
HAL Id: hal-03144164
https://laas.hal.science/hal-03144164

Submitted on 17 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of SoT packages into ROS
Thomas Peyrucain

To cite this version:

Thomas Peyrucain. Integration of SoT packages into ROS. Robotics [cs.RO]. 2020. �hal-03144164�

https://laas.hal.science/hal-03144164
https://hal.archives-ouvertes.fr

Thomas
PEYRUCAIN
3A MCTGE

Tutor name:
Olivier Stasse
Senior CNRS
researcher

Du 18/05/2020 au 27/11/2020

Integration of SoT
packages into ROS

A dissertation submitted in partial fulfilment of the requirements
for the degree of Engineer from the ESIGELEC School

&

ABSTRACT

As a part of the RIO project that wants to broadcast the usage of ROS into the

industry, I am working at releasing 10 years of developed software for

humanoid robot and the TIAGO robot into ROS. This work has been started and

aborted in the past because the technology and the market expectation were

not ready. My internship will then help the Robot community to use those

advancement made by the laboratory especially RIO training that want to create

a ROS training platform. I will also have to create a tutorial for future

maintenance and new packages releases to help the laboratory staff gain time

and maintain my work even with the standard evolution.

Keywords:

TIAGO; Robotics; humanoid robots; LAAS – CNRS; rob4fam

i

ACKNOWLEDGEMENTS

I want to thanks all the staff from AIP-Primeca and LAAS-CNRS even though

we did not meet in real life due to covid situation.

A special thanks to Olivier STASSE who helped me understand the packages

and Guilhem Saurel who checked and validated all my pull request on GitHub

and made the releases of the packages so I could work properly. Thank you for

the time you gave me.

Thank you, Mr Tang, who supported me during this internship and gave me the

lines to follow for the thesis.

Also a special thanks to ROS developers who checked and validated my code

to put it on the ROS build farm.

I want to thanks my family that encouraged me during this uncertain time.

This project has received funding from the European Union‘s Horizon 2020

research and innovation programme under grant agreement No 732287. The

RIO project started in Jan 2020 and will end in Dec 2020.

iii

https://rosin-project.eu/ftp/ros-in-occitanie-rio
https://rosin-project.eu/ftp/ros-in-occitanie-rio
https://www.aip-primeca-occitanie.fr/wp-content/uploads/2020/02/EU-Flag-1.png

TABLE OF CONTENTS

1 Introduction..1
1.1 State of the art...1
1.2 Description of the LAAS-CNRS...7

1.2.1 Gepetto team..8
1.3 Description of the project: RIO (ROS in Occitanie).....................................9

1.3.1 ROSin...9
1.3.2 Context...9
1.3.3 Problem statement and ambitions..9
1.3.4 Work plan..10
1.3.5 My project...12

1.4 Description of the Joint Robotics Laboratory (JRL) between CNRS
(France) and AIST (Japan)...13
1.5 Description of the joint laboratory between AIRBUS and LAAS-CNRS:
Rob4Fam...14

2 Stack of Tasks (SoT)...15
2.1 Dynamic-graph..15
2.2 Dynamic-graph-python..16
2.3 Dynamic-graph-tutorial..16
2.4 Sot-core...16
2.5 Sot-tools..16
2.6 Sot-application...16
2.7 Task-Space Inverse Dynamics (TSID)..16
2.8 Sot-dynamic-pinocchio..17
2.9 Sot-pattern-generator..17
2.10 Sot-torque-control..17
2.11 Sot-talos..17
2.12 Sot-tiago..17

3 ROS ecosystem...18
3.1 ROS build farm..18

3.1.1 Jenkins..18
3.1.2 Rosdistro / ROS versions...19
3.1.3 CMake..19
3.1.4 Catkin..19

4 Methodology..21
4.1 Understand the package dependencies...21
4.2 Fix warnings..22
4.3 Create the files..27

4.3.1 Package.xml...27
4.3.2 Tracks.yaml..29

4.4 Prerelease with Docker...31
4.5 Release...32

5 Tutorial...33
5.1 Release for the first time...33

5.1.1 Github release repository...33
5.1.2 Authorizing Bloom to generate pull request on the rosdistro
repository...35
5.1.3 Release...37
5.1.4 Pull request...39
5.1.5 Validation of your pull request by a ROS deputy...............................41

5.2 Maintenance of packages...42
5.3 Technical discussion...42

6 Issues...43
6.1 First release of dynamic-graph..43

6.1.1 Warnings...43
6.1.2 Missing dependencies..44
6.1.3 Submodule issues..44
6.1.4 Different standard between LAAS-CNRS and ROS..........................46
6.1.5 Time delay..47

6.2 Technical discussion...48
7 Conclusion and future work...51

Figure 1-1 HRP-2 robot...2

Figure 1-2 Pyrène...3

Figure 1-3 Power law-based closed-loop control...6

Figure 1-4 Description of the LAAS-CNRS research teams.................................7

Figure 1-5 GEPETTO team..8

Figure 1-6 Training centre for the RIO project..11

Figure 1-7 List of the SoT packages...12

Figure 1-8 Experiment on the HRP-2 robot..13

Figure 1-9 Collaborators from left to right: Ali Charara (CNRS-INS2I), Liviu Nicu

(LAAS-CNRS), Christophe Giraud (CNRS Occitanie Ouest), Sébastien Boria

(Airbus, co-director of Rob4Fam), Olivier Stasse (CNRS, scientific responsible

Rob4Fam), Patrick Vigié (Airbus)...14

Figure 1-10 Interface of the website...31

Figure 1-11 ROS distro available on the website for prerelease........................32

Figure 1-12 Creation of a GitHub repository for the release of TSID.................33

Figure 1-13 Jenkins site that shows the unstable release due to warnings.......44

Figure 1-14 Pull request to fix the issue...45

LIST OF TABLES

Table 1-1 Table of work packages..10

Table 1-2 Table of project timetable...10

LIST OF EQUATIONS

LIST OF ABBREVIATIONS

ROS Robot Operating System

SoT Stack of tasks

Rob4Fam Robots For the Future of Aircraft Manufacturing

JRL Joint Robotics Laboratory

CNRS Centre national de la recherche scientifique (Translation from
french: National centre of the scientific research)

AIST National Institute of Advanced Industrial Science and Technology

TSID Task-Space Inverse Dynamic

1 Introduction

1.1 State of the art

In robotic, the software applications are very heterogenous and imply

expertise in various areas: control, mechatronics, computer science, computer

vision, signal processing and artificial intelligence. It results in code that is hard

to use due to its size and because of the complexity of the link between

packages. The software is written in C++ due to performance needs. Through

the years tools were developed to help robot software developers to do

continuous integration more easily. Tools to build packages were created to

maintain the dependencies. Such a system is called a superbuild.

Many laboratories created their ecosystem to develop their packages and be

able to use the code developed by the researchers. For instance, in LAAS

Robotpkg was created: http://robotpkg.openrobots.org/

Robotpkg was created to centralize the maintenance and development of code

inside the laboratory. It creates binaries that can be easily installed by external

collaborators working with the LAAS. This is realized by configuring, compiling

and installing the software on a set of Operating Systems. The currently

targeted are Unix variants: ubuntu, CentOS, Debian, NetBSD. Unfortunately,

robotpkg is not the most well-known package system in the robotics community.

In the robotics community, the main tool used is ROS.[1]

More precisely the packages I need to implement into the ROS build farm are

from the Stack of tasks (SoT). It is a GitHub organization currently managed by

the Gepetto team at LAAS. Those packages are mainly developed for efficient

motion generation applied to humanoid Robots.

The main structure of the Stack of tasks is described in this article [2]. It is a

versatile implementation of general inverse kinematics that allow dynamic

modification of the graph of computation, reference generation and task

switching. This structure is allowing to reuse software blocks and create control

framework incrementally. The challenge was to develop a framework without

developing a completely new language and provide efficient integration in

middleware like CORBA. The functionalities provided by the SoT are :

1

http://robotpkg.openrobots.org/

- Factory of entities to load classes, create/destroy entities, run scripts, triggers

computation.

- Entity that takes a string in input and output methods for dynamical models or

even walking.

- Signals that communicate between entities

- Features that receive the values of the robot and compute the Jacobian

- Tasks that use features to provide a control law

- Stack of tasks that compute those control laws

Thanks to those features researchers of the

repository succeeded to implement this method

on the robot HRP-2 to do force-control based

interaction with a human, force-control based

interaction with a human while walking and

climbing stairs.

In [3] a Real-time Nonlinear Model Predictive

Control (NMPC) is proposed for the humanoid

robot HRP-2. It generates a walking pattern

using the position and orientation of the feet.

This article improved existing methods that were time-consuming and no good

for real-time simulation thanks to observations and well-tuned parameters :

- Only one iteration of the algorithm was needed to obtain a reasonable

solution.

- Nonlinear constraints that can take into account obstacles

- A dynamical filter that takes the whole body into account

- The method proposed is based on the linear pendulum with simplified

hypotheses (Angular momentum of all the joints equal to 0; The robot Center of

Mass evolves horizontally; the normal of the contact forces have to be

collinear).

This method reduced the time of the walking pattern generator to 2ms.

2

Figure 1-1 HRP-2 robot

[3] described a humanoid walking pattern generator software that helps to port

easily walking algorithm on the HRP-2 robot. Differents walking algorithm are

implemented like toe-joint, stepping over obstacles as large as 15cm, quadratic

programs thanks to the software modularity.

Thanks to the Gepetto team expertise in humanoid robots gained

through the years of experimentation with HRP-2 robot a robot was

specified and build by PAL-Robotics, called Pyrène. The first

prototype of the TALOS series is described in [4]. This robot is

meant to push forward on the research because it offers more

possibilities than the HRP-2 robot. The robot was specified to have

better communication buses, motor size, reduction, kinematics,

range of motion and highly redundant sensors of the actuators.

Thanks to that, complex tasks could be performed in the industry.

The robot can lift 2 weight of 6 kilos with the arm stretched during

10 minutes. Some advanced were performed to climb stairs. This

experiment highlighted some compliance with the robot. In the

article, it is suggested that this could be fixed with work on the

torque control strategy.

ROS was another structure created to have broader coverage. In [5], the

authors described their philosophy of modular tool-based software

development. An efficient package system is proposed where the user specify

dependencies and then the software automatically builds the packages with the

right dependencies.

 Another approach to packages was created by GitHub where the packages are

all checked for dependencies within GitHub. However, this approach does not

apply to packages from LAAS because it is limited to JavaScript.

A lot of solutions were created at the same time to tackle the issue of poor

compatibilities between robots and “user lock-in” issues. The OROCOS project

[6] aims at creating an open software for robot control in real-time. The aim is to

cover all robots and be accepted in academia and in the industry to complement

big robot companies and help little companies to have robots that perform more

complex tasks. The system is designed to have robots from different companies

without changing all their process.

3

Figure 1-2 Pyrène

Since 2015 patents were created to tackle those issues especially from the USA

: [7]–[10]

All this package management raises also security issues. [11] described many

attacks that are possible and how to counter them. For example, if a package

with a virus inside is released and then downloaded by a user. The virus will be

installed on his machine. To avoid that only trusted software need to be

downloaded. The software maintainers also need to list all those trusted

packages.

To have a better understanding of the packages; I read papers that were

using the stack of tasks to perform various tasks. Those papers also helped the

improvement of the packages of the stack of tasks.

This article [12] focuses on a landmark-based approach with a constraint to

have at least one landmark always visible. It is using high-level motion planning

and a stack of visual servoing tasks to generate obstacle-free motion. This work

is using the Stack of Tasks packages to do motion generation with a

hierarchical inverse kinematics solver. More precisely it is using dynamic-graph,

dynamic-graph-python, sot-core, jrl-walkgen, sot-pattern-generator, dynamic-

graph-bridge. The developers ported the code on the HRP-2 robot at the

CNRS-AIST Joint French-Japanese Robotics Laboratory in Tsukuba. It was first

tested with a simulation on a 3D environment on a computer. Then the code

was ported to the real robot to test its accuracy. It highlighted a major issue on

the sensitivity of the visual processes. If there is a loss of visibility the robot

needs to stop before searching again for the landmark. As a new approach

compares to other papers on the same field; the constraint of the landmark was

directly incorporated at the planning level. The robot model is taken from new

research in neuroscience.

Agimus [13] is a manipulation planning project. The challenge is to take into

account the configuration of the object when grasped because once the object

is grasped by one or several grippers its position depending on the robot

configuration. During the grasping part, the robot needs to not self-collide and

maintain its equilibrium. The planning and execution of the manipulation task

are composed of three main steps:

4

• Estimating the configuration of the environment (position of the table and

the object)

• Planning a manipulation path from an initial position to a goal position

• Mapping a manipulation path into several sub-tasks

For the estimation of the environment, AprilTags are used on the table and the

object with the embedded camera. For the planning manipulation part, a

random method is used to find an optimal path. For the mapping part, the

researchers are relying on the SoT to generate an instantaneous whole-body

control. This method was applied to the Pyrène robot to flip a box upside down

while maintaining its equilibrium. At the time of this article, Agimus cannot track

failures and cannot recover from it if the object falls to the ground because it

needs too much computational power. When applying an open loop to control

the robot there was an error of 2 cm between the object and the gripper. It is

due to the poor calibration of the robot and the number of joints in the actuation

chain. To fix this issue a new AprilTag was added on the robot end-effector.

This article [14] shows the implementation of a torque control strategy on the

HRP-2 robot. Even if the robot is built to be position control only, this article

describes a torque control architecture to generate its motion while taking into

account contact forces. Researchers combined torque control with inverse

kinematics to have better motion tracking than position control. This improved

accuracy for the same gain. Future work is to review the model and rework it to

obtain a better fit. The SoT is used on this project; more precisely dynamic-

graph, dynamic-graph-python, sot-core, sot-dynamic-pinocchio, dynamic-graph-

bridge.

Fukushima incident showed a lack of applied cases of robots in a non-friendly

environment. On this paper [15], the task of the robot was to pull a fire hose. It

needed to pull it without self colliding. The experiments applied on an HRP-2

robot put in evidence that the fire hose was creating a drift to the yaw angle of

the robot. This drift depends on the weigh of the fire hose. To prevent failure,

future work is planned to improve the modelisation of the force of the fire hose

by putting it as an external force. Doing that the robot can self-balance thanks to

the feedback of this force. This paper uses the SoT, more precisely dynamic-

graph, dynamic-graph-python, jrl-walking and dynamic-graph-bridge.

5

This article [16] proposes to

implement power laws inspired

by humans on a humanoid

robot. The HRP-2 robot uses

this power law to walk along an

elliptic trajectory. To control the

robot it is using a closed-loop to

stay on the trajectory. The

location of the robot determine

through motion capture is used

for the closed-loop. It is

controlled like a mobile platform

with the x and y velocities and

the angular velocity applied to

the centre of mass. Constraints

were applied to guarantee the equilibrium of the robot. The centre of mass is

constrained around the centre of the support foot. The footsteps are predefined

as polyhedra for their motion. To obtain the speed a trajectory was determined

by tacking the centre between two opposite local extremum. The power-law β

was estimated thanks to nonlinear regression. The result of the experiments

showed that using a higher β, the speed could be accelerated. The usage of a

humanlike law reduced the drift on the robot around the trajectory on the

simulations. This paper uses the SoT, more precisely dynamic-graph, dynamic-

graph-python, tsid, sot-core, jrl-walking, sot-pattern-generator and dynamic-

graph-bridge.

6

Figure 1-3 Power law-based closed-loop control

1.2 Description of the LAAS-CNRS

It is a laboratory in Toulouse that is organised in 4 research axes:

 • Informatics

 • Robotics

 • Automatics

 • Nanosystems

In this laboratory, it exists 8 main departments and 26 research teams.

Figure 1-4 Description of the LAAS-CNRS research teams

Inside this laboratory, I am working with the Gepetto team.

7

1.2.1 Gepetto team

Figure 1-5 GEPETTO team

The Gepetto team is in charge of developing software for humanoid robots and

mobile robots. An outcome is the development of scientific methods to

understand and generate motion for anthropomorphic structure. Their

researches lead to the creation of robots, successful motion planning and

achievement of complex tasks. They are working in close collaboration with

other companies to develop new solutions that match the needs of the industry.

For example, they created Agimus that is a manipulation motion planner

involving multiple contacts. It automatically generates the control sequence to

execute the manipulation task while keeping the robot balanced. This planner

implements this in real-time thanks to the development made on the software

Stack-of-Tasks.

8

1.3 Description of the project: RIO (ROS in Occitanie)

1.3.1 ROSin

Rio project is funded in the frame of ROSIN a cascade

funding project. ROSin is aiming at expanding the usage of ROS in the industry

thanks to open-source software. It is a European project that unlocked more

than 3 million euros to third parties for ROS-industrial development.

1.3.2 Context

Situated in Toulouse the capital of aeronautics and space industry, big

and medium companies in aeronautics wants to reduce production cost and to

remain competitive by putting effort to robotize and digitalize their production

processes. There are 720 companies which cover around 70000 jobs around

Toulouse (before COVID 19). In this transition toward Industry 4.0, they lack

skilled workers in robotics. This is slowing down the process of robotization.

There is also a big university with more than 90000 students and engineering

schools. This ecosystem is favourable to a good dynamic of progress in

aeronautics.

1.3.3 Problem statement and ambitions

The RIO project aims to create a training centre

for robotics in Toulouse where they are aiming to train

200-300 students per year to the ROS environment.

They want ROS to be more used in the industrial field

around Toulouse and beyond.

9

1.3.4 Work plan

This project is a 1-year project that is separated into three main work-

packages as described below :

Table 1-1 Table of work packages

More precisely my contribution is Task 3.4 which is to integrate the resources of

the AIP into the ROS build farm. It consists of packages created by the LAAS

research lab to do motion planning for complex robots.

It lasts from the 18 May to the 27 November (24 weeks of work in total).

Table 1-2 Table of project timetable

10

Figure 1-6 Training centre for the RIO project

As a training project, AIP Primeca staff wants to create a test base where they

can show the power of ROS for industrial applications. They created an

assembly line with 4 different robot arms from 4 different constructors and they

want to use only ROS to control them all. My contribution will help to integrate

one more robot the TIAGO robot inside this test environment as a mobile

manipulator. To implement this mobile robot they need the software developed

during 10 years the Gepetto team to be put on ROS.

11

1.3.5 My project

For the deliverables, I need to put all the packages on the ROS build farm and

create a tutorial to maintain those packages.

I was asked to release those packages for 4 versions/distro of ROS:

• For ROS1: melodic, noetic

• For ROS2: foxy, eloquent

All the packages are listed below on GitHub

(http://stack-of-tasks.github.io/development.html) :

Putting packages on the ROS build farm means that if you have ROS installed

on your computer you will have to use:

sudo apt install ros-<ROS_version>-<Package_name>

And it will build all the needed dependencies with ROS automatically. Then

those packages can be directly used with ROS.

12

Figure 1-7 List of the SoT packages

http://stack-of-tasks.github.io/development.html

1.4 Description of the Joint Robotics Laboratory (JRL) between
CNRS (France) and AIST (Japan)

Created in 2006, JRL is an

international laboratory between

France and Japan situated in

Toulouse. It aims to improve the

autonomy of humanoid robots. In

the beginning, the laboratory in

France and Japan started to

develop software for the HRP-2

robot at the same time with 2

identical robots one in France and

one in Japan. On one hand, The

French team was in charge of the

perception, decision, and action, on

the other hand, the Japanese team was in charge of mechatronics,

teleoperation, and command.

JRL was broadcasted all around France to create innovative projects with other

French laboratories with a broader range of fields like cognitive science and

artificial intelligence.

Participants had access to the hardware, software of the robot and to the

training to learn how to use it. Thank to that they succeded to test their program

on the real robot to validate their research.

13

Figure 1-8 Experiment on the HRP-2 robot

1.5 Description of the joint laboratory between AIRBUS and
LAAS-CNRS: Rob4Fam

Rob4Fam (Robots For the Future of Aircraft Manufacturing) is a joint

laboratory of LAAS-CNRS and Airbus for the usage of robotics in aeronautics

processes inaugurated the 21 of May 2019.

Figure 1-9 Collaborators from left to right: Ali Charara (CNRS-INS2I), Liviu Nicu

(LAAS-CNRS), Christophe Giraud (CNRS Occitanie Ouest), Sébastien Boria

(Airbus, co-director of Rob4Fam), Olivier Stasse (CNRS, scientific responsible

Rob4Fam), Patrick Vigié (Airbus)

It aims to develop innovative new technologies for production in

aeronautics. It means to create adaptative robots that can work with humans

and react in real-time with the industrial environment. This joint effort will boost

the usage of robots in the industry.

I assisted the weekly and daily meetings of Rob4Fam to better understand the

needs of robotics for the aeronautic field and to see the usage of the packages I

will be implementing into ROS.

14

2 Stack of Tasks (SoT)

As described in the main paper of the SoT [2]; it is composed of packages that

work together as different tasks.

2.1 Dynamic-graph

This dynamic-graph is composed of:

• entities (graph nodes)

• signals (input/output of a graph action)

• commands (expand the capabilities of entities)

• factory (manage the nodes)

• pool (handle the instance of a node)

This is a software that is optimized to create a C++ data-flow. It is connecting

those “entities” as Simulink does. Thanks to that, it is quite easy to create a full

graph for an experiment. This package is the basis of the stack of tasks

operation. In a project, it is possible to see this graph with the dot module that

we will see is needed on the dependencies.

Here is an example of the dynamic-graph that was used on a project on the

Pyrène robot. This structure permits the researchers to do real-time control on

humanoid robots.

15

2.2 Dynamic-graph-python

It is the python binding of dynamic-graph that permit to use python to create the

dynamic-graph control. It is recommended to use Python rather than C++ to

create the graph.

2.3 Dynamic-graph-tutorial

It is a step by step tutorial to learn how to create entities on dynamic-graph. It is

a simple application of the dynamic-graph package. Dynamic-graph and

dynamic-graph-python need to be installed to follow this tutorial.

2.4 Sot-core

Sot-core is a software that is using dynamic-graph to define and solve

hierarchical tasks.

2.5 Sot-tools

It is adding entities and scripts to the SoT framework:

• Cubic interpolation

• OpenHRP joint trajectory file format (Seqplay)

• Quaternion and SE(3) computation implemented in Python

2.6 Sot-application

This package provides python initializations scripts for the Stack of Tasks.

These scripts are aimed at initializing control graphs depending on the

application:

• type of control variable (velocity, acceleration, torque)

• type of solver (equality only inequality and equality).

2.7 Task-Space Inverse Dynamics (TSID)

It is a popular control framework for humanoid robots. It is a C++ library for

optimization-based inverse dynamics control. TSID is based on the rigid multi-

body dynamics library that is also developed on the Stack of Tasks: Pinnochio.

16

2.8 Sot-dynamic-pinocchio

This software provides robot dynamic computation for dynamic-graph by using

Pinocchio. It is dependent on dynamic-graph, sot-core and Pinocchio.

2.9 Sot-pattern-generator

This software provides jrl-walkgen bindings for the dynamic-graph package. It

allows the computation of whole-body biped walk trajectories.

2.10 Sot-torque-control

Collection of dynamic-graph entities aimed at implementing torque control on

different robots. It is dependent on dynamic-graph, dynamic-graph-python, sot-

core and Pinocchio.

2.11 Sot-talos

This package provides a generic Stack Of Tasks library for the humanoid robot

Talos. This library is highly portable and can be used in various simulators, and

the robot itself.

2.12 Sot-tiago

This package provides a generic Stack Of Tasks library for the robot Tiago. This

library is highly portable and can be used in various simulators, and the robot

itself.

17

3 ROS ecosystem

ROS ecosystem is the most spread package manager for robotics.

3.1 ROS build farm

To support this ecosystem they created the ROS build farm that provides

building, binary packages, continuous integration, testing and analysis for all the

robot packages like gazebo, moveit, rviz, etc.

It is an open-source build farm that allows creating a copied build farm if there is

a need to change the source code or have better control of the packages.

3.1.1 Jenkins

To have a modular and reusable infrastructure

Jenkins is used. This is a tool for continuous

integration to coordinate all the packages of the build

farm.

The requirement to create the build farm are those three machines :

• Jenkins master: Managing the execution of jobs

• Jenkins slaves: Performing the builds

• Webserver: file hosting

There are two steps to generate a Jenkins job :

1. Generation of administrative jobs

2. Running of special jobs by the Jenkins master to generate the jobs for all

the builds

All this generation is done automatically, the only manual interaction is to

synchronize build packages into the main repository. It is done once every

month. It exists a ROS testing build farm where the developers of packages can

see if their package build successfully. This soaking area permits the

developers to work on their packages without breaking the official ROS build

farm and have a direct feedback of the stability of their packages and if there

are any warning.

18

3.1.2 Rosdistro / ROS versions

It is a GitHub repository that lists all the packages of all the distros:

https://github.com/ros/rosdistro

It is composed of folders for each ROS distro release with a file named

distribution.yaml that contains a list of all packages for the distro.

All the packages in those folders can be downloaded with this command :

$ sudo apt install ros-<your_distro>-<name_of_the_package>

When a package is added to the list of a distro release the Jenkins jobs are

automatically generated. The file index-v4.yaml that is at the source of the

GitHub determine the path to all the folders of distro releases with the status

and the version of ROS.

3.1.3 CMake

CMake is an open-source software tool for managing the build process of

software on multiplatform. It automatically tests and validates the necessary

prerequisite to build. Then it determines the dependencies between the different

projects to plan a build that is adapted to the platform used.

In a CMake project, a text file needs to be created: CmakeLists.txt. It contains

the information that CMake needs to build the project on several platforms.

Understanding the package to code the CMakeLists.txt is mandatory. It is

needed to specify the dependencies, the inclusion of the code, differentiation of

platform (Windows, macOS, Linux), and also needed libraries.

3.1.4 Catkin

Catkin is the standard to build packages used in ROS. It is a collection of

CMake macros implemented from the ROS Fuerte release. There are several

useful commands to simplify the build.

However, the packages that I need to implement are pure Cmake packages and

because of that, it cannot use those functions. There is a way to release third

party packages that are not using catkin. By creating a package.xml we can

make ROS use this package as a standard catkin package even if it is not.

19

https://github.com/ros/rosdistro

4 Methodology

Thanks to my new understanding of the SoT I am needed to implement this

world of research on ROS so that end users can apply those packages in their

projects. When searching for a method to release packages I converged on a

methodology to efficiently release those packages on the buid farm.

4.1 Understand the package dependencies

It exists dependencies for the build, the execution, the tests, and the

documentation generation. The packages I have to implement are also

interdependent so I could not release all the packages at the same time. I have

to do it incrementally.

Build Execution Tests Documentation Packages

Git ROS1:Catkin gtest doxygen dynamic-graph

Doxygen ROS2:

ament_cmake

dynamic-graph-python

eigen dynamic-graph-tutorial

boost sot-core

graphviz

roscpp

pinocchio

21

Understand the
package

dependencies
Fix warnings

Create :
-package.xml
-tracks.yaml

Release

Prerelease
Test

Because the packages are pure CMake packages there is the dependency of

the buildtool that need to be Cmake. As the Sot repositories are pure CMake

packages, it is necessary to specify CMake in the buildtool dependencies.

4.2 Fix warnings

Packages Warnings Solutions

dynamic-

graph

unused variable ‘aInt’ [-Wunused-variable] int

aInt(anet); ^~~~

Those errors were due to tests of

existence. The variables were just used

for the conditions and not in the code.

To fix those issues I used those

variables in the code :

aInt++;

abool=!abool;

adouble++;

aint++;

afloat++;

This solution is not elegant but it

silenced the warnings and the test are

still working.

unused variable ‘abool’ [-Wunused-variable]

bool abool(anet); ^~~~~

unused variable ‘aint’ [-Wunused-variable]

unsigned int aint(anet); ^~~~

unused variable ‘adouble’ [-Wunused-

variable] double adouble(anet); ^~~~~~~

unused variable ‘afloat’ [-Wunused-variable]

float afloat(anet); ^~~~~~

variable ‘res’ set but not used [-Wunused-but-

set-variable] bool res = false; ^~~

I removed this one after a discussion

with my tutor because it was not doing

what he created it for and if I fixed it with

res=!res; it crashed the tests.

dynamic-

dynamic-graph-python/_build/doc/sphinx/

index.rst:18: WARNING: autodoc: failed to

import class u'Entity' from module

u'dynamic_graph.entity';

dynamic-graph-python/_build/doc/sphinx/

index.rst:25: WARNING: autodoc: failed to

import class u'SignalBase' from module

The build is successful even though

there are 4 warnings. We can see that

those warnings are linked to Sphinx. It is

an automated documentation generator.

After discussion with the team, it

appears that they were not using it and

therefore was not needed. I deleted all

22

graph-

python

u'dynamic_graph.signal_base'

dynamic-graph-python/_build/doc/sphinx/

index.rst:30: WARNING: autodoc: failed to

import module u'dynamic_graph';

copying static files... WARNING:

html_static_path entry u' dynamic-graph-

python/_build/doc/sphinx/_static' does not

exist

build succeeded, 4 warnings

traces of sphinx in the CmakeList.txt

and the GitHub repository.

Issues to release on ROS foxy and eloquent

due to roscpp package that is not working

with ROS2 yet.

Removed roscpp from the package.xml

dynamic-

graph-

tutorial

It was the same errors on sphinx. I applied the same solution.

TSID /tsid/tests/tasks.cpp:312:34: warning:

comparison between signed and unsigned

integer expressions [-Wsign-compare]

BOOST_CHECK(constraint.rows()==robot.nv(

));

/tsid/tests/tasks.cpp: In member function

‘void

tasksTest::test_task_joint_posVelAcc_bound

s::test_method()’:

/home/rascof/tsid/tests/tasks.cpp:364:34:

warning: comparison between signed and

unsigned integer expressions [-Wsign-

compare]

 BOOST_CHECK(constraint.rows()==robot.

na());

The program is comparing signed and

unsigned integers; this warning could

lead to issues. To fix this, I needed to

choose between signed int and

unsigned int for the variables before the

comparison. I put signed int after

discussion with the team because

sometime those variables could be

equal to -1 to highlight an issue.

Eiquadprog dependency is not found Eiquadprog is not on ROS. A solution

could be to add it on the ROS build farm

or to remove the dependency only on

ROS (in discussion)

23

sot-core It was the same errors on sphinx. I applied the same solution.

In file included from

sot-core/tests/features/test_feature_generic.c

pp:34:0:

sot-core/include/sot/core/feature-

pose.hh:175:39: warning: type attributes

ignored after type is already defined [-

Wattributes] extern template class

SOT_CORE_DLLAPI

FeaturePose<SE3Representation>;

sot-core/include/sot/core/feature-

pose.hh:176:39: warning: type attributes

ignored after type is already defined [-

Wattributes] extern template class

SOT_CORE_DLLAPI

FeaturePose<R3xSO3Representation>;

Those warning are very complex

because they are due to the fact that I

compile with a compiler that doesn’t

have the understanding of those 2 lines.

I don’t have the knowledge to fix this

issue because it is a new functionality

developped on version superior to c++

2011.

In file included from sot-core/include/sot/core/

parameter-server.hh:42:0,

 from sot-core/src/tools/parameter-

server.cpp:39:

sot-core/include/sot/core/robot-utils.hh: In

member function ‘Type

dynamicgraph::sot::RobotUtil::get_parameter

(const string&) [with Type = bool]’:

sot-core/include/sot/core/robot-utils.hh:309:3:

warning: control reaches end of non-void

function [-Wreturn-type]

sot-core/include/sot/core/robot-utils.hh: In

member function ‘Type

dynamicgraph::sot::RobotUtil::get_parameter

(const string&) [with Type = double]’:

sot-core/include/sot/core/robot-utils.hh:309:3:

warning: control reaches end of non-void

function [-Wreturn-type]

sot-core/include/sot/core/robot-utils.hh: In

member function ‘Type

Add a return 0; at the end of the loop.

24

dynamicgraph::sot::RobotUtil::get_parameter

(const string&) [with Type = int]’:

/home/rascof/sot-core/include/sot/core/robot-

utils.hh:309:3: warning: control reaches end

of non-void function [-Wreturn-type]

sot-core/include/sot/core/robot-utils.hh: In

member function ‘Type

dynamicgraph::sot::RobotUtil::get_parameter

(const string&) [with Type =

std::__cxx11::basic_string<char>]’:

sot-core/include/sot/core/robot-utils.hh:309:3:

warning: control reaches end of non-void

function [-Wreturn-type]

In file included from

sot-core/src/tools/parameter-server.cpp:39:0:

sot-core/include/sot/core/parameter-

server.hh: In member function ‘Type

dynamicgraph::sot::ParameterServer::getPar

ameter(const string&) [with Type = bool]’:

sot-core/include/sot/core/parameter-

server.hh:122:14: warning: ‘ParameterValue’

may be used uninitialized in this function [-

Wmaybe-uninitialized] return ParameterValue;

sot-core/include/sot/core/parameter-

server.hh: In member function ‘Type

dynamicgraph::sot::ParameterServer::getPar

ameter(const string&) [with Type = double]’:

sot-core/include/sot/core/parameter-

server.hh:122:14: warning: ‘ParameterValue’

may be used uninitialized in this function [-

Wmaybe-uninitialized] return ParameterValue;

/home/rascof/sot-core/include/sot/core/

parameter-server.hh: In member function

‘Type

dynamicgraph::sot::ParameterServer::getPar

ameter(const string&) [with Type = int]’:

Initialize the generic variable Type with

the code :

Type ParameterValue=Type();

25

sot-core/include/sot/core/parameter-

server.hh:122:14: warning: ‘ParameterValue’

may be used uninitialized in this function [-

Wmaybe-uninitialized] return ParameterValue;

sot-tools Issues to release on ROS foxy and eloquent

due to roscpp package that is not working

with ROS2 yet.

Dependency on Roscpp for ROS1 and

rclcpp for ROS2

Some code need to be adapted to

match the requirment of rclcpp

26

4.3 Create the files

4.3.1 Package.xml

The creation of the package.xml in the upstream repository is codified with a lot

of option to add different types of dependencies.

Before the modification the original package.xml in the stack of tasks for

dynamic-graph looks like this :

The specifications for releasing a third-party package are as below :

• Have a package.xml in the source of the upstream repository on GitHub

• Have a <build_type> tag on CMake in the <export> tag at the end of the

file

• Add an install rule in the CmakeList.txt file

• Have an <exec_depend> tag on catkin in the file for ROS1 and an

<exec_depend> on ament_cmake for ROS2

For the packages in SoT it is implemented like this :

27

// format 3 to be

able to make a

difference between

ROS1 and ROS2

//exec depend on

catkin for ROS1

//exec_depend on

ament_cmake for

ROS2

//export tag with

CMake

And at the end of the CMakeLists.txt :

Generally, to add a new dependency there is just a need to put a depend on the

tag. For example, if a git dependency is missing a new line can be added:

<depend>git</depend> to fix the dependency.

The <depend> tag is equivalent to <build_depend>,<exec_depend> and

<test_depend> tag on a module.

To match the previously seen dependencies I added eigen, boost and graphviz

(that contain the dot module that was needed to print the graph in the dynamic-

graph package).

28

4.3.2 Tracks.yaml

Tracks.yaml is an important file since it helps to create branches of the project

during the release so that the package can be built on different platforms and

ROS versions.

A typical tracks.yaml file looks like this:

To add other ROS version, the same syntax is needed with only changing the

ROS version name and the ros_distro.

The actions are always the same between the packages; they are used by

bloom to create the branches and add files to build on different platforms.

devel_branch is the branch of your upstream repository where you actively

develop your code.

last_release and last_version are the last release version of the code on

Robotpkg. Here the user needs to be cautious when using the notation “v”

29

because it needs to be specified on the release_tag so that the version could

be set to auto.

release_inc is the number of releases of this version made by the user on the

build farm.

release_repo_url is the URL of the GitHub repository where the tracks.yaml file

is located.

ros_distro is the ROS version of the package to be released in. So there are 4

versions on the tracks.yaml file: noetic (ROS1), melodic(ROS1), foxy (ROS2)

and eloquent(ROS2).

vcs_type is the version control system type used for the package. Here since

the packages are on GitHub the version control type is git.

vcs_uri is the URL of the GitHub upstream repository where the developed

code is located. Tracks.yaml is an important file since it helps to create

branches of the project during the release so that the package can be built on

different platforms and ROS versions.

30

4.4 Prerelease with Docker

To not release broken packages into the build farm, it is possible to do a

prerelease by generating Jenkins jobs just like the build farm locally. If the user

releases a broken package into the build farm; it will try to build this package

every 15 minutes and use Jenkins slaves for nothing. The user will be asked to

remove the package from the distribution.yaml.

ROS maintainers created a site to generate a prerelease python program. The

user needs to specify the package he wants to release. It is even possible to put

a custom package that is not yet on the ROS build farm. This prerelease

highlight build issues and missing dependencies. Local files can be directly

modified to fix those issues before putting it into the project GitHub repository.

Figure 1-10 Interface of the website

This prerelease is performed on a docker. Docker is a simulation of a Linux

system where the desired packages can be downloaded. The link can be sent

to others to access the docker to have the same configuration. It is useful for

31

example when the user needs to create a tutorial remotely and everyone needs

to have the needed packages at the right version.

This docker download the ROS distro with the packages that are specified in

the package.xml file, three distros (version) are available on the site and it is not

yet created for ROS2 :

Figure 1-11 ROS distro available on the website for prerelease

The time it takes to do the prerelease depends on the number of test packages

and the number of dependencies to download.

4.5 Release

When everything is checked it is possible to proceed with the release. Make

sure that all the errors are fixed because if some are left the release will be

unstable and there will be a need to patch the warnings and proceed again with

the whole process.

32

5 Tutorial

It exists an official tutorial to do the releases:

https://wiki.ros.org/bloom/Tutorials/ReleaseThirdParty

I inspired myself from this tutorial and adapted it to the laboratory standard.

5.1 Release for the first time

In the official tutorial, the first chapters are on using catkin command to prepare

the release. Because our packages are not developed with catkin the release

need to be done as usual by the person in charge of releasing packages for the

CNRS.

The command to do a release is straight forward however it needs some

preparations to work. For this tutorial, we assume that the package.xml is well

created with all the good dependencies.

5.1.1 Github release repository

First, you will need to create a GitHub repository with the name :

<your_package>-release

You need to check the case: Initialize this repository with a README to

create the first commit.

Figure 1-12 Creation of a

GitHub repository for the

release of TSID

33

https://wiki.ros.org/bloom/Tutorials/ReleaseThirdParty

Then you will have to create a tracks.yaml file initiated with the distros you want

to release your package on. Like this :

It is possible to directly copy/paste the tracks.yaml file from any packages. Here

is a link with a well-created track.yaml:

https://github.com/stack-of-tasks/dynamic-graph-ros-release/blob/master/

tracks.yaml

The few changes that need to be performed are the last_release, last_version

It needs to be to the last release of the package (do not forget the "v" before the

version since it is a standard from the LAAS).

The name also needs to be updated.

The URL of the release repository that was just created (release_repo_url) and

the URL of the upstream repository where the code of the package is developed

(vcs_uri) need to be changed appropriately.

34

https://github.com/stack-of-tasks/dynamic-graph-ros-release/blob/master/tracks.yaml
https://github.com/stack-of-tasks/dynamic-graph-ros-release/blob/master/tracks.yaml

If the reader wants more information on this file it is possible to refer to this site

https://wiki.ros.org/bloom/Tutorials/FirstTimeRelease at section 4.1 configure a

Release Track.

5.1.2 Authorizing Bloom to generate pull request on the rosdistro
repository

Make sure to have a file ~/.config/bloom well initiated :

{

 "github_user": "<your-github-username>",

 "oauth_token": "<token-you-created-for-bloom>"

}

If not created you need to create it. Then log in to your GitHub account and

generate a new token with “public_repo” granted :

- Go into settings and Developer settings and then personal access tokens

35

https://wiki.ros.org/bloom/Tutorials/FirstTimeRelease

Then enter your password when asked

Then generate the token with public_repo ticked

36

Copy this code inside the bloom file. For example:

{

 "github_user": "Rascof",

 "oauth_token": "295a7188fbfc36f9eff6a63cd09a3c87c31f30fb"

}

5.1.3 Release

Release command :

bloom-release --rosdistro <ros_distro> --track <ros_distro> <package_name>

For example with TSID package:

Then it is necessary to enter the GitHub repository that was just created with .git

at the end :

https://github.com/ <repository>/<your_package_name>-release.git

You will have to enter your GitHub name and password. Make sure to have the

administrator right to modify the release repository.

The error message is okay because it is the first release on the build farm; the

package is not yet on the ROS distro distribution.yaml.

37

https://github.com/

Until there no modification was made to the release repository. Enter “y” if you

are sure of your release.

Enter your GitHub name and password with caution since if you misspell your

name or password the release will fail and you will have to start all over again.

You will be asked two times. One for creating the branches on your upstream

repository and one for adding the tags of the version of your release.

It is asking for some more information for the distribution.yaml:

• Documentation information: Enter “y”

1. VCS type: git

2. VCS url: your upstream repository were you develop your code

3. VCS version: the branch where the code is developed. Most of

the time it is devel for the packages from the SOT

• Source information: Enter “y”

1. VCS type: git

2. VCS url: your upstream repository were you develop your code

3. VCS version: the branch where the code is developed. Most of

the time it is devel for the packages from the SOT

• Turn on pull request testing: Enter “y”

• Maintenance status: Enter “y”

◦ You have 4 choices: developed, maintained, unmaintained, end-of-

life. Most of the time it will be maintained since packages from the

LAAS are still in development to fix issues on packages and improve

them.

• Press Enter if you put another maintenance status that end-of-life

If everything works well the program should ask you to do a push request to the

distribution.yaml file if not go into the issue section to see if the error is known.

38

If this work it should automatically create a pull request to the distribution.yaml

of the ROS distro that was chosen. If so go directly to the 5.1.4 section.

However, if it is not working you will see this message:

Stay on this window since you will have to access the information created by

bloom to add to the distribution.yaml.

So you will have to do the pull request manually

5.1.4 Pull request

Go to the official rosdistro GitHub repository where every version of ROS is

listed with every available package: https://github.com/ros/rosdistro

Click to the folder of the rosdistro that was just released and then on the

distribution.yaml file that is inside it.

39

https://github.com/ros/rosdistro

Click to edit the document

The Ctrl+F to search for the package just after alphabetically here in the

example it is dynamic_reconfigure.

Then add the lines that were in the last section at the right place.

Then create the pull request with information about the package.

The pull request is successfully created and a ROS deputy is informed to review

the release.

40

5.1.5 Validation of your pull request by a ROS deputy

You will have to wait before he makes the review and merges your package into

the master branch.

Once it is merged Jenkins will automatically build the package on the build farm

and the user will see if the package is stable or not.

If everything went well now your package is on the testing build farm. You can

access the test build farm thanks to this tutorial:

http://wiki.ros.org/action/show/TestingRepository?

action=show&redirect=ShadowRepository

By searching the name of the package on Jenkins it is possible to see the builds

performed with warnings and statistics:

Finally, the user will have to wait for a release from the ROS testing build farm

to the official ROS build farm. It is done once every 2 to 3 weeks.

Then congratulation the package is on the official ROS build farm !

41

http://wiki.ros.org/action/show/TestingRepository?action=show&redirect=ShadowRepository
http://wiki.ros.org/action/show/TestingRepository?action=show&redirect=ShadowRepository

5.2 Maintenance of packages

For the maintenance you need only this release command :

bloom-release --rosdistro <ros_distro> --track <ros_distro> <package_name>

Because the package is already on the build farm the process will continue and

the user will be asked his GitHub name and password.

The only modification to do is to update the version number on your package:

Then the user will have to wait until a ROS deputy validates the new version of

your package.

5.3 Technical discussion

To create a tutorial that can be adapted to the change of standard I needed to

understand the evolution of the standard of the ROS build farm and what I could

extract from the literature review. During my research, I saw that the evolution is

going in the direction to more third party packages to expand more and more

the influence of ROS and the wide range of applications. The standard is still in

active maintenance and can change rapidly. There is a need to stay tuned on

new versions to watch for incremental change on this site:

https://github.com/ros-infrastructure/rep

This is mandatory to keep your packages on the build farm.

42

https://github.com/ros-infrastructure/rep

6 Issues

6.1 First release of dynamic-graph

6.1.1 Warnings

For the package to be stable on the build farm it needs to be without any

warnings. However, it is not the case for the packages released on robotpkg.

Developers at the laboratory don’t have the time and motivation to fix small

issues that don’t influence the successful build of packages. I needed to

understand the warnings and make changes where it was needed. I discussed

those warnings during the meetings and when everything was agreed I made a

pull request to put the changes on GitHub.

The warnings were different for each package.

43

Understand the
package

dependencies
Fix warnings

Create :
-package.xml
-tracks.yaml

Prerelease
Test

Release
Time delay

Unstable
Release

Sub-modules

Not the same standard

Missing dependencies

Figure 1-13 Jenkins site that shows the unstable release due to warnings

6.1.2 Missing dependencies

If during the analysis of the dependencies I missed some the prerelease

process highlight the missing dependencies with error messages.

For example, when doing the prerelease for dynamic-graph I have this error :

 Dot: not found

The solution to solve this issue is to add Graphviz dependency because it

contains the dot module.

So I added <depend>graphviz</depend> in package.xml.

6.1.3 Submodule issues

When I was testing the release on dynamic-graph for the first time it was not

working; I had an error linked to the sub-modules of GitHub.

Submodules are pointing to other GitHub repositories and if the repository is

cloned with this option: --recurse-submodules it download the submodules with

the package.

For instance to clone dynamic-graph with its submodules:

git clone --recurse-submodules --branch=devel https://github.com/stack-of-tasks/dynamic-graph

44

Most of the packages are using submodules to rely on CMake macros

developed by the Joint Japanese-French Laboratory. The 2 main submodules

used by the laboratory for their packages are a shared CMake submodule and a

Travis submodule for continuous integration. Shared CMake submodule

simplifies CMake mechanism to have a uniform release of packages. The

Travis submodule contains build script to be used by Travis during continuous

integration.

To add a submodule the code line is:

git submodule add <github_link>

This command is adding the GitHub link as a submodule and is creating

a .gitmodules that list all the modules added.

However, if to remove a submodule, only the local file is removed from the

upstream repository it is still listed in the .gitmodules. Because of that, the

program is still searching for the submodule even though it has been deleted.

That was the error that was occurring. To fix it I removed the three lines that

were pointing on an unexisting submodule:

Figure 1-14 Pull request to fix the issue

45

6.1.4 Different standard between LAAS-CNRS and ROS

Naming Standards

The naming style is different between the ROS build farm and the packages

from the laboratory. When there is a package with more than one word it is

separated by an underscore (_) in the ROS build farm and with hyphens (-) in

the laboratory. For the first package, they requested me to change dynamic-

graph into dynamic_graph. Most of the packages from the build farm are with

underscores and the ROS build farm maintainer argued that it should be

underscored to not break the build farm. However, some of the packages on the

build farm are with hyphens like the hpp-fcl package that is also developed by

the LAAS-CNRS.

If we have to change every name into packages from the laboratory it would

take time to do the changes on every package name developed for 10 years

and it would be error-prone.

After discussing with the ROS developer he agreed on the changes but was

asking help on other ROS deputies. It took 20 days for a ROS deputy to give his

help. During this time I advanced on other packages to fix the warnings and the

dependencies so that they will be ready to launch when dynamic-graph will be

released. He explained that the naming rule of the underscore is mandatory for

ROS packages so that the ROS tool can handle it. However, dynamic-graph is

not an official ROS package; it is a third-party one. Thanks to this difference the

package is not using any ROS messages and therefore should not cause any

issues in the future.

Plugin management

The Stack of Tasks is using a plugin system that is different from the ROS build

farm. The plugins are copied inside /opt/ros/melodic/lib/

However, we do not have access to write in this file inside the build farm. The

most long term solution would be to change how the SoT behaves with plugins

to match ros plugin behaviour. It would have been too much time consuming

and error-prone therefore we choose another option. This option is to write the

plugins elsewhere only on the buildcfarm by using patches. Patches are

46

modifications that apply only on upstream code that are upload on the build-

farm

6.1.5 Time delay

For each release step, it took more or less time to complete.

For the release of the packages for robot pkg, it takes approximately 1 to 2 days

to complete because I can contact Guillhem Saurel directly. He is the engineer

in charge of checking and releasing the packages. A release on robotpkg is

mandatory before doing a release on the ROS build farm. The release of

dynamic-graph-python was a little longer since other issues needed to be fixed

in the same release.

As seen in the previous section it took 23 days to put dynamic-graph on the

build farm because of standard difference. The release of a new fixed version of

dynamic-graph and for other ROS version took between 1 day to 15 days.

To summarize the time of each step for each package for each version from the

date I published the changes:

Name of package ROS version Release from the

laboratory

Release from the

build farm

Dynamic-graph melodic Less than 1 day 23 days

Dynamic-graph(fixed)

melodic

15 days

4 days

noetic 1 day

foxy 1 day

eloquent 9 days

Dynamic-graph-python melodic 4 days Less than 1 day

noetic 1 day

Dynamic-graph-tutorial melodic 11 minutes 1.5 days

noetic 1 day

Eiquadprog melodic 6 days 2 days

noetic

47

foxy

eloquent

TSID melodic 4 days 1 hour 30 minutes

noetic

sot-core melodic 17 days 1 day

noetic

The delays are variables and depend on many things. It can be caused by

people that are on holidays and can not see the release request or if the

solution needs to have some changes, it needs some time to discuss it to be

better.

The first packages are now on the build farm so the time delay will be much

shorter for other packages. There will be no more discussion about the package

naming standards and it will be the end of vacation for most of the workers.

Build farm errors and delays

For dynamic-graph-tutorial, my package was put on hold because there were

two faulty packages released by other developers of the ROS community that

need to be fixed before syncing the build farm. When a case like this appears a

discussion is open on the ROS discourse to keep the developers informed:

https://discourse.ros.org/t/preparing-for-melodic-sync-2020-08-19/15988

Double release of a package in robotpkg

The process to release a package is optimized to incrementally add

modification and test however if you want to do a minor release it is not made

for this. To unlock my work Guilhem SAUREL tried to do the release with the

package.xml file in the upstream repository however due to the complexity; this

release broke the Stack of Tasks. I needed to wait for the major release to have

the package ready.

6.2 Technical discussion

It was hard to anticipate the errors in the original package since it should have

been error-free because it was on the build farm before.

48

https://discourse.ros.org/t/preparing-for-melodic-sync-2020-08-19/15988

I was not expecting the time delays on the releases. Now I see that the

dependencies are complex and need a global comprehension to work with

since a mistake can break everything.

49

7 Conclusion and future work

This internship helped me to understand the research field and its

objectives in term of development and way of working. I understood what was

behind the scene of ROS build farm and all the work that is needed to release

packages so that it is simpler to download for end-users.

It will also help the researchers at the laboratory because the first packages are

on the ROS build farm and it will take little time for them to continue to maintain

those packages. RIO project can now use some of the packages of the SoT on

ROS and when all the packages will be released it will be possible to implement

the TIAGO robot on the training platform.

For future work, I need to validate my tutorials with the researchers and finish to

implement the last packages. When every package will be on the build farm I

will be able to test them on the real TIAGO robot.

51

REFERENCES

[1] A. N. Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully
Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, “ROS: an open-source
Robot Operating System.”

[2] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile
generalized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” 2009 Int. Conf. Adv. Robot. ICAR
2009, 2009.

[3] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and P.
Souères, “A Reactive Walking Pattern Generator Based on Nonlinear
Model Predictive Control,” IEEE Robot. Autom. Lett., vol. 2, no. 1, pp. 10–
17, 2017, doi: 10.1109/LRA.2016.2518739.

[4] O. Stasse et al., “TALOS : A new humanoid research platform targeted for
industrial applications,” 2018.

[5] D. E. Domenichelli, S. Traversaro, L. Muratore, A. Rocchi, F. Nori, and L.
Natale, “A Build System for Software Development in Robotic Academic
Collaborative Environments,” Int. J. Semant. Comput., vol. 13, no. 2, pp.
185–205, 2019, doi: 10.1142/S1793351X19400087.

[6] H. Bruyninckx, “Open robot control software: the OROCOS project,” IEEE
Int. Conf. Robot. Automotion, 2001.

[7] J. A. Forbes, J. D. Stone, S. Parthasarathy, M. J. Toutonghi, and M. V.
Sliger, “Software package management,” vol. 2, no. 12, 2002, [Online].
Available: https://patents.google.com/patent/US6381742B2/en.

[8] S. Clara and S. Clara, “(12) United States Patent,” vol. 1, no. 12, 2004.

[9] M. A. Us, F. Schwichtenberg, M. A. Us, and J. Yasskin, “(12) Patent
Application Publication (10) Pub. No.: US 2007/0101197 A1,” vol. 1, no.
19, 2007.

[10] A. N. A. Carolina, R. D. C. Gross, and A. P. C. Seca, “Patent Application
Publication,” npm, Inc.; Isaac Z. Schlueter, pp. 1–5, 2015.

[11] J. Cappos and J. Samuel, “Package management security,” Univ. Arizona
…, pp. 1–20, 2008, [Online]. Available:
http://www.cs.arizona.edu/people/jsamuel/papers/TR08-02.pdf.

[12] E. Y. Jean-Bernard Hayet, Claudia Esteves, Gustavo Arechavaleta-
Servin, Olivier Stasse, “HUMANOID LOCOMOTION PLANNING FOR
VISUALLY-GUIDED TASKS,” 2014.

53

[13] A. Nicolin, J. Mirabel, S. Boria, O. Stasse, and F. Lamiraux, “Agimus: A
new framework for mapping manipulation motion plans to sequences of
hierarchical task-based controllers,” Proc. 2020 IEEE/SICE Int. Symp.
Syst. Integr. SII 2020, pp. 1022–1027, 2020, doi:
10.1109/SII46433.2020.9026288.

[14] A. Del Prete, N. Mansard, O. E. Ramos, O. Stasse, and F. Nori,
“Implementing Torque Control with High-Ratio Gear Boxes and Without
Joint-Torque Sensors,” Int. J. Humanoid Robot., vol. 13, no. 1, 2016, doi:
10.1142/S0219843615500449.

[15] I. Ramirez-alpizar et al., “Motion Generation for Pulling a Fire Hose by a
Humanoid Robot,” ICHR, 2016.

[16] M. Karklinsky et al., “Robust human-inspired power law trajectories for

humanoid HRP-2 robot,” BioRob, 2019.

54

	1 Introduction
	1.1 State of the art
	1.2 Description of the LAAS-CNRS
	1.2.1 Gepetto team

	1.3 Description of the project: RIO (ROS in Occitanie)
	1.3.1 ROSin
	1.3.2 Context
	1.3.3 Problem statement and ambitions
	1.3.4 Work plan
	1.3.5 My project

	1.4 Description of the Joint Robotics Laboratory (JRL) between CNRS (France) and AIST (Japan)
	1.5 Description of the joint laboratory between AIRBUS and LAAS-CNRS: Rob4Fam

	2 Stack of Tasks (SoT)
	2.1 Dynamic-graph
	2.2 Dynamic-graph-python
	2.3 Dynamic-graph-tutorial
	2.4 Sot-core
	2.5 Sot-tools
	2.6 Sot-application
	2.7 Task-Space Inverse Dynamics (TSID)
	2.8 Sot-dynamic-pinocchio
	2.9 Sot-pattern-generator
	2.10 Sot-torque-control
	2.11 Sot-talos
	2.12 Sot-tiago

	3 ROS ecosystem
	3.1 ROS build farm
	3.1.1 Jenkins
	3.1.2 Rosdistro / ROS versions
	3.1.3 CMake
	3.1.4 Catkin

	4 Methodology
	4.1 Understand the package dependencies
	4.2 Fix warnings
	4.3 Create the files
	4.3.1 Package.xml
	4.3.2 Tracks.yaml

	4.4 Prerelease with Docker
	4.5 Release

	5 Tutorial
	5.1 Release for the first time
	5.1.1 Github release repository
	5.1.2 Authorizing Bloom to generate pull request on the rosdistro repository
	5.1.3 Release
	5.1.4 Pull request
	5.1.5 Validation of your pull request by a ROS deputy

	5.2 Maintenance of packages
	5.3 Technical discussion

	6 Issues
	6.1 First release of dynamic-graph
	6.1.1 Warnings
	6.1.2 Missing dependencies
	6.1.3 Submodule issues
	6.1.4 Different standard between LAAS-CNRS and ROS
	6.1.5 Time delay

	6.2 Technical discussion

	7 Conclusion and future work

