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Stability analysis of an ordinary differential equation interconnected with the reaction-diffusion equation

Introduction

Robust stability of linear systems has been widely studied since several decades [START_REF] Ebihara | S-variable approach to LMI-based robust control[END_REF][START_REF] Postlethwaite | Robust control applications[END_REF][START_REF] Scherer | Theory of robust control[END_REF]. In general, the objectives therein are to ensure the stability and performances of linear systems interconnected to several classes of uncertainties, such as unknown parameters [START_REF] Gahinet | Affine parameter-dependent lyapunov functions and real parametric uncertainty[END_REF][START_REF] Oliveira | Parameterdependent lmis in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via lmi relaxations[END_REF] or nonlinearities [START_REF] Campo | Robust control of processes subject to saturation nonlinearities[END_REF][START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]. These contributions, among many others provide milestones to assess robust stability for a wide class of problems. Among these problems, a lot of attention has been paid to the case of linear systems subject to time-delay uncertainties [START_REF] Fridman | Introduction to time-delay systems: Analysis and control[END_REF][START_REF] Gouaisbaut | Delay-dependent robust stability of time delay systems[END_REF]. Nevertheless, this class of systems differs notably from the afore mentioned classes of uncertainties since introducing a delay modify the nature of the systems, giving rise to a class of infinite-dimensional systems. Recently, a lot of attention has indeed been paid to time-delay systems [START_REF] Fridman | Introduction to time-delay systems: Analysis and control[END_REF][START_REF] Zhang | Overview of recent advances in stability of linear systems with time-varying delays[END_REF], and many dedicated tools related to accuracy integral inequalities have been provided [START_REF] Gu | An integral inequality in the stability problem of timedelay systems[END_REF][START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF][START_REF] Peet | Positive forms and stability of linear time-delay systems[END_REF][START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF][START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF]. More interestingly, these tools have been recently used to assess robust stability of linear systems subject to uncertain-ties arising from the interconnection with partial differential equations [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF][START_REF] Gahlawat | A convex sum-of-squares approach to analysis, state feedback and output feedback control of parabolic PDEs[END_REF][START_REF] Tang | Stability analysis of a singularly perturbed coupled ODE-PDE system[END_REF], to cite only a few.

The interest of this latter class of infinite-dimensional systems is motivated by a wide class of applications such as in pharmaceutic or chemistry fields [START_REF] Eisenhofer | A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria[END_REF] and dedicated tools have been provided. Stability analysis of a sole partial differential equation is already a hard task [START_REF] Curtain | Transfer functions of distributed parameter systems: A tutorial[END_REF][START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF][START_REF] Evans | Partial Differential Equations[END_REF]. The study is generally carried out by studying the eigenvalues of the infinite dimensional operator if the boundary condition are suitable or by the design of a Lyapunov functional [START_REF] Katz | Constructive method for finitedimensional observer-based control of 1D parabolic PDEs[END_REF][START_REF] Selivanov | Boundary observers for a reaction-diffusion system under time-delayed and sampleddata measurements[END_REF]. The task becomes drastically complicated if one considers that the partial differential equation is coupled to a finitedimensional system via its boundary conditions. The calculations of the eigenvalues is obviously non longer relevant and the Lyapunov functional should be adapted to take into account the ordinay differential equation. It is tough task, which has only been studied recently as [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF][START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF][START_REF] Das | Robust analysis of uncertain ODE-PDE systems using PI multipliers, PIEs and LPIs[END_REF][START_REF] Gahlawat | A convex sum-of-squares approach to analysis, state feedback and output feedback control of parabolic PDEs[END_REF][START_REF] Tang | Stability analysis of a singularly perturbed coupled ODE-PDE system[END_REF]. To rule on the stability of interconnected ordinary-partial differential equations, input-tostate [START_REF] Karafyllis | Input-to-state stability for PDEs[END_REF][START_REF] Logemann | Circle criteria, small-gain conditions and internal stability for infinite-dimensional systems[END_REF][START_REF] Mironchenko | Input-To-State Stability of Infinite-Dimensional Systems: Recent Results and Open Questions[END_REF] or Lyapunov [START_REF] Fridman | Delay-dependent exponential stability of linear distributed parameter systems[END_REF][START_REF] Prieur | Stability of switched linear hyperbolic systems by Lyapunov techniques[END_REF][START_REF] Wang | An LMI approach to stability analysis of reaction-diffusion Cohen-Grossberg neural networks concerning Dirichlet boundary conditions and distributed delays[END_REF] approaches can be followed. For generic cases, quadratic constraints and complete Lyapunov functionals lead to criteria solved by semi-definite programming [START_REF] Das | Representation and stability analysis of PDE-ODE coupled systems[END_REF][START_REF] Shivakumar | A generalized LMI formulation for input-output analysis of linear systems of ODEs coupled with PDEs[END_REF][START_REF] Valmorbida | Stability Analysis for a Class of Partial Differential Equations via Semidefinite Programming[END_REF].

The objectives of this paper is to provide stability conditions for a class of linear ordinary differential equation coupled with a reaction-diffusion partial differential equation using Robin boundary conditions, the latter being considered for instance in [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF]. It is worth noting that stability of this class of systems can be studied using the generic approach provided in [START_REF] Das | Robust analysis of uncertain ODE-PDE systems using PI multipliers, PIEs and LPIs[END_REF]. However, this generic solution sometimes lacks of having a deep understanding of the system. Hence, the contribution here is strongly related to [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF], even though a reaction term was not considered and other boundary conditions were selected. The novelty of this paper comes from the model transformation arising from the Fourier-Legendre coefficients and remainder, which eases the expression and understanding of the analysis. In particular, Bessel and Wirtinger inequalities can be efficiently rewritten so that its application is simpler compared to [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF]. A quadratic Lyapunov function based on this transformed model is provided and leads to an efficient and scalable stability conditions expressed in terms of a linear matrix inequality. Numerical results demonstrate the effectiveness of this approach.

Notations : In this paper, the set of positive integers, real numbers, real positive numbers, matrices of size n × m and of symmetric positive definite matrices of size n are respectively denoted N, R R ≥0 , R n×m and S n + , respectively. The identiy matrix of dimension n is denoted by I n and diag(d 0 , ..., d n ) stands for the diagonal matrix whose coefficients are (d 0 , ..., d n ). For any matrix M , M i,j refers to the coefficient located on the i th row and j th column. For any square matrix M , the transpose matrix is denoted M , H(M ) = M + M and M 0 means that M is symmetric positive definite. For any square matrix M , σ(M ) denotes the spectrum of M . Moreover, if M is symmetric, σ(M ) and σ(M ) stands for its lower and larger eigenvalues, respectively. For any scalars a < b, the space of square integrable functions L 2 (a, b; R) is associated to the scalar product z 1 |z 2 = b a z 1 (θ)z 2 (θ)dθ and the induced norm z 2 = b a z 2 (θ)dθ. Set H 1 (a, b; R) stands for the set of functions z, such that z and ∂ θ z are in L 2 (a, b; R). With a light abuse of notations, the notation for inner product z 1 |z 2 will be used when z 1 and z 2 are vector functions. Therefore, for any 

z 1 in L 2 (a, b; R n ) and z 2 in L 2 (a, b; R m ),
         ẋ(t) = Ax(t) + B z(t,a) z(t,b) , ∂ t z(t, θ) = (δ∂ θθ + λ)z(t, θ), ∀θ ∈ (a, b), ∂ θ z(t,a) ∂ θ z(t,b) = Cx(t) + D z(t,a) z(t,b) , (1a) (1b) (1c) 
for any t ∈ R ≥0 . Coefficients δ > 0, λ ∈ R, and matrices

A ∈ R nx×nx , B ∈ R nx×2 , C ∈ R 2×nx
and diagonal matrix D ∈ R 2×2 are supposed to be constant and known.

Remark 1 Under the initial condition (x(0), z(0, θ)) in R nx ×H 1 (a, b; R) which verify the compatibility condition imposed by the boundary condition (1c), system (1) is well-posed. It admits a continuous and unique solution

(x(t), z(t, θ)) in R nx × H 1 (a, b; R).
The proof follows the same arguments highlighted in [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF] working on reactiondiffusion equation with Robin boundary conditions.

Because of the interconnection with the dynamics (1a), the boundary condition of the reaction-diffusion process is no more null nor periodic [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]. Therefore, the eigenbasis of the overall coupled system cannot be given analytically and the behavior of the system becomes difficult to describe. There is then a need for providing efficient tools for the stability analysis of such a class of ordinarypartial differential systems.

Equilibrium point

As a first step and before studying stability of such a class of systems, it is important to characterize the equilibrium of (1). More particularly, one has to understand under which condition, system (1) admits a unique equilibrium. This is formulated in the next proposition.

Proposition 2 System (1) admits a unique equilibrium, (x, z) = (0, 0) if and only if

det Ω = det A BE λ C DE λ -E λ F λ = 0, (2) 
where matrices E λ and F λ are given by

       E λ = cosh( λa) sinh( λa) cosh( λb) sinh( λb) , F λ = 0 λ λ 0 , if λ < 0; E λ = [ a 1 b 1 ], F λ = [ 0 0 1 0 ], if λ = 0, E λ = cos( λa) sin( λa) cos( λb) sin( λb) , F λ = 0 λ -λ 0 , if λ > 0,
with λ = |λ|/δ.

Proof : Let (x, z) be an equilibrium of system (1), meaning that the following relations hold.

         Ax + B z(a) z(b) = 0, (δ∂ θθ + λ)z(θ) = 0, ∂ θ z(a) ∂ θ z(b) = C x + D z(a) z(b) . (3a) (3b) (3c)
By integration of the differential equation (3b), one obtains that

z(θ) =        [ cosh( √ |λ|/δθ) sinh( √ |λ|/δθ) ][ α β ], if λ < 0, [ θ 1 ][ α β ], if λ = 0, [ cos( √ |λ|/δθ) sin( √ |λ|/δθ) ][ α β ], if λ > 0,
where [ α β ] in R 2 to be fixed. By computing ∂ θ z and re-injecting this expression into (3a) and (3c) it yields Ω x α β = 0. Hence, system (3) admits a unique solution leading to the trivial equilibrium (x, z) = (0, 0) if and only if det(Ω) = 0.

Objectives

The aim of this paper is to propose a stability criterion for the equilibrium point (0, 0) expressed in terms of linear matrix inequalities. From Lyapunov arguments, one provides a scalable stability analysis for these coupled ordinary-partial differential equations. More specifically, the analysis is elaborated thanks to an accurate Lyapunov functional, which is build using Legendre polynomials. Contrary to a previous study provided in [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF], the analysis will be performed through the introduction of the remainder of Fourier-Legendre series, allowing to simplify some technical aspects. Indeed, the use of the remainder allows to rewrite the Wirtinger and the Bessel-Legendre inequalities in a simpler manner compared to the formulation presented in [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF] or [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF]. Wirtinger's inequality can also be adapted and transformed even if that is neither one nor two boundary conditions set to zero here.

Legendre remainder and inequalities

After recalling the basics of Legendre polynomials and some of their properties, this section provides the definition of the Fourier-Legendre coefficients and remainder. In a last step, several relevant inequalities will be presented.

Fourier-Legendre coefficients and remainder

Legendre polynomials, denoted as l k for any positive integer k, are given by (see [START_REF] Gautschi | Orthogonal polynomials, quadrature, and approximation: computational methods and software[END_REF])

l k (θ) = k i=0 (-1) i (k + i)! (i!) 2 (k -i)! b -θ b -a i , ∀θ ∈ [a, b].
(4) The orthogonal family {l k } k∈N spans L 2 (a, b; R). For writing comfort, let introduce the notation n for any n ∈ N, which gathers the n + 1 first Legendre polynomials in vector formulation, that is

n (θ) = l 0 (θ) . . . l n (θ) ∈ R n+1 . (5) 
Recall also some important properties of Legendre polynomials [START_REF] Gautschi | Orthogonal polynomials, quadrature, and approximation: computational methods and software[END_REF], that will be useful along the paper, that are

n | n = I -1 n , ∂ θ n (θ) = L n I n n (θ), (6) 
where matrices L n and I n are square matrices of dimension n + 1, given by

I n = 1 b -a diag(1, . . . , 2n + 1), L i,j n = 1 -(-1) i+j , j ≤ i -1, 0, j ≥ i, ∀i, j ∈ 1, n + 1 .
(7) Functions n can be easily evaluated at the boundaries of the interval [a, b] and are given by

n (a) = [ 1 -1 ... (-1) n ] , n (b) = [ 1 1 ... 1 ] . (8) 
In addition to the previous properties, one emphasizes a property on the matrix L n , which will be of the highest interest in the next developments.

Proposition 3 For any integer n, matrix L n verifies equality

L n + L n = B 0 n C 0 n
, where B 0 n and C 0 n are given by

B 0 n = [ -n (a) n(b) ], C 0 n = [ n(a) n (b) ] . (9) 
Note that matrices B 0 n and C 0 n will be widely used in the following section. As stated in the previous section, we will defined here the main features of this paper in the following definition.

Definition 1 For any signal z ∈ L 2 (a, b; R) and for integer n in N, we define

• the (n + 1) first Fourier-Legendre coefficients of z as

ζ n = n |z ∈ R n+1 , (10) 
• the associated Fourier-Legendre remainder of z at order n as

w n (θ) = z(θ) -n (θ)I n ζ n , ∀θ ∈ [a, b]. (11) 
It is worth noting that w n is also in L 2 (a, b; R). The main interest for introducing this remainder is stated in the two following lemmas.

Lemma 4 For any n in N, the Fourier-Legendre remainder is orthogonal to n , i.e. n |w n = 0.

Proof : Thanks to the orthogonality (6) of the Legendre polynomials, re-injecting the definition of w n into n |w n yields

n |w n = n |z -n | n I n n |z = n |z -n |z = 0,
which concludes the proof.

Lemma 5 The norm of Fourier-Legendre remainder is given by

w n 2 = z 2 -ζ n I n ζ n , ∀n ∈ N. (12) 
Proof : Re-injecting the definition of w n into w n yields

w n 2 = z -n (θ)I n ζ n 2 = z 2 -2 n |z I n ζ n +ζ n I n n | n I n ζ n .
Thanks to the orthogonality (6) of the Legendre polynomials and recalling that n | n = I -1 n , one can conclude the proof. In the next paragraphs, Bessel and Wirtinger inequalities are rewritten in an adequate manner to reduce their conservatism.

Bessel inequalities

Let us first recall the Bessel-Legendre inequality as stated in [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF].

Lemma 6 For any signal z ∈ L 2 (a, b; R) and for any integer n in N, the Bessel inequality states that the following inequality holds for any integer n in N

z 2 ≥ ζ n I n ζ n . ( 13 
)
Proof : The proof is directly derived from [START_REF] Fridman | Delay-dependent exponential stability of linear distributed parameter systems[END_REF], where the norm of the remainder w n 2 is positive. The application of Lemma 6 on Fourier-Legendre remainder yields w n 2 ≥ n |w n I n n |w n = 0, since the remainder is orthogonal to the n + 1 first Legendre polynomials, i.e. n |w n = 0. The interest of using the remainder is related to the formulation of this inequality when it is applied to ∂ θ w n that is presented in the next lemma.

Lemma 7 For any function z in H 1 (a, b; R) and any integer n in N, the remainder w n of the Fourier-Legendre series of z verifies

∂ θ w n 2 ≥ 1 b -a w n (a) w n (b) Ψ n+2 w n (a) w n (b) . ( 14 
)
where, for all integer k, matrix Ψ k is given by

Ψ k = k 2 (-1) k k (-1) k k k 2 . ( 15 
)
Proof : The proof is given in Appendix A.1.

It is important to note that the previous lemma allows to express a lower bound on the derivative with respect to θ of the Fourier-Legendre series, which only depends on the evaluation of w n at the boundary of the interval [a, b]. This bound does not depends on the n + 1 first Fourier-Legendre coefficients, since we have chosen to consider the remainder only, which is orthogonal to the n + 1 first Legendre polynomial. This will simplify many technical calculations in the next developments.

Modified Wirtinger's inequality

In the literature [START_REF] Kammler | A first course in Fourier analysis[END_REF], Wirtinger's inequalities refer to inequalities which estimate the integral of the derivative function with the help of the integral of the function. These inequalities have been widely used in the context of analysis, control and observation of time-delay and reaction-diffusion systems [START_REF] Selivanov | Boundary observers for a reaction-diffusion system under time-delayed and sampleddata measurements[END_REF]. In this paper, one uses Wirtinger's inequality of second type, stated as follows.

Lemma 8 For any function

z in H 1 (a, b; R), satisfying z(a) = z(b) = 0, inequality ∂ θ z ≥ π b-a z holds.
Proof : The proof is omitted but can be found in [START_REF] Kammler | A first course in Fourier analysis[END_REF]. The next lemma is an application of the previous Wirtinger inequality to the Fourier-Legendre remainder without requiring any assumption on the boundary conditions on w n .

Lemma 9 For any function z in H 1 (a, b; R) and for any n ≥ 1, the Fourier-Legendre remainder w n of z verifies

∂ θ w n 2 - π b -a 2 w n 2 ≥ 1 b -a w n (a) w n (b) Φ n w n (a) w n (b) , (16) 
where

Φ n = Ψ n + 2π 2 4n 2 -1 2n (-1) n+1 * 2n . ( 17 
)
with Ψ n defined in [START_REF] Gautschi | Orthogonal polynomials, quadrature, and approximation: computational methods and software[END_REF].

Proof : The proof is given in Appendix A.2.

The main advantages of using the Fourier-Legendre remainder appears in the simple formulation of the lower bound in [START_REF] Gouaisbaut | Delay-dependent robust stability of time delay systems[END_REF]. It is important to stress that the orthogonality condition n |w n = 0 drastically simplifies the expression and the calculations. Otherwise the expression would be much more complicated and difficult to employ.

Notice that the previous lemma can be refined when n ≥ 2 usign the first Wirtinger inequality (under the assumption that z(a) = z(b) and b a z(θ)dθ = 0). Even though it reduces the conservatism of the inequality, it has a minor impact on the numerical results.

Modeling of an augmented system

Consider (x, z), solution to system (1) and, as previously, let denote ζ n (t), for any n ∈ N, the n + 1 first Fourier-Legendre coefficients of z(t) as

ζ n (t) = n |z(t) ∈ R n+1 . (18) 
These coefficients extract finite-dimensional information from z(t) and we are able to define its Fourier-Legendre remainder as follows

w n (t, θ) = z(t, θ)-n (θ)I n ζ n (t), ∀(t, θ) ∈ R ≥0 ×[a, b]. (19) 
We have seen in Lemma 4 that this remainder is orthogonal to the n + 1 first Legendre polynomials for any t ≥ 0. The objective of this section is to rewrite system (1) by exhibiting a finite-dimensional part composed of the ξ n = [ ζn x ] and an infinite-dimensional part represented by the Fourier-Legendre remainder w n . This is formulated in the following proposition.

Proposition 10 If (x, z) is a solution of system (1), then (ξ n = [ ζn x ], w n ) defined by ( 18),( 19) verifies the following dynamics

                         ξn (t) = [ An Bn ] ξn(t) wn(t,a) wn(t,b) , ∂ t w n (t, θ) = (δ∂ θθ +λ)w n (t, θ) -δ n (θ)I n [En Fn ] ξn(t) wn(t,a) wn(t,b) , ∂ θ wn(t,a) ∂ θ wn(t,b) = [ Cn Dn ] ξn(t) wn(t,a) wn(t,b) . (20a) (20b) (20c)
where the matrices that defined this model are given by

A n = A n δB 0 n C BC 0 n I n A , B n = δB 1 n B , C n = C 1 n I n C , D n = D, E n = B 0 n C 1 n I n C , F n = B 1 n , (21) 
with matrices B 0 n and C 0 n are given in [START_REF] Eisenhofer | A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria[END_REF] and

A n = δ(L n I n ) 2 +δB 0 n C 1 n I n +λI n+1 , B 1 n = B 0 n D -L n I n B 0 n , C 1 n = DC 0 n -C 0 n I n L n . (22) 
Proof : For the sake of simplicity, the time argument in the following equations is omitted. The proof is also split into three parts referring to each equation in [START_REF] Katz | Constructive method for finitedimensional observer-based control of 1D parabolic PDEs[END_REF].

Proof of (20c): The objective is to rewrite the boundary condition (1c) on z as boundary conditions on w n as in (20c), for any solution (x, z) of ( 1) and any n in N. Using equation ( 19), one get

z(a) z(b) = n (a) n (b) I n ζ n + wn(a) wn(b) = C 0 n I n ζ n + wn(a) wn(b) , (23) 
where matrix C 0 n is defined in [START_REF] Eisenhofer | A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria[END_REF]. Furthermore, differentiating w n in [START_REF] Fridman | Introduction to time-delay systems: Analysis and control[END_REF] with respect to θ and evaluating it at θ ∈ {a, b} yields

∂ θ z(a) ∂ θ z(b) = C 0 n I n L n I n ζ n + ∂ θ wn(a) ∂ θ wn(b) . ( 24 
)
The injection of equations ( 23), [START_REF] Mironchenko | Input-To-State Stability of Infinite-Dimensional Systems: Recent Results and Open Questions[END_REF] into the boundary

condition ∂ θ z(a) ∂ θ z(b) = Cx + D z(a)
z(b) leads to the result

∂ θ wn(a) ∂ θ wn(b) = (DC 0 n -C 0 n I n L n ) C 1 n I n ζ n + Cx + D wn(a) wn(b) = [ C 1 n In C ] Cn [ ζn x ] ξn + D Dn wn(a) wn(b) . (25) 
Proof of (20a): Let us now derive an expression of the dynamics of the Fourier-Legendre coefficients. Recalling that ζ n = n |z and that z verifies (1b), we have

ζn = n |∂ t z = n |(δ∂ θθ + λ)z = δ n |∂ θθ z + λζ n .
Two successive integrations by parts on the first term of the last expression yields

ζn = δ(L n I n ) 2 +λI n+1 ζ n +δB 0 n ∂ θ z(a) ∂ θ z(b) -δL n I n B 0 n z(a) z(b) , (26) 
with B 0 n defined in [START_REF] Eisenhofer | A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria[END_REF]. Reinjecting equations ( 23),( 24) into the previous dynamics [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF] 

G n = (L n I n ) 2 + B 0 n C 0 n I n L n I n -L n I n B 0 n C 0 n I n = (L n I n ) 2 , (27) with 
where the last equality is obtained by recalling from Proposition 3 that B 0 n C 0 n = L n +L n . Then, by imposing the boundary condition [START_REF] Oliveira | Parameterdependent lmis in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via lmi relaxations[END_REF] to the previous dynamics and by reorganization of the terms, we get

ζn = δ(L n I n ) 2 +δB 0 n C 1 n I n +λI n+1 An ζ n +δB 0 n Cx +δ (B 0 n D -L n I n B 0 n ) B 1 n wn(a)
wn(b) .

(

) 28 
To obtain (20a), it remains to add the dynamics of the ordinary differential equation given by (1a). The dynamics of the finite dimensional state are therefore

ζn ẋ ξn = An δB 0 n C BC 0 n In A An [ ζn x ] ξn + δB 1 n B Bn wn(a) wn(b) , (29) 
which corresponds to the first equation (20a).

Proof of (20b): To do so, differentiating with respect to time of the Fourier-Legendre remainder w n given in [START_REF] Fridman | Introduction to time-delay systems: Analysis and control[END_REF] yields ∂ t w n (θ) = ∂ t z(θ)n (θ)I n ζn . From one side, we need to express ∂ t z using the new system of coordinates, that is reflected in

∂ t z(θ) = δ∂ θθ z(θ) + λz(θ) = (δ∂ θθ +λ)w n (θ)+ δ∂ θθ n (θ)+λ n (θ) I n ζ n .
Applying twice the differentiation rules of the Legendre polynomials in [START_REF] Das | Robust analysis of uncertain ODE-PDE systems using PI multipliers, PIEs and LPIs[END_REF], the previous expression resumes to

∂ t z(θ) = (δ∂ θθ +λ)w n (θ)+ n (θ)I n δ(L n I n ) 2 +λI n+1 ζ n . ( 30 
) On the other side, the expression of ζn given by ( 28) leads to

n (θ)I n ζn = n (θ)I n δ(L n I n ) 2 +λI n+1 ζ n +δ n (θ)I n   B 0 n [ C 1 n In C ] En [ x ζn ] + B 1 n Fn wn(a) wn(b)   . (31) 
Thus, collecting equations ( 30), [START_REF] Selivanov | Boundary observers for a reaction-diffusion system under time-delayed and sampleddata measurements[END_REF] and simplifying the term δ(L n I n ) 2 +λI n+1 ζ n , one recognizes the partial differential equation verified by w n .

Remark 1 In the new formulation, the reactiondiffusion equation, which characterizes the dynamics of w n , is similar to the one of the original system. The only difference relies on the last term in (20b). Even though, it seems at a first sight more complicated, it will appear in the next developments that this new term has no impact on the complexity of the analysis. This is due to the orthogonality of this new term and the Fourier-Legendre remainder, w n .

Stability analysis

This section is dedicated to the construction of a numerical tractable stability criterion for system (1), based on Lemmas 7 and 9 and highly related to the properties of the augmented model [START_REF] Katz | Constructive method for finitedimensional observer-based control of 1D parabolic PDEs[END_REF].

Theorem 11 For a given integer n ≥ 1 and any λ, δ satisfying λ δ < π 2 (b-a) 2 , if there exists P n ∈ S nx+n+1 + such that the linear matrix inequality [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF] is satisfied, where matrices Ψ n , Φ n are defined in (15), A n , B n , C n and D n in [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF] and

Ξ n = H(P n A n ) P n B n + C n G * H(D n G)-(1-κ)Ψn+2+κΦn b-a ≺ 0,
G = 1 2 -1 0 0 1 , κ = max 0, λ δ b -a π 2 .
Then, under condition det(Ω) = 0 from Proposition 2, the equilibrium (0, 0) is globally exponentially stable for system (1), in the sense of the R nx × L 2 (a, b; R) norm.

Proof : For the sake of simplicity and compactness, we omit the time argument in the following proof. Consider the Lyapunov candidate functional

V n (x, z) = ξ n P n ξ n V a n (x,z) + (2δ) -1 w n 2 V b n (x,z) . (33) 
Assuming P n 0, it suffices to take positive real numbers 1 = min 1 2n+1 σ(P n ), 1 2δ and 2 = max σ(P n ), 1 2δ to obtain

V n (x, z) ≥ 1 x x + ζ n I n ζ n + w n 2 , V n (x, z) ≤ 2 x x + ζ n I n ζ n + w n 2 ,
which can be rewritten from Lemma 5 as

1 x x + z 2 ≤ V n (x, z) ≤ 2 x x + z 2 . ( 34 
)
It remains showing that there exists 3 > 0 such that

Vn (x, z) ≤ -3 x x + z 2 . (35) 
From one part, differentiation V a n along the trajectories of the system (1) using the dynamics given by (20) yields

Va n (x, z) = ξ n H(P n A n )ξ n + 2ξ n P n B n wn(a) wn(b) .
From the other part, from the dynamics of the Fourier-Legendre remainder in [START_REF] Katz | Constructive method for finitedimensional observer-based control of 1D parabolic PDEs[END_REF], we recover

Vb n (x, z) = b a ∂ θθ w n (θ)w n (θ)dθ + λ δ b a w 2 n (θ)dθ.
Using integrations by parts, Vb n is decomposed in

L 2 (a, b; R) norms of signals w and ∂ θ w as Vb n (x, z)= λ δ w n 2 -∂ θ w n 2 +2 ∂ θ wn(a) ∂ θ wn(b) G wn(a) wn(b) , = λ δ w n 2 -∂ θ w n 2 +2 ξn wn(a) wn(b) C n D n G wn(a) wn(b) .
Thereafter, the proof is split into two cases. If λ < 0, the proof is a straightforward application of Bessel-Legendre inequality at order n + 1 given by [START_REF] Gahlawat | A convex sum-of-squares approach to analysis, state feedback and output feedback control of parabolic PDEs[END_REF]. Indeed, we have 2 and for any sufficiently small ρ > 0 such that (1 -κ -ρ) > 0. By application of the Bessel-Legendre inequality given by ( 14), we finally get

Vb n (x, z) ≤ -ρ w n 2 + 2 ξn wn(a) wn(b) C n D n G wn(a) wn(b) -1 b-a wn(a) wn(b) ((1-κ-ρ)Ψ n+2 +(κ + ρ)Φ n ) wn(a)
wn(b) . If the linear matrix inequality Ξ n ≺ 0, it is possible to take ρ small enough such that -|σ(Ξ n )|+ ρ b-a σ(Ψ n+2 ) < 0. Then, there exists 3 = min (ρ, |σ(Ξ n )|) > 0 such that the derivatives Vn satisfies [START_REF] Tang | Stability analysis of a singularly perturbed coupled ODE-PDE system[END_REF]. One concludes by application of Lyapunov theorem on the exponential stability of the equilibrium point.

Merged with Va

Remark 12

Having matrix A n Hurwitz is a necessary condition for the feasibility of linear matrix inequality Ξ n ≺ 0 where Ξ n is defined by [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF].

Remark 13 Notice also that (33) is also a Lyapunov functional for system [START_REF] Katz | Constructive method for finitedimensional observer-based control of 1D parabolic PDEs[END_REF].

Remark 14 Matrices E n and F n are not involved in the linear matrix inequality condition of Theorem 11. This is due to the orthogonality of the last term in (20b) as already mentioned in Remark 1.

Remark 15 Compared to generalized linear matrix inequality formulations based on sum of squares [START_REF] Das | Representation and stability analysis of PDE-ODE coupled systems[END_REF][START_REF] Shivakumar | A generalized LMI formulation for input-output analysis of linear systems of ODEs coupled with PDEs[END_REF], the result is condensed, more appropriate to the application and numerical burden are improved. This optimization is due to the transformations made to obtain our linear matrix inequality, highly correlated to the system under study. Nevertheless, to the best of our knowledge, we are not aware of stability condition adressing this particular class of system and this is the reason why no further comparison is presented.

Application to numerical examples

In this section, we will consider two examples, both of them with δ = 1 and b -a = 1. The other parameters are given below. 

A ∈ [-6, 6], B = [ 10 0 ], C = [ 1 0 ], D = 0, (36) A = -1, B = [ K 0 ], K ∈ [10 -2 , 10 4 ]. ( 37 
)
First of all, Fig. 1 illustrates the stability areas with respect to parameters A, K, λ provided by Theorem 11.

For each example, an indication on the range of reaction parameter λ which stabilizes the interconnected system is obtained. For instance, Fig. 1a and1c show that the stability region is λ < 0 for K → 0. Indeed, the case . In addition, Fig. 1b emphasizes that system [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF] with A = -1 is stable for any λ < 2.15. Similar calculations could be done when modifying parameter δ, but is not presented here.

Secondly, it is worth noticing that neither stability of the ordinary differential equation nor of the partial differen-tial equation is required for the stability of the overall interconnection. For Example 17, it is even possible to have both equation independently unstable and a stable interconnection (see A = 1, B = 10 and λ = 1).

Lastly, the feasibility of linear matrix inequality ( 32) is determined with feasp function and tested from n = 1 to n = 4. Notice that higher orders are required to detect stable area with large values of parameter K.

Conclusions

In this paper we have presented a scalable stability condition for a linear finite-dimensional system interconnected to a reaction-diffusion partial differential equation with Robin boundary conditions. The method emphasizes the role of the Fourier-Legendre coefficients and of the remainder of the Fourier-Legendre series. Thanks to this modeling, an efficient formulation of the Wirtinger and Bessel inequalities has been provided leading then, together with a Lyapunov approach, to a stability test expressed in terms of linear matrix inequalities. This approach has been evaluated on several numerical example demonstrating its potential.

Further works would consider for instance other boundary conditions and more generally other partial differential equations. Another direction for future research would be to introduce delay through a transport differential equation. Last but not least, this paper can be seen as a milestone for the design of finite-dimensional stabilizing controllers for the reaction-diffusion equation, enlightening even more the role of the Fourier-Legendre coefficients.

A Appendix

A.1 Proofs of Lemma 7

Proof : Thanks to the Bessel-Legendre inequality (13) at order n + 1, the following inequality holds

∂ θ w n 2 ≥ l n+1 |∂ θ w n I n+1 l n+1 |∂ θ w n . (A.1)
In addition, performing an integration by parts yields

l n+1 |∂ θ w n = l n+1 (b)w n (b)-l n+1 (a)w n (a)-∂ θ l n+1 |w n .
Then, we recall that w n is the remainder of the Fourier-Legendre series, which is consequently orthogonal to the n+1 first Legendre polynomials. Therefore, the last term of the previous equality is zero ( ∂ θ l n+1 |w n = 0) so that Similarly, recalling that l n-1 (a) = -l n (a) = (-1) n-1 , we have wn (a) = w n (a) -w n (a) = 0. Therefore, Wirtinger's inequality [START_REF] Kammler | A first course in Fourier analysis[END_REF] states that, under the two previous boundary conditions, the inequality ∂ θ wn ≥ π b-a wn holds. It remains to commute ∂ θ wn and wn . We first note that 

∂ θ w n 2 ≥ wn ( 

notation z 1

 1 |z 2 stands for the matrix defined by b a z 1 (θ)z 2 (θ)dθ. Consequently, the following equality holds z 1 |z 2 = z 2 |z 1 . 2 Problem formulation 2.1 System modeling Consider the following system composed of an ordinary differential equation interconnected with a reactiondiffusion partial differential equation with Robin bound-ary conditions

  leads to ζn = (δG n +λI n+1 ) ζ n +δB 0 n ∂ θ wn(a) ∂ θ wn(b) -δL n I n B 0 n wn(a) wn(b) ,

Vn,

  Assuming Ξ n ≺ 0 and taking 3 = min |λ| δ , |σ(Ξ n )| , one obtains[START_REF] Tang | Stability analysis of a singularly perturbed coupled ODE-PDE system[END_REF], which leads to Theorem 11.For the case 0 ≤ λ < δ π 2 (b-a) 2 , we apply first the adapted Wirtinger inequality[START_REF] Gouaisbaut | Delay-dependent robust stability of time delay systems[END_REF] on the Fourier-Legendre remainder w n to obtainVb n (x, z) ≤ -(1-κ-ρ) ∂ θ w n 2 -

  n , it gives that Vn is upper bounded by -ρ w n 2 + ξn wn(a) wn(b) Ξ n ξn wn(a) wn(b) + ρ b -a wn(a) wn(b) Ψ n+2 wn(a) wn(b) .

Example 16 D

 16 Consider system (1) with = 0 and K ∈ [10 -2 , 10 4 ]. Example 17 Consider system (1) with

  Example 17 with (36).(c) Example 17 with[START_REF] Valmorbida | Stability Analysis for a Class of Partial Differential Equations via Semidefinite Programming[END_REF].

Fig. 1 .

 1 Fig. 1. Stability regions guaranteed by Theorem 11 for several values of order n. K = 0 amounts to have the partial differential equation in cascade with the ordinary differential equation. Then, the eigenvalues of the coupled system are contained into σ(A) ∪ λ -kδ π b-a

(- 1 ) 2 ) 2 - 2 ,

 1222 a) wn(b) -l n+1 (a) l n+1 (b) I n+1 -l n+1 (a) l n+1 (b) wn(a) wn(b) .To complete the proof, it remains to compute the components of the matrix. Hence, let us first note that l n+1 (a)I n+1 l n+1 (a) = l n+1 (b)I n+1 l n+1 (b). Then, performing the matrix multiplication, we havel n+1 (a)I n+1 l n+1 (a) = l n+1 (a)I n+1 l n+1 (b) = n+1 k=0 k (2k+1) b -a = (-1) n+1 (n + 2) b -a ,which yields the result.A.2 Proof of Lemma 9Proof : The proof follows the idea developed in[START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF], to derive the Wirtinger-based integral inequality. Let us introduce function wn , defined for all θ ∈ [a, b] such that∂ θ wn (θ) = ∂ θ w n (θ)-l n-1 (θ)I n-1 l n-1 |∂ θ w n .Integrating this function and performing several simplifications, function wn is given bywn (θ) = w n (θ) -l n-1 (θ)( wn(b)-(-1)n wn(a) -l n (θ)( wn(b)-(-1) n+1 wn(a) has to verify the assumptions of the Wirtinger inequality in Lemma 8, that is wn (a) = wn (b) = 0. Recalling that l n-1 (b) = l n (b) = 1, evaluating wn (b) writes wn (b) = w n (b)-wn(b)-(-1) n wn(a) wn(b)-(-1) n+1 wn(a) = w n (b) -w n (b) = 0.

∂ θ wn 2 = 2 ,= ∂ θ w n 2 - 2 θ wn 2 = ∂ θ w n 2 2 ,+= w n 2 + 4 )

 222222224 ∂ θ w n (θ)-l n-1 (θ)I n-1 l n-1 |∂ θ w n l n-1 |∂ θ w n I n-1 l n-1 |∂ θ w n + l n-1 |∂ θ w n I n-1 l n-1 |l n-1 I n-1 l n-1 |∂ θ w n .Using the ortogonality of the Legendre polynomials given in (6), we have∂ θ wn 2 = ∂ θ w n 2 -2 l n-1 |∂ θ w n I n-1 l n-1 |∂ θ w n + l n-1 |∂ θ w n I n-1 I -1 n-1 I n-1 l n-1 |∂ θ w n , = ∂ θ w n 2 -l n-1 |∂ θ w n I n-1 l n-1 |∂ θ w n .The last term of the previous expression has already been computed in (A.1), and we have∂ ) . (A.3)On the other hand, the norm of wn can be computed as follows. For the sake of simplicity, let us introduce the following notationsω n,a = wn(b)-(-1) n wn(a) 2 , ω n,b = wn(b)-(-1) n+1 wn(a)so that we havewn 2 = w n (θ)-l n-1 (θ)ω n,a -l n (θ)ω n,b 2 , = w n 2 -2 l n-1 |w n ω n,a -2 l n |w n ω n,bDue to the orthogonality the Legendre polynomials and of n |w n = 0, the previous equality simplifies to wn2 The proof is concluded by merging the two expressions given in (A.3) and (A.4) into ∂ θ wn ≥ π b-a wn .