are not of
the same magnitude especially for the weight factor corresponding to the angular
acceleration. The reason why those weights are so different remains unclear but it
may be due to the difference of solver and of the experimental setup as the distances
performed in their experiment did not exceed 3.5 m.

To the best of our knowledge, few authors compare a human-like gait path to
measurements using a metrics similar to the one presented in this paper. Even in
Mombaur et al.| (2010)), there is no numerical assessment of the distance between the
human trajectories and those generated with the proposed model. So in this paper,
we go further introducing a metrics to endorse our results. However, it is difficult to
assess the presented results with respect to other studies. Only in [Arechavaleta et al.
(2008)), a similar metrics is used to compute the linear error and alike results are
found with a model based on the unicycle model. However, not a lot of information
are given about their results. So, a comparison with our model only leads to the
conclusion that we have results of the same order of magnitude for the linear error.
There is no evaluation of the angular error in the literature as far as we know. At
least, the results presented in this paper can be compared with the results of our
previous works (Maroger et al. |[2020bja). Comparison shows that this new model
is much better than the ones tested in those former studies where the mean linear
distance was around 0.2m and the mean angular distance around 0.9 rad.

Even if our study leads to a model which correctly approximates human behaviour,
it has some limitations. First of all, the presented model only has got a weak
optimality constraint on the final state. This can lead not to exactly reach the goal
position. However, for the generated trajectories, the average final distances are
0.016 m and 0.19rad which is largely acceptable for the robotic targeted application
namely a collaborative task between a humanoid robot and a human.

Furthermore, the orientation computation is flawed. Indeed, during the measure-
ments some markers were obliterated and data was not collected. We were unable to
compute the orientation of the subjects’pelvis for 125 over 400 analysed trajectories.
This leads to 3 over 40 average human trajectories without average orientations.
These trajectories were not taken into account in the IOC process and in the distance
computation.

Moreover, the presented OC model greatly depends on the chosen dynamics (Eq
and the chosen cost function for the OC (Eq and for the IOC (Eq. Indeed, other
choices can be made for the OC cost function and maybe adding or removing terms
can improve the model. For example further studies may analyse the velocity profile
in order to also make it fit to human dynamics and introduce a term which binds
the velocity to the curvature of the trajectory to generate realistic velocity profiles.
Thus, the velocity profile may respect the two-thirds power law (Viviani and Flash
1995)). Jerk (Flash and Hogan!|[1985)) or kinetic energy (Biess et al.[2007)) terms could
also be added to the cost function. However, in (Mombaur et al.|[2010|), the authors
show that adding velocity and jerk terms to the cost function does not improve their
model. Moreover, terms can be added to the cost function for the IOC problem like
a distance evaluating the closeness between the linear and angular velocity profiles.
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Nevertheless, weights must be added as the different distances will not be on the
same scale and a manual search of these weights may be a long process as each IOC
run takes at least 36 hours.

This leads to another potential weakness of our method: the IOC scheme is very
computation time consuming. This prevents the customisation of the model according
to each subject which could improve the generated trajectories. Indeed, we showed that
the trajectories taken by the subjects present a great variability. This is why it may
be relevant to individually recompute the OC cost function weights « and 8 for each
subject. However, the huge computation time of the IOC scheme does not allow this
re-computation for real-time application like collaboration tasks. Nevertheless, using
another method to solve the IOC problem might speed up the weights computation.
The Powell method used in this work might be replaced by a genetic algorithm (Sylla,
et al.2014) or an Inverse Karush-Kuhn-Tucker (KKT) approach (Panchea et al./[2018])
or a probabilistic method like Inverse Reinforcement Learning (IRL) (Park and Levine
2013). The implementation of these methods are more complex but they may be more
efficient and faster to solve an IOC problem.

5. Conclusion

In this paper, a study of human trajectories during gait is presented. A reproducible
OC model which generates smooth human-like CoM trajectories between a starting
position and a goal position is proposed. The trajectories generated with this model
well fit human behaviour for every distance between the starting and the goal positions
and for every starting orientations according to the defined metrics. The targeted
application of this work is to allow a humanoid robot to swiftly follow or even anticipate
human walking trajectories while it assists a human to carry and move a table. In this
context, the results obtained in this paper are reasonable as the error between the
average human trajectories and the generated trajectories is around 0.08 m which
means that the OC model fits the average human behaviour. This model may allow
to achieve the ANR-COBOT project’s goals in future works.
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