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ABSTRACT
Cobotic applications require a good knowledge of human behaviour in order to
be cleverly, securely and fluidly performed. For example, to make a human and
a humanoid robot perform a co-navigation or a co-manipulation task, a model of
human walking trajectories is essential to make the robot follow or even anticipate
the human movements. This paper aims to study the Center of Mass (CoM) path
during locomotion and generate human-like trajectories with an optimal control
scheme. It also proposes a metric which allows to assess this model compared to
the human behaviour. CoM trajectories during locomotion of 10 healthy subjects
were recorded and analysed as part of this study. Inverse optimal control was used
to find the optimal cost function which best fits the model to the measurements.
Then, the measurements and the generated data were compared in order to assess
the performance of the presented model. Even if the experiments show a great
variability in human behaviours, the model presented in this study gives an accurate
approximation of the average human walking trajectories. Furthermore, this model
gives an approximation of human locomotion good enough to improve cobotic tasks
allowing a humanoid robot to anticipate the human behaviour.
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Nomenclature

CoM: Center of Mass α, β: weights of the running and termi-
OC: Optimal Control nal costs

IOC: Inverse Optimal Control Xmes =
(
Xmes

1 ... Xmes
N

)T
: measured

(x, y): horizontal CoM position trajectory for one subject

γ, θ: orientation of the pelvis in the local X̄mes =
(
X̄mes

1 ... X̄mes
N

)T
: average

and global frames measured trajectory for all
vforw: forward velocity subjects without distinction

vorth: orthogonal velocity Xgen =
(
Xgen

1 ... Xgen
N

)T
: generated

X: state variable of the OC problem trajectory
X0, Xf : initial and goal states N : number of points in the trajectories
U : control variable of the OC problem d: global distance
T : duration of the travel dxy, dγ : linear and angular distances
φr, φt: running and terminal cost func- d̄xy, d̄γ : linear and angular errors

tions of the OC problem D: cost function of the IOC problem

1. Introduction

Every interaction between a humanoid robot and a human is a great challenge as hu-
manoid robots are very complex systems due to their numerous degrees of freedom and
their natural instability. These interactions go from avoiding the humans to assisting
them when doing complex tasks. In the context of collaborative tasks, humanoid robots
classically follow passively the humans (Kosuge et al. 1993). Nevertheless, those tasks
could be performed more efficiently if the robot can predict and anticipate the human
motions. Making a robot actively cooperate with a human requires a good knowledge
of the human behaviour. Thus, in the context of the French ANR-COBOT project,
dedicated to a collaborative table handling task between a human and a humanoid
robot, models of human walking trajectories and forces applied by the human on the
table are needed to allow the robot to real-time assist the human. This work, conducted
as part of the ANR-COBOT, focuses on the first step of this co-manipulation task,
namely reaching the table. This study aims to model and generate human trajectories
during locomotion to make the robot walk to the table in a human-like way. The way
humans walk with a table or interact with a robot to handle a table will be handled
in further works. Nevertheless, the method is aimed to be the same. Moreover, evi-
dences of better human-robot interactions under various forms of humans control were
already demonstrated (Sheridan 2016). This is why we hypothesise that an accurate
understanding and model of the human locomotion will help the human partner to
understand where the robot endpoint is.

1.1. State of the Art

In biomechanics, numerous authors study and describe healthy human gait (Kim
and Bertram 2018; Bovi et al. 2011) . Some authors are interested in human walking
trajectories, especially during collision or obstacles avoidance (Basili et al. 2013;
Heijnen et al. 2012) while others studied and modelled the human joint trajectories
during gait (Nandi et al. 2016; Semwal et al. 2018). Some more recent studies
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focus on the trajectories of human walking in crowded environment (Koilias et al.
2020; Zhu et al. 2020). However, to the best of our knowledge, the problem of the
modeling and the simulation of common human trajectories during locomotion is
not frequently raised. On the opposite, the generation of a path between a starting
and a goal position is a commonly tackled problem in robotics. For mobile wheeled
robot, numerous ways exist to generate paths. The easiest one is following a straight
line while more complicated ones include B-splines (Elbanhawi et al. 2015) or curves
generated with an Optimal Control (OC) model called the unicycle model (Soueres
and Laumond 1996; Laumond 1998). For humanoid robots, some solutions use
parametric curves called clothoids (Raković et al. 2019), as clothoid arcs have been
showed to fit well human behaviour (Arechavaleta et al. 2008), or curves generated
with an OC model based on Inverse Optimal Control (IOC) (Mombaur et al. 2010).

First of all, the unicycle model and the clothoid based model are non-holonomic
locomotion models. This kind of model describes the locomotion of systems, called
non-holonomic systems, which always move forward, never sideward, with their
direction always tangent to their trajectory. The human can be approximated by a
non-holonomic system when walking a straight line (Arechavaleta et al. 2001). This
is why those models can be used to generate human walking paths (Papadopoulos
et al. 2013; Arechavaleta et al. 2008). However, humans can also take sideward or
oblique steps to avoid obstacles or go to close goals as explained in Mombaur et al.
(2010). Those sideward motions are not taken into account by non-holonomic models.
Thus, holonomic locomotion models allow more degrees of freedom in the human
locomotion, like the one described in Mombaur et al. (2010), and should better
describe human behaviour. Moreover, in Maroger et al. (2020b) and Maroger et al.
(2020a), we already showed that an OC model adapted from Mombaur et al. (2010)
better fits human trajectories than a clothoid based model according to a metrics
which evaluates the distance between generated trajectories and measurements on
human subjects. Both models aimed to generate smooth CoM trajectories. That is to
say these trajectories did not take into account the medio-lateral oscillations due to
the steps.

1.2. Contribution

The motivation of this research is to improve the simulation of human trajectories
during locomotion compared to the previous papers published on this topic with
more modalities of distance and orientation. To achieve this goal, a novel IOC scheme
was used to find a suited cost function which allows the OC model, introduced in
this paper, to generate trajectories which accurately fit the 400 experimental human
trajectories measured as part of this study. The developed model aims to compute
both the position and the orientation of a human-like system between any starting
positions and a goal position. In order to assess this new OC model, a metrics
was developed to measure the distance between the measured and the generated
trajectories. The whole framework developed in this paper is shown in Fig.1. The
model implementation uses open-source softwares with the aim to ease reproducibility.
We hypothesise that this new model will be more efficient and accurate than the
previous ones according to the defined metrics. We believe this model will allow to
better predict human behaviour and improve humanoid robot-human cooperation.
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Figure 1. Description of the whole framework presented in the paper. The notations introduced in this chart
are defined in the nomenclature and throughout the document.

2. Methods

2.1. Participants

Ten subjects (8 males and 2 females) volunteered for this study with a mean (±
standard deviation) age of 23.30 ± 2.32 years, height of 1.77 ± 0.06 m and mass
of 73.90 ± 12.59 kg. They all have no pathological disorders or medical conditions
likely to alter their gait. Every participant was informed of the experimental procedure
and gave its written consent before the experiment. However, they were not informed
of the expected results in order to preserve their natural behaviour. This study was
conducted in accordance with the declaration of Helsinki and with the approval of the
University of Toulouse ethical committee.

2.2. Experimental protocol

The participants were instructed to walk from 10 starting positions with 4 different
starting orientations (−π

2 rad, 0 rad, π
2 rad, π rad) to one goal position placed in front

of a table always with the same orientation (π2 rad). These positions are represented
on Fig.2a. The subjects were asked to freely walk at a self selected normal speed. The
starting positions were chosen to measure a set of typical locomotion path within a
range of 0.6 to 5.5 m from the goal. The distance between the starting position and
the goal position is denoted d and called global distance in what follows.

In order to record the kinematics data of the subjects during locomotion, four
passive markers were fixed on their pelvis. The 3D positions of these markers were
collected thanks to a motion capture system (15 infrared VICON cameras sampling at
200 Hz). Then, the horizontal CoM position (x, y) was approximated by the middle of
the two markers placed on the postero-superior iliac spine (Gard et al. 2004) and the
orientation of the pelvis γ was computed as the angle between the vector tangent to
the trajectory and the cross product of the vector constructed with the two markers
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(a) Representation of the 10 starting positions
and the goal position with their orientations.
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(b) Laboratory configuration.

Figure 2. Experimental setup

placed on the antero-superior iliac spine and the vertical direction. The laboratory
configuration is represented in Fig.2b.

Kinematics data were filtered with a 4th order, zero phase-shift, low-pass butter-
worth with a 10 Hz cutoff frequency.

2.3. Model description

To simulate CoM trajectory during the locomotion in the horizontal plane, we
used an OC scheme similar to the one proposed in Mombaur et al. (2010). The
novelty of our work lies in the fact that we adapted the OC model presented in
Mombaur et al. (2010) in order to solve it with a multiple shooting method with
no strict equality final constraint. More precisely, we used a Differential Dynamic
Programming (DDP) solver (Tassa et al. 2014) from the Crocoddyl library (Mastalli
et al. 2020). This modification implied changes in the problem formulation, especially
in some constraints which can no longer be strict equality constraints. This solver
was chosen because it is open-source, which eases the reproducibility of this work,
and is also efficient to solve OC problems for real time applications (Tassa et al. 2014).

As in Mombaur et al. (2010), a human subject was considered as a full holonomic
locomotor system with the following dynamics:

ẋ = cos θ.vforw − sin θ.vorth
ẏ = sin θ.vforw + cos θ.vorth
θ̇ = ω
v̇forw = u1

v̇orth = u2

ω̇ = u3

(1)

(x, y) is the position of the human CoM in the horizontal plane. θ is the posterio-
anterior orientation of his pelvis in a global frame. vforw and vorth are the forward
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Figure 3. Coordinate systems in the trajectory problem to solve

and sideward velocities of the subject CoM in the local frame, in other words they
are the tangent and orthogonal velocities with respect to the orientation of the pelvis.
ω is his angular velocity. All the frames and variables involved here are represented
on Fig.3. In what follows, u1, u2 and u3 are respectively named the forward, the
orthogonal and the angular accelerations. As part of the formulation of the OC model
X = (x, y, θ, vforw, vorth, ω)T is called the state and U = (u1, u2, u3)T is called the
control. The aim of the OC problem is to optimize the state, from which can be
deduced the position (x, y) and the orientation θ of the CoM, along a trajectory
between a start and a goal positions. This dynamics does not take into account the
medio-lateral oscillations due to the steps. It only allows to generate smooth CoM
trajectories (Maroger et al. 2020b).

Then, we considered an OC model of the following form:

min
X(.),U(.),T

∫ T

0
φr(X(t), U(t)) dt+ φt(X(T )) (2)

with φr and φt the running and terminal cost functions. T is the time needed to go
from the starting position to the goal position. This problem was solved under the
following constraints:{

Ẋ = f(t,X(t), U(t)) Dynamical constraint (Eq.1)
X(0) = X0 Initial constraint

(3)

with X0 = (x0, y0, θ0) the initial state.
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φr and φt were chosen as follows:
φr(X(t), U(t)) = α0 + α1u

2
1(t) + α2u

2
2(t) + α3u

2
3(t)

+α4ψ(X(t), Xf )2

φt(X(T ), U(T )) = β0((xf − x(T ))2 + (yf − y(T ))2)
+β1(θf − θ(T ))2 + β2(vforw(T )2 + vorth(T )2) + β3ω(T )2

(4)

Xf = (xf , yf , θf ) is the goal state. α = (α0, α1, α2, α3, α4) are the weights of the
running cost and β = (β0, β1, β2, β3) the weights of the terminal cost. The function

ψ(X(t), Xf ) = arctan yf−y(t)
xf−x(t) − θ(t) is the difference between the current orientation

of the system and the angular difference between the orientation of the system and
of its target. Thanks to this ψ function, there is no symmetry between back and
forth trajectories. This is representative of human locomotion as humans usually do
not take the same path going from a start to a goal and from this goal to this start
(Mombaur et al. 2010).

The function φr was already proposed to simulate CoM locomotion path (Mombaur
et al. 2010). Moreover, φt was added here to act as a final constraint which imposes
the system to reach the goal position and orientation with a zero velocity. In Mombaur
et al. (2010), the weights α were set to (1, 1.2, 0.7, 1.7, 5.2) using IOC. A similar
method, described in Sec.2.5, was used to compute the weights α and β of the cost
functions in order to make the model best fit to the human behaviour. However,
first, a metric needed to be defined to assess if the model generates trajectories which
demonstrate a behaviour close to the measurements (Sec. 2.4).

Moreover, as stated in the Eq.2, T was to be optimized. However, the DDP solver
only optimizes the state and the control. Thus, the OC problem must be solved with the
DDP solver for different T in order to find the best T which minimizes the cost function.
As T represents the duration of the path between the start and the goal, we assumed
that T ≥ d

v with d =
√

(xf − x0)2 + (yf − y0)2 and v = 0.1 m/s. The limit velocity v
was chosen in accordance with the actual velocity displacement of the humanoid robot
TALOS build by PAL Robotics (Stasse et al. 2017). Thus, the optimization of T was
done with the Nelder-Mead method of the Scipy library (Virtanen et al. 2020).

2.4. Comparison between generated and measured trajectories

The goal of this study is to design a model which generates trajectories as close from
CoM human trajectories as possible. Thus, we needed to define a way to assess the
closeness between the experimental and the generated trajectories, for example a
distance between curves. This is why, we defined a distance between measured and
generated trajectories similar to the one proposed in Arechavaleta et al. (2008). To
this end, all the trajectories were normalized from 1 to 100% with a step of 0.1.
Then, for every of the 40 possible paths, from a starting position with one of the 4
orientations to the goal, a reference human trajectory was defined as the mean of the
measured trajectories: X̄mes

i = 1
10

∑10
j=1X

mes
i,j where Xmes

i,j = (xmesi,j , ymesi,j , γmesi,j ) with

j ∈ [1, 10] standing for the jth subject and i ∈ [1, N ] with N = 1000 for the ith point
along the trajectory. This trajectory is called the average human trajectory.
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Now, the following distances can be computed:{
dxy = 1

N

∑N
i=1

√
(x̄mesi − xgeni )2 + (ȳmesi − ygeni )2

dγ = 1
N−1

∑N−1
i=1

√
(γ̄mesi − γgeni )2

(5)

(x̄mes, ȳmes) is the average human trajectory over one path and (xgen, ygen) is the
corresponding generated trajectory. γ̄mes is the average human orientation over one
path and γgen corresponds to the angle between the vector tangent to the trajectory
and the forward direction computed from the θ generated with the OC model as
follows:

γi+1 = arctan
yi+1 − yi
xi+1 − xi

− θi (6)

In concrete terms, dxy represents the mean distance between two trajectories and dγ
the mean angle between the experimental and the generated pelvis orientation. In the
rest of the article, dxy and dγ are, respectively, called linear and angular distances.

To assess a trajectory generated with the OC model, we stated that the best gen-
erated trajectory minimizes the distances dxy and dγ . Furthermore, we hypothesized
here that the best model is the one which lower the mean distances over all the paths,
namely d̄xy = 1

40

∑40
n=1 dxyn and d̄γ = 1

40

∑40
n=1 dγn . Those mean distances are called

linear and angular errors.

Moreover, statistical tests needed to be performed in order to determine if the model
is sensitive to the initial orientation or to the global distance. Thus, ANOVA (ANalysis
Of VAriance) tests were performed to detect the influence of those criteria on the errors
defined above (p < 0.05). Those tests were performed after checking the normality of
the data with a Kolmogorov-Smirnov test. Mann-Whitney tests were also conducted
to know if the distances between the generated trajectories and the average human
trajectories and the distances between the measured trajectories for every subjects
and the average human trajectories are significantly different (p < 0.05). Furthermore,
a Kruskal test was performed to assess the variability of the chosen trajectory between
the 10 subjects (p < 0.05).

2.5. Inverse Optimal Control

In Mombaur et al. (2009), the authors presented an inverse OC scheme based on the
optimality criteria of human locomotion. They captured human walking paths to
identify the weights of their OC cost function. This is called IOC. In this study, we
applied the same method in order to find the weights α and β of the cost functions
defined in Eq.4.

IOC problems aim to determine the optimization parameters, here the weights of
the cost functions, so that they make the solutions of the corresponding OC problem
(Xgen, Ugen) best fit the measurements (X̄mes, Ūmes). As mentioned previously, the
best fitting method minimizes the defined errors. Thus, the IOC problem can be defined
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Figure 4. Algorithm to solve our IOC problem

as follows:

min
α,β

1

40

40∑
n=1

D(X̄mes
n , Xgen

n (α, β)) (7)

with D the cost function associated with this problem such as:

D = dxyn(X̄mes
n , Xgen

n (α, β)) +
1

2
dγn(X̄mes

n , Xgen
n (α, β)) (8)

This sum is weighted in order to have dxyn and dγn of the same magnitude.

This kind of problem can be solved with a derivative free method like the Powell
method (Powell 1964) of the Scipy library (Virtanen et al. 2020). The IOC problem
that we solved in this paper is represented in Fig.4.
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3. Results

3.1. Human data analysis

The mean and standard deviation of the linear and angular distances between the
individual measurements and the average human trajectories are 0.1073 ± 0.06519 m
and 0.4842 ± 0.1788 rad. Moreover, the measurements present a great variability
according to the subjects as one can see on Fig.5. A Kruskal test demonstrates
significant differences between the subjects for the linear distance (p = 3.09 × 10−7)
and for the angular distance (p = 2.54 × 10−6). However, some subjects are not
statistically distinguishable. Indeed, when performing a Kruskal test on 6 over the 10
subjects the obtained p-value is 0.31 for the linear distance and 0.34 for the angular
distance. To conclude, some subjects have a similar behaviour while the others are
totally distinguishable.

The box and whisker plots for linear and angular distances between the measure-
ments and the average human trajectories are represented on Fig.7a (on the right).
These plots show the median, the lower and upper quartile values (Q1 and Q3) and ex-
tend from the maximum to the minimum within [Q1−1.5(Q3−Q1), Q3+1.5(Q3−Q1)].
The other values are considered as outliers.

3.2. IOC results

The weights of the cost function presented in Eq.4 were optimized with the IOC
problem described in Sec.2.5. Thus, the weights allowing the best fitting to human
trajectories according to our metrics and our model are the followings:{

(α0, α1, α2, α3, α4) ≈ (7.87, 4.00, 20.15, 1.00× 10−6, 10.00)
(β0, β1, β2, β3) ≈ (10.00, 10.00, 0.38, 3.36)

(9)

3.3. Distance computation

With these optimal weights, 40 trajectories corresponding to the same starts and goal
than the human trajectories were generated using the OC model in order to evaluate
this model. The average computational time of these generations scored to 1.45 s.
Four examples of these generated curves, one for each starting orientation, are shown
in Fig.5.

The linear and angular distances were computed for each 40 generated trajectories.
The obtained results for each starting positions and orientations are plotted on Fig.6.
Let us denote a moderate positive correlation between the mean linear distance and
the global distance (with a Pearson correlation coefficient equal to 0.63) whereas there
is a strong negative correlation between the mean angular distance and the global
distance (with a Pearson correlation coefficient equal to −0.81).

Moreover, the computed errors (± standard deviation) are d̄xy = 0.0767± 0.0450 m
and d̄γ = 0.3786 ± 0.1336 rad. Thus, the results of the described OC model are close
to the average human behaviour. However, the Mann-Whitney test comparing these
errors and the distance between the measured trajectories and the average human
trajectories demonstrates there is significant differences between the two data sets
(p = 6.19 × 10−4 for the linear error and p = 3.56 × 10−4 for the angular error). On
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the opposite, when performing a kruskal test with the linear error and the distance
between the measured trajectories of the 6 indistinguishable subjects and the average
human trajectories, the p-value is superior to the threshold (p = 0.07). Thus, it can
be asserted that the OC model precisely describes the average human behaviour.
Nevertheless, it cannot fit every individual behaviours (6 over 10 in this study).

The box and whisker plots for linear and angular distances are represented on
Fig.7a (on the left). Similar plots are presented in Fig.7b where the linear distances
are split into 4 groups one for each starting orientations and in Fig.7c where they are
split into 2 groups according to the global distance superior or inferior to 3 m. As
these diagrams present similar medians, they show no significant differences between
those groups. ANOVA tests confirmed this assumption. Indeed, the p-value was
superior to the threshold when applying the test to the 4 orientation-discriminated
groups (pxy = 0.68), to the 2 global distance-discriminated groups (pxy = 0.24) and
to every groups (pxy = 0.71). This demonstrates that the presented model provides
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homogeneous results for every global distance (within the chosen range) and every
orientation (among the chosen ones).

All the presented results are reproducible as all the libraries are open-source and the
source code and the data are available on: https://github.com/imaroger/walking_
human_trajectory_models.

4. Discussion

First, the present work proposes a study of human walking trajectories. The CoM
trajectories in the horizontal plane and posterio-anterior orientations of the pelvis
of 10 subjects walking freely from one start to a goal were collected. The analysis
of the measured trajectories shows a great variability between the subjects. This
paper also implements a new OC model solved with DDP to simulate human-like
trajectories without taking into account the medio-lateral oscillations. This model was
optimized using the measured trajectories through an IOC scheme. The assessment
of the model shows mean linear and angular errors around, respectively, 0.08 m and
0.38 rad. Those results are of the same order of magnitude than the mean distances
between the average human trajectories and the measured trajectories. Thus, this
model provides a close approximation of the average human CoM trajectory and
pelvis orientation during locomotion. Moreover, its computational time allows
real-time application on a humanoid robot which was not the case in Maroger et al.
(2020b). However, it is still too slow to fluidly assist a human due to the present
limits of humanoid robot. Further works on the TALOS walking pattern genera-
tor may push those limits to make the robot reach a more human-like walking velocity.

In this paper, the weights of the cost function (Eq.4) were optimized. A quick
analysis of this result shows that the weight factor corresponding to the angular accel-
eration is very low, close to zero. This means that either the orientation of the pelvis
does not influence human walking trajectories, which does not seem reasonable, or,
more certainly, this factor is redundant with the forward and orthogonal accelerations
and the ψ function which all depend on θ. On the opposite, the weight associated
to the orthogonal acceleration is quite important in regard to the the weight of the
forward acceleration. This demonstrates the importance of the possibility for sideward
motions which is totally missing in non-holonomic models, like the unicycle model.
This corroborates the starting hypothesis to consider a model with additional degrees
of freedom rather than a non-holonomic model to best fit human locomotion. Thus,
a holonomic system is an accurate approximation of a human subject. Those weights
can be compared to the ones computed in Mombaur et al. (2010). They are not of
the same magnitude especially for the weight factor corresponding to the angular
acceleration. The reason why those weights are so different remains unclear but it
may be due to the difference of solver and of the experimental setup as the distances
performed in their experiment did not exceed 3.5 m.

To the best of our knowledge, few authors compare a human-like locomotion path
to measurements using a metrics similar to the one presented in this paper. Even in
Mombaur et al. (2010), there is no numerical assessment of the distance between the
human trajectories and those generated with the proposed model. So in this paper,
we go further introducing a metrics to endorse our results. However, it is difficult to
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assess the presented results with respect to other studies. Only in Arechavaleta et al.
(2008), a similar metrics is used to compute the linear error and alike results are
found with a model based on the unicycle model. However, not a lot of information
are given about their results. So, a comparison with our model only leads to the
conclusion that we have results of the same order of magnitude for the linear error.
There is no evaluation of the angular error in the literature as far as we know. At
least, the results presented in this paper can be compared with the results of our
previous works (Maroger et al. 2020b,a). In those studies, the authors implemented
an OC model similar to the one introduced in this paper using the cost function
weights proposed by Mombaur et al. (2010). Comparison shows that the OC model
described in this article is much better than the ones tested in those former studies
where the mean linear distance was around 0.2 m and the mean angular distance
around 0.9 rad using the same metrics.

Even if our study leads to a model which correctly approximates human behaviour,
it has some limitations. First of all, the presented model only has got a weak
optimality constraint on the final state. This can lead not to exactly reach the goal
position. However, for the generated trajectories, the average final distances are
0.016 m and 0.19 rad which is largely acceptable for the robotic targeted application
namely a collaborative task between a humanoid robot and a human.

Furthermore, the orientation computation is flawed. Indeed, during the measure-
ments some markers were obliterated and data was not collected. We were unable to
compute the orientation of the subjects’pelvis for 125 over 400 analysed trajectories.
This leads to 3 over 40 average human trajectories without average orientations.
These trajectories were not taken into account in the IOC process and in the distance
computation.

Moreover, the presented OC model greatly depends on the chosen dynamics (Eq.1)
and the chosen cost function for the OC (Eq.4) and for the IOC (Eq.8). Indeed, other
choices can be made for the OC cost function and maybe adding or removing terms
can improve the model. For example further studies may analyse the velocity profile
in order to also make it fit to human dynamics and introduce a term which binds
the velocity to the curvature of the trajectory to generate realistic velocity profiles.
Thus, the velocity profile may respect the two-thirds power law (Viviani and Flash
1995). Jerk (Flash and Hogan 1985) or kinetic energy (Biess et al. 2007) terms could
also be added to the cost function. However, in (Mombaur et al. 2010), the authors
show that adding velocity and jerk terms to the cost function does not improve their
model. Moreover, terms can be added to the cost function for the IOC problem like
a distance evaluating the closeness between the linear and angular velocity profiles.
Nevertheless, weights must be added as the different distances will not be on the
same scale and a manual search of these weights may be a long process as each IOC
run takes at least 36 hours.

This leads to another potential weakness of our method: the IOC scheme is very
computation time consuming. This prevents the customisation of the model according
to each subject which could improve the generated trajectories. Indeed, we showed that
the trajectories taken by the subjects present a great variability. This is why it may
be relevant to individually recompute the OC cost function weights α and β for each
subject. However, the huge computation time of the IOC scheme does not allow this
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re-computation for real-time application like collaborative tasks. Nevertheless, using
another method to solve the IOC problem might speed up the weights computation.
The Powell method used in this work might be replaced by a genetic algorithm (Sylla
et al. 2014) or an Inverse Karush-Kuhn-Tucker (KKT) approach (Panchea et al. 2018)
or a probabilistic method like Inverse Reinforcement Learning (IRL) (Park and Levine
2013). The implementation of these methods are more complex but they may be more
efficient and faster to solve an IOC problem.

5. Conclusion

In this paper, a study of human trajectories during locomotion is presented. A re-
producible OC model which generates smooth human-like CoM trajectories between
a starting position and a goal position is proposed. The trajectories generated with
this model well fit human behaviour for every distance between the starting and the
goal positions and for every starting orientations according to the defined metrics. The
targeted applications of this work are, for now, to allow a humanoid robot to walk to
a table in a human-like way and, in future works, to swiftly follow or even anticipate
human walking trajectories while it assists a human to carry and move a table. In
this context, the results obtained in this paper are reasonable as the error between
the average human trajectories and the generated trajectories is around 0.08 m which
means that the OC model fits the average human behaviour. This model may allow
to achieve the ANR-COBOT project’s goals in future works.
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