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Stability analysis of an ordinary differential equation

interconnected with the reaction-diffusion equation

Mathieu Bajodek a,?, Alexandre Seuret a, Frédéric Gouaisbaut a

aLAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Abstract

This paper deals with the analysis reaction diffusion equation, which can be found in many applications such as in pharmaceutic
or chemistry fields. The particularity of the present paper is to study the interconnection of this class of infinite-dimensional
systems to a finite-dimensional systems. In this situation, stability is not straightforward to assess any more and one needs to
look for dedicated tools to provide accurate numerical tests. Here, the objective is to provide a Lyapunov analysis leading to
efficient and scalable stability criteria. This is made possible thanks to the Legendre orthogonal basis which allows building
accurate Lyapunov functionals. Indeed this functional is expressed thanks to the state of the finite-dimensional system, the
first Fourier-Legendre coefficients and the remainder of the Fourier-Legendre expansion of the infinite-dimensional state. Using
this representation, efficient formulation of the Bessel and Wirtinger inequalities are provided leading to sufficient stability
conditions expressed in terms of linear matrix inequalities. Numerical examples finally illustrate the accuracy and the potential
of the stability result.

Key words: Partial differential equations, Lyapunov stability analysis, Wirtinger and Bessel inequalities, Linear matrix
inequalities.

1 Introduction

Robust stability of linear systems has been widely stud-
ied since several decades [8,28,30]. In general, the objec-
tives therein are to ensure the stability and performances
of linear systems interconnected to several classes of un-
certainties, such as unknown parameters [13,25] or non-
linearities [3,36]. These contributions, among many oth-
ers provide milestones to assess robust stability for a
wide class of problems. Among these problems, a lot of
attention has been paid to the case of linear systems
subject to time-delay uncertainties [11,16]. Nevertheless,
this class of systems differs notably from the afore men-
tioned classes of uncertainties since introducing a delay
modify the nature of the systems, giving rise to a class
of infinite-dimensional systems. Recently, a lot of atten-
tion has indeed been paid to time-delay systems [11,39],
and many dedicated tools related to accuracy integral in-
equalities have been provided [17,26,27,32,33]. More in-
terestingly, these tools have been recently used to assess
robust stability of linear systems subject to uncertain-
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ties arising from the interconnection with partial differ-
ential equations [2,14,35], to cite only a few.

The interest of this latter class of infinite-dimensional
systems is motivated by a wide class of applications
such as in pharmaceutic or chemistry fields [9] and
dedicated tools have been provided. Stability analy-
sis of a sole partial differential equation is already a
hard task [4,5,10]. The study is generally carried out
by studying the eigenvalues of the infinite dimensional
operator if the boundary condition are suitable or by
the design of a Lyapunov functional [20,31]. The task
becomes drastically complicated if one considers that
the partial differential equation is coupled to a finite-
dimensional system via its boundary conditions. The
calculations of the eigenvalues is obviously non longer
relevant and the Lyapunov functional should be adapted
to take into account the ordinay differential equation.
It is tough task, which has only been studied recently
as [1,2,6,14,35]. To rule on the stability of intercon-
nected ordinary-partial differential equations, input-to-
state [19,23,24] or Lyapunov [12,29,38] approaches can
be followed. For generic cases, quadratic constraints and
complete Lyapunov functionals lead to criteria solved
by semi-definite programming [7,34,37].
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The objectives of this paper is to provide stability con-
ditions for a class of linear ordinary differential equa-
tion coupled with a reaction-diffusion partial differential
equation using Robin boundary conditions, the latter
being considered for instance in [21]. It is worth noting
that stability of this class of systems can be studied us-
ing the generic approach provided in [6]. However, this
generic solution sometimes lacks of having a deep under-
standing of the system. Hence, the contribution here is
strongly related to [2], even though a reaction term was
not considered and other boundary conditions were se-
lected. The novelty of this paper comes from the model
transformation arising from the Fourier-Legendre coef-
ficients and remainder, which eases the expression and
understanding of the analysis. In particular, Bessel and
Wirtinger inequalities can be efficiently rewritten so that
its application is simpler compared to [2]. A quadratic
Lyapunov function based on this transformed model is
provided and leads to an efficient and scalable stability
conditions expressed in terms of a linear matrix inequal-
ity. Numerical results demonstrate the effectiveness of
this approach.

Notations : In this paper, the set of positive integers,
real numbers, real positive numbers, matrices of size
n × m and of symmetric positive definite matrices of
size n are respectively denoted N, R R≥0, Rn×m and
Sn+, respectively. The identiy matrix of dimension n is
denoted by In and diag(d0, ..., dn) stands for the diag-
onal matrix whose coefficients are (d0, ..., dn). For any
matrix M , M i,j refers to the coefficient located on the
ith row and jth column. For any square matrix M , the
transpose matrix is denoted M>, H(M) = M + M>

and M � 0 means that M is symmetric positive defi-
nite. For any square matrix M , σ(M) denotes the spec-
trum of M . Moreover, if M is symmetric, σ(M) and
σ̄(M) stands for its lower and larger eigenvalues, respec-
tively. For any scalars a < b, the space of square inte-
grable functions L2(a, b;R) is associated to the scalar

product 〈z1|z2〉=
∫ b
a
z1(θ)z2(θ)dθ and the induced norm

‖z‖2 =
∫ b
a
z2(θ)dθ. Set H1(a, b;R) stands for the set of

functions z, such that z and ∂θz are in L2(a, b;R). With
a light abuse of notations, the notation for inner prod-
uct 〈z1|z2〉 will be used when z1 and z2 are vector func-
tions. Therefore, for any z1 in L2(a, b;Rn) and z2 in
L2(a, b;Rm), notation 〈z1|z2〉 stands for the matrix de-

fined by
∫ b
a
z1(θ)z>2 (θ)dθ. Consequently, the following

equality holds 〈z1|z2〉 = 〈z2|z1〉>.

2 Problem formulation

2.1 System modeling

Consider the following system composed of an ordinary
differential equation interconnected with a reaction-
diffusion partial differential equation with Robin bound-

ary conditions


ẋ(t) = Ax(t) +B

[
z(t,a)
z(t,b)

]
,

∂tz(t, θ) = (δ∂θθ + λ)z(t, θ), ∀θ ∈ (a, b),[
∂θz(t,a)
∂θz(t,b)

]
= Cx(t) +D

[
z(t,a)
z(t,b)

]
,

(1a)

(1b)

(1c)

for any t ∈ R≥0. Coefficients δ > 0, λ ∈ R, and matrices
A ∈ Rnx×nx , B ∈ Rnx×2, C ∈ R2×nx and diagonal ma-
trix D ∈ R2×2 are supposed to be constant and known.

Remark 1 Under the initial condition (x(0), z(0, θ)) in
Rnx×H1(a, b;R) which verify the compatibility condition
imposed by the boundary condition (1c), system (1) is
well-posed. It admits a continuous and unique solution
(x(t), z(t, θ)) in Rnx ×H1(a, b;R). The proof follows the
same arguments highlighted in [21] working on reaction-
diffusion equation with Robin boundary conditions.

Because of the interconnection with the dynamics (1a),
the boundary condition of the reaction-diffusion process
is no more null nor periodic [22]. Therefore, the eigenba-
sis of the overall coupled system cannot be given analyt-
ically and the behavior of the system becomes difficult
to describe. There is then a need for providing efficient
tools for the stability analysis of such a class of ordinary-
partial differential systems.

2.2 Equilibrium point

As a first step and before studying stability of such a
class of systems, it is important to characterize the equi-
librium of (1). More particularly, one has to understand
under which condition, system (1) admits a unique equi-
librium. This is formulated in the next proposition.

Proposition 2 System (1) admits a unique equilibrium,
(x̄, z̄) = (0, 0) if and only if

det Ω = det

[
A BEλ

C DEλ − EλFλ

]
6= 0, (2)

where matrices Eλ and Fλ are given by


Eλ =

[
cosh(λ̃a) sinh(λ̃a)

cosh(λ̃b) sinh(λ̃b)

]
, Fλ =

[
0 λ̃
λ̃ 0

]
, if λ < 0;

Eλ = [ a 1
b 1 ], Fλ = [ 0 0

1 0 ], if λ = 0,

Eλ =
[

cos(λ̃a) sin(λ̃a)

cos(λ̃b) sin(λ̃b)

]
, Fλ =

[
0 λ̃
−λ̃ 0

]
, if λ > 0,

with λ̃ =
√
|λ|/δ.
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Proof : Let (x̄, z̄) be an equilibrium of system (1), mean-
ing that the following relations hold.


Ax̄+B

[
z̄(a)
z̄(b)

]
= 0,

(δ∂θθ + λ)z̄(θ) = 0,[
∂θ z̄(a)
∂θ z̄(b)

]
= Cx̄+D

[
z̄(a)
z̄(b)

]
.

(3a)

(3b)

(3c)

By integration of the differential equation (3b), one ob-
tains that

z̄(θ) =


[ cosh(

√
|λ|/δθ) sinh(

√
|λ|/δθ) ][ αβ ], if λ < 0,

[ θ 1 ][ αβ ], if λ = 0,

[ cos(
√
|λ|/δθ) sin(

√
|λ|/δθ) ][ αβ ], if λ > 0,

where [ αβ ] in R2 to be fixed. By computing ∂θ z̄ and
re-injecting this expression into (3a) and (3c) it yields

Ω
[
x̄
α
β

]
= 0. Hence, system (3) admits a unique solution

leading to the trivial equilibrium (x̄, z̄) = (0, 0) if and
only if det(Ω) 6=0. �

2.3 Objectives

The aim of this paper is to propose a stability criterion
for the equilibrium point (0, 0) expressed in terms of lin-
ear matrix inequalities. From Lyapunov arguments, one
provides a scalable stability analysis for these coupled
ordinary-partial differential equations. More specifically,
the analysis is elaborated thanks to an accurate Lya-
punov functional, which is build using Legendre poly-
nomials. Contrary to a previous study provided in [2],
the analysis will be performed through the introduction
of the remainder of Fourier-Legendre series, allowing to
simplify some technical aspects. Indeed, the use of the re-
mainder allows to rewrite the Wirtinger and the Bessel-
Legendre inequalities in a simpler manner compared to
the formulation presented in [2] or [33]. Wirtinger’s in-
equality can also be adapted and transformed even if
that is neither one nor two boundary conditions set to
zero here.

3 Legendre remainder and inequalities

After recalling the basics of Legendre polynomials and
some of their properties, this section provides the defi-
nition of the Fourier-Legendre coefficients and remain-
der. In a last step, several relevant inequalities will be
presented.

3.1 Fourier-Legendre coefficients and remainder

Legendre polynomials, denoted as lk for any positive
integer k, are given by (see [15])

lk(θ) =

k∑
i=0

(−1)i
(k + i)!

(i!)2(k − i)!

(
b− θ
b− a

)i
, ∀θ ∈ [a, b].

(4)
The orthogonal family {lk}k∈N spans L2(a, b;R). For
writing comfort, let introduce the notation `n for any
n ∈ N, which gathers the n+ 1 first Legendre polynomi-
als in vector formulation, that is

`n(θ) =
[
l0(θ) . . . ln(θ)

]>
∈ Rn+1. (5)

Recall also some important properties of Legendre poly-
nomials [15], that will be useful along the paper, that are

〈`n|`n〉 = I−1
n , ∂θ`n(θ) = LnIn`n(θ), (6)

where matrices Ln and In are square matrices of dimen-
sion n+ 1, given by

In =
1

b− a
diag(1, . . . , 2n+ 1),

Li,jn =

{ (
1− (−1)i+j

)
, j ≤ i− 1,

0, j ≥ i,
∀i, j ∈ J1, n+ 1K.

(7)
Functions `n can be easily evaluated at the boundaries
of the interval [a, b] and are given by

`n(a) = [ 1 −1 ... (−1)n ]
>
, `n(b) = [ 1 1 ... 1 ]

>
. (8)

In addition to the previous properties, one emphasizes a
property on the matrix Ln, which will be of the highest
interest in the next developments.

Proposition 3 For any integer n, matrix Ln verifies
equality Ln +L>n = B0

nC0
n, where B0

n and C0
n are given by

B0
n = [−`n(a) `n(b) ], C0

n = [ `n(a) `n(b) ]
>
. (9)

Note that matrices B0
n and C0

n will be widely used in the
following section.
As stated in the previous section, we will defined here the
main features of this paper in the following definition.

Definition 1 For any signal z ∈ L2(a, b;R) and for in-
teger n in N, we define

• the (n+ 1) first Fourier-Legendre coefficients of z as

ζn = 〈`n|z〉 ∈ Rn+1, (10)
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• the associated Fourier-Legendre remainder of z at or-
der n as

wn(θ) = z(θ)− `>n (θ)Inζn, ∀θ ∈ [a, b]. (11)

It is worth noting thatwn is also in L2(a, b;R). The main
interest for introducing this remainder is stated in the
two following lemmas.

Lemma 4 For any n inN, the Fourier-Legendre remain-
der is orthogonal to `n, i.e. 〈`n|wn〉 = 0.

Proof : Thanks to the orthogonality (6) of the Legen-
dre polynomials, re-injecting the definition of wn into
〈`n|wn〉 yields

〈`n|wn〉=〈`n|z〉 − 〈`n|`n〉 In 〈`n|z〉=〈`n|z〉 − 〈`n|z〉=0,

which concludes the proof. �

Lemma 5 The norm of Fourier-Legendre remainder is
given by

‖wn‖2 = ‖z‖2 − ζ>n Inζn, ∀n ∈ N. (12)

Proof : Re-injecting the definition ofwn into ‖wn‖ yields

‖wn‖2 = ‖z − `>n (θ)Inζn‖2

= ‖z‖2−2 〈`n|z〉>Inζn+ζ>n In 〈`n|`n〉 Inζn.

Thanks to the orthogonality (6) of the Legendre poly-
nomials and recalling that 〈`n|`n〉 = I−1

n , one can con-
clude the proof. �
In the next paragraphs, Bessel and Wirtinger inequali-
ties are rewritten in an adequate manner to reduce their
conservatism.

3.2 Bessel inequalities

Let us first recall the Bessel-Legendre inequality as
stated in [2].

Lemma 6 For any signal z ∈ L2(a, b;R) and for any
integer n in N, the Bessel inequality states that the fol-
lowing inequality holds for any integer n in N

‖z‖2 ≥ ζ>n Inζn. (13)

Proof : The proof is directly derived from (12), where
the norm of the remainder ‖wn‖2 is positive. �
The application of Lemma 6 on Fourier-Legendre re-

mainder yields ‖wn‖2 ≥ 〈`n|wn〉> In 〈`n|wn〉 = 0, since
the remainder is orthogonal to the n + 1 first Legendre
polynomials, i.e. 〈`n|wn〉 = 0.

The interest of using the remainder is related to the for-
mulation of this inequality when it is applied to ‖∂θwn‖
that is presented in the next lemma.

Lemma 7 For any function z in H1(a, b;R) and any
integer n in N, the remainder wn of the Fourier-Legendre
series of z verifies

‖∂θwn‖2 ≥
1

b− a

[
wn(a)

wn(b)

]>
Ψn+2

[
wn(a)

wn(b)

]
. (14)

where, for all integer k, matrix Ψk is given by

Ψk =
[

k2 (−1)kk

(−1)kk k2

]
. (15)

Proof : The proof is given in Appendix A.1. �

It is important to note that the previous lemma allows
to express a lower bound on the derivative with respect
to θ of the Fourier-Legendre series, which only depends
on the evaluation of wn at the boundary of the interval
[a, b]. This bound does not depends on the n + 1 first
Fourier-Legendre coefficients, since we have chosen to
consider the remainder only, which is orthogonal to the
n+1 first Legendre polynomial. This will simplify many
technical calculations in the next developments.

3.3 Modified Wirtinger’s inequality

In the literature [18], Wirtinger’s inequalities refer to
inequalities which estimate the integral of the derivative
function with the help of the integral of the function.
These inequalities have been widely used in the context
of analysis, control and observation of time-delay and
reaction-diffusion systems [31]. In this paper, one uses
Wirtinger’s inequality of second type, stated as follows.

Lemma 8 For any function z in H1(a, b;R), satisfying
z(a) = z(b) = 0, inequality ‖∂θz‖ ≥ π

b−a‖z‖ holds.

Proof : The proof is omitted but can be found in [18]. �
The next lemma is an application of the previous
Wirtinger inequality to the Fourier-Legendre remain-
der without requiring any assumption on the boundary
conditions on wn.

Lemma 9 For any function z inH1(a, b;R) and for any
n ≥ 1, the Fourier-Legendre remainder wn of z verifies

‖∂θwn‖2 −
(

π

b− a

)2

‖wn‖2≥
1

b− a

[
wn(a)

wn(b)

]>
Φn

[
wn(a)

wn(b)

]
,

(16)
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where

Φn = Ψn +
2π2

4n2 − 1

[
2n (−1)n+1

∗ 2n

]
. (17)

with Ψn defined in (15).

Proof : The proof is given in Appendix A.2. �

The main advantages of using the Fourier-Legendre re-
mainder appears in the simple formulation of the lower
bound in (16). It is important to stress that the orthog-
onality condition 〈`n|wn〉 = 0 drastically simplifies the
expression and the calculations. Otherwise the expres-
sion would be much more complicated and difficult to
employ.

Notice that the previous lemma can be refined when
n ≥ 2 usign the first Wirtinger inequality (under the

assumption that z(a) = z(b) and
∫ b
a
z(θ)dθ = 0). Even

though it reduces the conservatism of the inequality, it
has a minor impact on the numerical results.

4 Modeling of an augmented system

Consider (x, z), solution to system (1) and, as previously,
let denote ζn(t), for any n ∈ N, the n + 1 first Fourier-
Legendre coefficients of z(t) as

ζn(t) = 〈`n|z(t)〉 ∈ Rn+1. (18)

These coefficients extract finite-dimensional information
from z(t) and we are able to define its Fourier-Legendre
remainder as follows

wn(t, θ) = z(t, θ)−`>n (θ)Inζn(t), ∀(t, θ) ∈ R≥0×[a, b].
(19)

We have seen in Lemma 4 that this remainder is orthogo-
nal to the n+1 first Legendre polynomials for any t ≥ 0.
The objective of this section is to rewrite system (1)
by exhibiting a finite-dimensional part composed of the
ξn = [ ζnx ] and an infinite-dimensional part represented
by the Fourier-Legendre remainder wn. This is formu-
lated in the following proposition.

Proposition 10 If (x, z) is a solution of system (1),
then (ξn = [ ζnx ], wn) defined by (18),(19) verifies the
following dynamics

ξ̇n(t)=[ An Bn ]

[
ξn(t)[
wn(t,a)
wn(t,b)

] ]
,

∂twn(t, θ)=(δ∂θθ+λ)wn(t, θ)

− δ`>n (θ)In[En Fn ]

[
ξn(t)[
wn(t,a)
wn(t,b)

]]
,[

∂θwn(t,a)
∂θwn(t,b)

]
=[ Cn Dn ]

[
ξn(t)[
wn(t,a)
wn(t,b)

] ]
.

(20a)

(20b)

(20c)

where the matrices that defined this model are given by

An =

[
An δB0

nC

BC0
nIn A

]
, Bn =

[
δB1

n

B

]
,

Cn =
[
C1
nIn C

]
, Dn = D,

En = B0
n

[
C1
nIn C

]
, Fn = B1

n,

(21)

with matrices B0
n and C0

n are given in (9) and

An = δ(L>n In)2+δB0
nC1

nIn+λIn+1,

B1
n = B0

nD − LnInB0
n, C1

n = DC0
n − C0

nInL>n .
(22)

Proof : For the sake of simplicity, the time argument
in the following equations is omitted. The proof is also
split into three parts referring to each equation in (20).

Proof of (20c): The objective is to rewrite the boundary

condition (1c) on z as boundary conditions on wn as in
(20c), for any solution (x, z) of (1) and any n in N. Using
equation (19), one get[

z(a)
z(b)

]
=
[
`>n (a)

`>n (b)

]
Inζn+

[
wn(a)
wn(b)

]
=C0

nInζn+
[
wn(a)
wn(b)

]
, (23)

where matrix C0
n is defined in (9). Furthermore, differ-

entiating wn in (11) with respect to θ and evaluating it
at θ ∈ {a, b} yields[

∂θz(a)
∂θz(b)

]
= C0

nInL>n Inζn +
[
∂θwn(a)
∂θwn(b)

]
. (24)

The injection of equations (23),(24) into the boundary

condition
[
∂θz(a)
∂θz(b)

]
= Cx+D

[
z(a)
z(b)

]
leads to the result

[
∂θwn(a)
∂θwn(b)

]
= (DC0

n − C0
nInL>n )︸ ︷︷ ︸

C1n

Inζn + Cx+D
[
wn(a)
wn(b)

]
= [ C1nIn C ]︸ ︷︷ ︸

Cn

[ ζnx ]︸︷︷︸
ξn

+ D︸︷︷︸
Dn

[
wn(a)
wn(b)

]
. (25)

Proof of (20a): Let us now derive an expression of the
dynamics of the Fourier-Legendre coefficients. Recalling
that ζn = 〈`n|z〉 and that z verifies (1b), we have

ζ̇n = 〈`n|∂tz〉 = 〈`n|(δ∂θθ + λ)z〉 = δ 〈`n|∂θθz〉+ λζn.

Two successive integrations by parts on the first term of
the last expression yields

ζ̇n=
(
δ(LnIn)2+λIn+1

)
ζn+δB0

n

[
∂θz(a)
∂θz(b)

]
−δLnInB0

n

[
z(a)
z(b)

]
,

(26)
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with B0
n defined in (9). Reinjecting equations (23),(24)

into the previous dynamics (26) leads to

ζ̇n=(δGn+λIn+1) ζn+δB0
n

[
∂θwn(a)
∂θwn(b)

]
−δLnInB0

n

[
wn(a)
wn(b)

]
,

(27)
with

Gn=(LnIn)2 +B0
nC0

nInL>n In−LnInB0
nC0

nIn=(L>n In)2,

where the last equality is obtained by recalling from
Proposition 3 that B0

nC0
n=Ln+L>n . Then, by imposing

the boundary condition (25) to the previous dynamics
and by reorganization of the terms, we get

ζ̇n =
(
δ(L>n In)2+δB0

nC1
nIn+λIn+1

)︸ ︷︷ ︸
An

ζn+δB0
nCx

+δ (B0
nD − LnInB0

n)︸ ︷︷ ︸
B1
n

[
wn(a)
wn(b)

]
.

(28)

To obtain (20a), it remains to add the dynamics of the
ordinary differential equation given by (1a). The dynam-
ics of the finite dimensional state are therefore[

ζ̇n
ẋ

]
︸ ︷︷ ︸
ξ̇n

=
[
An δB0

nC

BC0nIn A

]
︸ ︷︷ ︸

An

[ ζnx ]︸︷︷︸
ξn

+
[
δB1
n

B

]
︸ ︷︷ ︸

Bn

[
wn(a)
wn(b)

]
, (29)

which corresponds to the first equation (20a).

Proof of (20b): To do so, differentiating with respect to

time of the Fourier-Legendre remainder wn given in (11)

yields ∂twn(θ) = ∂tz(θ)− `>n (θ)Inζ̇n. From one side, we
need to express ∂tz using the new system of coordinates,
that is reflected in

∂tz(θ) = δ∂θθz(θ) + λz(θ)

= (δ∂θθ+λ)wn(θ)+
(
δ∂θθ`

>
n (θ)+λ`>n (θ)

)
Inζn.

Applying twice the differentiation rules of the Legendre
polynomials in (6), the previous expression resumes to

∂tz(θ)=(δ∂θθ+λ)wn(θ)+`>n(θ)In
(
δ(L>n In)2+λIn+1

)
ζn.

(30)

On the other side, the expression of ζ̇n given by (28)
leads to

`>n (θ)Inζ̇n = `>n (θ)In
(
δ(L>n In)2+λIn+1

)
ζn

+δ`>n (θ)In

B0
n[ C1nIn C ]︸ ︷︷ ︸

En

[ xζn ] + B1
n︸︷︷︸

Fn

[
wn(a)
wn(b)

] .
(31)

Thus, collecting equations (30),(31) and simplifying the
term

(
δ(L>n In)2+λIn+1

)
ζn, one recognizes the partial

differential equation verified by wn. �

Remark 1 In the new formulation, the reaction-
diffusion equation, which characterizes the dynamics of
wn, is similar to the one of the original system. The only
difference relies on the last term in (20b). Even though,
it seems at a first sight more complicated, it will appear
in the next developments that this new term has no im-
pact on the complexity of the analysis. This is due to the
orthogonality of this new term and the Fourier-Legendre
remainder, wn.

5 Stability analysis

This section is dedicated to the construction of a numer-
ical tractable stability criterion for system (1), based on
Lemmas 7 and 9 and highly related to the properties of
the augmented model (20).

Theorem 11 For a given integer n ≥ 1 and any λ, δ

satisfying λ
δ <

π2

(b−a)2 , if there exists Pn ∈ Snx+n+1
+ such

that the linear matrix inequality

Ξn=

[
H(PnAn) PnBn + C>nG

∗ H(D>nG)− (1−κ)Ψn+2+κΦn
b−a

]
≺ 0, (32)

is satisfied, where matrices Ψn, Φn are defined in (15),
An, Bn, Cn and Dn in (21) and

G =
1

2

[
−1 0

0 1

]
, κ = max

(
0,
λ

δ

(
b− a
π

)2
)
.

Then, under condition det(Ω) 6= 0 from Proposition 2,
the equilibrium (0, 0) is globally exponentially stable for
system (1), in the sense of the Rnx × L2(a, b;R) norm.

Proof : For the sake of simplicity and compactness, we
omit the time argument in the following proof. Consider
the Lyapunov candidate functional

Vn(x, z) = ξ>n Pnξn︸ ︷︷ ︸
Van(x,z)

+ (2δ)−1‖wn‖2︸ ︷︷ ︸
Vbn(x,z)

. (33)

Assuming Pn � 0, it suffices to take positive real num-

bers ε1 =min
(

1
2n+1σ(Pn), 1

2δ

)
and ε2 =max

(
σ̄(Pn), 1

2δ

)
to obtain

Vn(x, z) ≥ ε1
(
x>x+ ζ>n Inζn + ‖wn‖2

)
,

Vn(x, z) ≤ ε2
(
x>x+ ζ>n Inζn + ‖wn‖2

)
,

which can be rewritten from Lemma 5 as

ε1
(
x>x+ ‖z‖2

)
≤ Vn(x, z) ≤ ε2

(
x>x+ ‖z‖2

)
. (34)
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It remains showing that there exists ε3 > 0 such that

V̇n(x, z) ≤ −ε3
(
x>x+ ‖z‖2

)
. (35)

From one part, differentiation Van along the trajectories
of the system (1) using the dynamics given by (20) yields

V̇an(x, z) = ξ>nH(PnAn)ξn + 2ξ>n PnBn

[
wn(a)
wn(b)

]
.

From the other part, from the dynamics of the Fourier-
Legendre remainder in (20), we recover

V̇bn(x, z) =

∫ b

a

∂θθwn(θ)wn(θ)dθ +
λ

δ

∫ b

a

w2
n(θ)dθ.

Using integrations by parts, V̇bn is decomposed in
L2(a, b;R) norms of signals w and ∂θw as

V̇bn(x, z)= λ
δ ‖wn‖

2−‖∂θwn‖2+2
[
∂θwn(a)
∂θwn(b)

]>
G
[
wn(a)
wn(b)

]
,

= λ
δ ‖wn‖

2−‖∂θwn‖2+2

[
ξn

wn(a)
wn(b)

]>[
C>n
D>n

]
G
[
wn(a)
wn(b)

]
.

Thereafter, the proof is split into two cases. If λ < 0, the
proof is a straightforward application of Bessel-Legendre
inequality at order n+ 1 given by (14). Indeed, we have

V̇n(x, z) ≤ −|λ|
δ
‖wn‖2 +

[
ξn

wn(a)
wn(b)

]>
Ξn

[
ξn

wn(a)
wn(b)

]
,

Assuming Ξn ≺ 0 and taking ε3 = min
(
|λ|
δ , |σ̄(Ξn)|

)
,

one obtains (35), which leads to Theorem 11.

For the case 0 ≤ λ < δ π2

(b−a)2 , we apply first the adapted

Wirtinger inequality (16) on the Fourier-Legendre re-
mainder wn to obtain

V̇bn(x, z) ≤ −(1−κ−ρ)‖∂θwn‖2 − ρ‖wn‖2

+2

[
ξn

wn(a)
wn(b)

]>[
C>n
D>n

]
G
[
wn(a)
wn(b)

]
− κ+ρ

b−a

[
wn(a)
wn(b)

]>
Φn

[
wn(a)
wn(b)

]
.

with κ = λ
δ

(
b−a
π

)2
and for any sufficiently small ρ > 0

such that (1− κ− ρ) > 0. By application of the Bessel-
Legendre inequality given by (14), we finally get

V̇bn(x, z) ≤ −ρ‖wn‖2 + 2

[
ξn

wn(a)
wn(b)

]>[
C>n
D>n

]
G
[
wn(a)
wn(b)

]
− 1
b−a

[
wn(a)
wn(b)

]>
((1−κ−ρ)Ψn+2+(κ+ ρ)Φn)

[
wn(a)
wn(b)

]
.

Merged with V̇an, it gives that V̇n is upper bounded by

−ρ‖wn‖2+

[
ξn

wn(a)
wn(b)

]>
Ξn

[
ξn

wn(a)
wn(b)

]
+

ρ

b− a

[
wn(a)
wn(b)

]>
Ψn+2

[
wn(a)
wn(b)

]
.

If the linear matrix inequality Ξn ≺ 0, it is possible to
take ρ small enough such that−|σ̄(Ξn)|+ ρ

b−a σ̄(Ψn+2) <

0. Then, there exists ε3 = min (ρ, |σ̄(Ξn)|) > 0 such

that the derivatives V̇n satisfies (35). One concludes by
application of Lyapunov theorem on the exponential
stability of the equilibrium point. �

Remark 12 Having matrix An Hurwitz is a necessary
condition for the feasibility of linear matrix inequal-
ity Ξn ≺ 0 where Ξn is defined by (32).

Remark 13 Notice also that (33) is also a Lyapunov
functional for system (20).

Remark 14 Matrices En and Fn are not involved in the
linear matrix inequality condition of Theorem 11. This
is due to the orthogonality of the last term in (20b) as
already mentioned in Remark 1.

Remark 15 Compared to generalized linear matrix in-
equality formulations based on sum of squares [7,34], the
result is condensed, more appropriate to the application
and numerical burden are improved. This optimization
is due to the transformations made to obtain our linear
matrix inequality, highly correlated to the system under
study. Nevertheless, to the best of our knowledge, we are
not aware of stability condition adressing this particu-
lar class of system and this is the reason why no further
comparison is presented.

6 Application to numerical examples

In this section, we will consider two examples, both of
them with δ = 1 and b − a = 1. The other parameters
are given below.

Example 16 Consider system (1) with

A =

[
0 0 1 0
0 0 0 1

−10−K 10 0 0
5 −15 0 −0.25

]
, B =

[
0 0
0 0
1 0
0 0

]
, C = [ 0 0 0 0

K 0 0 0 ].

D = 0 and K ∈ [10−2, 104].

Example 17 Consider system (1) with

A ∈ [−6, 6], B = [ 10 0 ], C = [ 1
0 ], D = 0, (36)

A = −1, B = [K 0 ], K ∈ [10−2, 104]. (37)

First of all, Fig. 1 illustrates the stability areas with re-
spect to parameters A, K, λ provided by Theorem 11.
For each example, an indication on the range of reaction
parameter λ which stabilizes the interconnected system
is obtained. For instance, Fig. 1a and 1c show that the
stability region is λ < 0 for K → 0. Indeed, the case
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(a) Example 16.

(b) Example 17 with (36).

(c) Example 17 with (37).

Fig. 1. Stability regions guaranteed by Theorem 11 for several
values of order n.

K = 0 amounts to have the partial differential equation
in cascade with the ordinary differential equation. Then,
the eigenvalues of the coupled system are contained into

σ(A) ∪
{
λ− kδ

(
π
b−a

)2
}
k∈N

. In addition, Fig. 1b em-

phasizes that system (36) with A = −1 is stable for any
λ < 2.15. Similar calculations could be done when mod-
ifying parameter δ, but is not presented here.

Secondly, it is worth noticing that neither stability of the
ordinary differential equation nor of the partial differen-

tial equation is required for the stability of the overall
interconnection. For Example 17, it is even possible to
have both equation independently unstable and a stable
interconnection (see A = 1, B = 10 and λ = 1).

Lastly, the feasibility of linear matrix inequality (32) is
determined with feasp function and tested from n = 1 to
n = 4. Notice that higher orders are required to detect
stable area with large values of parameter K.

7 Conclusions

In this paper we have presented a scalable stability
condition for a linear finite-dimensional system inter-
connected to a reaction-diffusion partial differential
equation with Robin boundary conditions. The method
emphasizes the role of the Fourier-Legendre coefficients
and of the remainder of the Fourier-Legendre series.
Thanks to this modeling, an efficient formulation of the
Wirtinger and Bessel inequalities has been provided
leading then, together with a Lyapunov approach, to
a stability test expressed in terms of linear matrix in-
equalities. This approach has been evaluated on several
numerical example demonstrating its potential.

Further works would consider for instance other bound-
ary conditions and more generally other partial differ-
ential equations. Another direction for future research
would be to introduce delay through a transport differ-
ential equation. Last but not least, this paper can be seen
as a milestone for the design of finite-dimensional sta-
bilizing controllers for the reaction-diffusion equation,
enlightening even more the role of the Fourier-Legendre
coefficients.

A Appendix

A.1 Proofs of Lemma 7

Proof : Thanks to the Bessel-Legendre inequality (13)
at order n+ 1, the following inequality holds

‖∂θwn‖2 ≥ 〈ln+1|∂θwn〉> In+1 〈ln+1|∂θwn〉 . (A.1)

In addition, performing an integration by parts yields

〈ln+1|∂θwn〉 = ln+1(b)wn(b)−ln+1(a)wn(a)−〈∂θln+1|wn〉 .

Then, we recall that wn is the remainder of the Fourier-
Legendre series, which is consequently orthogonal to the
n+1 first Legendre polynomials. Therefore, the last term
of the previous equality is zero (〈∂θln+1|wn〉 = 0) so that

‖∂θwn‖2≥
[
wn(a)
wn(b)

]>[−l>n+1(a)

l>n+1(b)

]
In+1

[
−l>n+1(a)

l>n+1(b)

]>[
wn(a)
wn(b)

]
.
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To complete the proof, it remains to compute the com-
ponents of the matrix. Hence, let us first note that
l>n+1(a)In+1ln+1(a) = l>n+1(b)In+1ln+1(b). Then, per-
forming the matrix multiplication, we have

l>n+1(a)In+1ln+1(a) =

n+1∑
k=0

(2k + 1)

b− a
=

(n+ 2)2

b− a
.

Similarly, we have

l>n+1(a)In+1ln+1(b)=

n+1∑
k=0

(−1)k
(2k+1)

b− a
=(−1)n+1 (n+ 2)

b− a
,

which yields the result. �

A.2 Proof of Lemma 9

Proof : The proof follows the idea developed in [32],
to derive the Wirtinger-based integral inequality. Let us
introduce function w̃n, defined for all θ ∈ [a, b] such that

∂θw̃n(θ) = ∂θwn(θ)−l>n−1(θ)In−1 〈ln−1|∂θwn〉 .

Integrating this function and performing several simpli-
fications, function w̃n is given by

w̃n(θ) = wn(θ)− ln−1(θ)(wn(b)−(−1)nwn(a)
2 )

−ln(θ)(wn(b)−(−1)n+1wn(a)
2 ).

(A.2)

First, one has to verify the assumptions of the Wirtinger
inequality in Lemma 8, that is w̃n(a) = w̃n(b) = 0.
Recalling that ln−1(b) = ln(b) = 1, evaluating w̃n(b)
writes

w̃n(b) = wn(b)− wn(b)−(−1)nwn(a)
2 − wn(b)−(−1)n+1wn(a)

2 ,

= wn(b)− wn(b) = 0.

Similarly, recalling that ln−1(a) = −ln(a) = (−1)n−1,
we have w̃n(a) = wn(a)− wn(a) = 0.
Therefore, Wirtinger’s inequality [18] states that, un-
der the two previous boundary conditions, the inequal-
ity ‖∂θw̃n‖≥ π

b−a‖w̃n‖ holds. It remains to commute

‖∂θw̃n‖ and ‖w̃n‖. We first note that

‖∂θw̃n‖2 = ‖∂θwn(θ)−l>n−1(θ)In−1 〈ln−1|∂θwn〉 ‖2,
= ‖∂θwn‖2−2 〈ln−1|∂θwn〉>In−1〈ln−1|∂θwn〉

+〈ln−1|∂θwn〉>In−1〈ln−1|ln−1〉 In−1 〈ln−1|∂θwn〉 .

Using the ortogonality of the Legendre polynomials

given in (6), we have

‖∂θw̃n‖2 = ‖∂θwn‖2 − 2 〈ln−1|∂θwn〉>In−1〈ln−1|∂θwn〉
+ 〈ln−1|∂θwn〉> In−1I−1

n−1In−1 〈ln−1|∂θwn〉 ,
= ‖∂θwn‖2 − 〈ln−1|∂θwn〉> In−1 〈ln−1|∂θwn〉 .

The last term of the previous expression has already
been computed in (A.1), and we have

‖∂θw̃n‖2= ‖∂θwn‖2−
1

b− a

[
wn(a)
wn(b)

]>
Ψn

[
wn(a)
wn(b)

]
. (A.3)

On the other hand, the norm of w̃n can be computed as
follows. For the sake of simplicity, let us introduce the
following notations

ωn,a = wn(b)−(−1)nwn(a)
2 , ωn,b = wn(b)−(−1)n+1wn(a)

2 ,

so that we have

‖w̃n‖2 = ‖wn(θ)−ln−1(θ)ωn,a − ln(θ)ωn,b‖2,
= ‖wn‖2 − 2 〈ln−1|wn〉> ωn,a − 2 〈ln|wn〉> ωn,b

+
[ ωn,a
ωn,b

]>[ 〈ln−1|ln−1〉 〈ln−1|ln〉
〈ln|ln−1〉 〈ln|ln〉

][ ωn,a
ωn,b

]
.

Due to the orthogonality the Legendre polynomials and
of 〈`n|wn〉 = 0, the previous equality simplifies to

‖w̃n‖2 = ‖wn‖2 +
[wn,a
wn,b

]>[ b−a
2n−1 0

0 b−a
2n+1

][wn,a
wn,b

]
,

which can be rewritten as

‖w̃n‖2 = ‖wn‖2 + 2(b−a)
4n2−1

[
wn(a)
wn(b)

]>[
2n (−1)n+1

∗ 2n

][
wn(a)
wn(b)

]
.

(A.4)
The proof is concluded by merging the two expressions
given in (A.3) and (A.4) into ‖∂θw̃n‖≥ π

b−a‖w̃n‖. �
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