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ABSTRACT

While working on aircraft navigation on taxiways, the line
detection is one of the main challenging problems to be
solved. This subject has been widely studied in the literature
in the automotive field. In this paper, we propose a com-
parison of three line detection algorithms based on methods
validated in the automotive field but transposed in aero-
nautics where this subject has not been widely addressed.
Some problematics appear: the tarmac environment differs
from the usual road model and the camera’s position im-
pacts the visibility on the image. The first method presented
here uses a particle filter while the second one is based on
the Hough transform. In the second method, we perform a
color-based detection and introduce a method to compute
the reference color, using technical specifications for airport
markings. The last method is the LaneNet neural network.
Criteria such as the precision or the max range of the detec-
tion are computed and exploited to discuss the algorithms
relevance. The comparison is performed on both simulated
images (from a product of the OKTAL-SE company) and
real ones (from Airbus Operations S.A.S.).

Keywords
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1. INTRODUCTION

Lane detection plays a significant role in driver assistance
systems. We can note several use cases: axis keeping, vehi-
cle position estimation, lane departure warning, road mod-
elling, and automatic lane following. There are two main
types of geometric methods commonly used for lane detec-
tion: feature-based and model-based methods. Another pos-
sibility is to use neural network based methods.

In feature-based algorithms, the most used feature is the
contrast variation between marking/road or road/grass. This
assumes that the contrast between the object and its envi-
ronment is obvious. In the case of the contrast between the
line marking and the road, the ground lines are designed
to have more reflectivity than the road. That is why most
of the studies ([14], [7], [2], [4]) try to detect line markings
for lane detection applications, either by using color models,
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contrast or orientation of surfaces. The low computational
complexity of those algorithms is an advantage but they are
sensitive to shadows or occlusions. Model-based methods
are more robust but require more assumptions on the road
model (number of lines in the image, expected width and
curvature, ...). Those algorithms are more consuming in
terms of computational resources.

Neural network based methods have been developed for
lane detection in the automotive field, based on machine
learning and convolutive neural networks. In those stud-
ies, we can separate the networks in two specific fields: lane
([11]) and line ([6]) detections, where the first’s objective is
to define the usable area for the vehicle whereas the second’s
is specific to the detection of road markings. The neural net-
work must learn how to extract important information from
images in order to recognize lines. This method requires a
larger dataset.

[10] reviews a large number of geometric line detection
methods in the automotive fields and offers a good compar-
ison in terms of advantages and drawbacks. Fewer studies
concern the scene interpretation in aeronautics such as [15]
or [1]. The distinction between the automotive and aero-
nautic fields is important because they differ in terms of
line models and varying environments. Those specifications
complicate the transfer of algorithms from one domain to
the other.

One example is the region of interest (ROI) where lines
must be detected in images. In the aeronautic field, images
are provided by different cameras where the ROI is not al-
ways easy to define. Figure 1 presents the two cameras used
for this study. The image from the fin camera is largely oc-
cupied by the sky and the plane. The area of detection is
limited and far from the sensor (for a Airbus A380, which
is our model for the simulation, lines to be detected are at
least 70 meters from the camera). Hence, the number of
pixels containing useful information is greatly reduced.

Another important difference is that, in the automotive
field, the line detection is most of the time based on the
assumption that the marking to be detected is white. This
assumption enables simplifications such as using a grayscale
or luminance image: it allows to focus on the edge detection.
In the taxiway areas, the line to be detected is yellow so the
line appearance is not as easy to exploit. As white lines
also exist on the tarmac and should not be tracked, the



chrominance information is important. The method also
needs to be robust to the noise (as the plane fuselage is
visible in some images and could be painted in yellow).
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Figure 1: Camera positions in the aircraft fin and in
the cockpit

This article aims to discuss line detection in the airport ar-
eas context. The discussion will focus on three main points:
a comparison between three methods based respectively on
the particle filter (PF), the Hough transform (HT) and the
LaneNet neural network (LNN); the usefulness of the inverse
perspective mapping (IPM) preprocessing and the perfor-
mance of the three methods under degraded weather condi-
tions. The algorithms will be compared on either simulated
images or both simulated and real images.

This paper is organized as follows: in Section 2, we present
first the IPM preprocessing, applied or not to every image
before detecting lines, and then, the three selected methods.
Section 3 details the criteria used for the comparison. The
results are summed up and discussed in Section 4 before the
conclusion in Section 5.

2. METHODS

Before performing one of the three methods to be compared,
several preprocessing functions are automatically applied to
our images such as distortion correction, white balance, cal-
ibration or homographic transformation. However, we de-
cided to separate two cases of study; on one hand we use
the resulting image as an input for the line detection algo-
rithms, on the other hand, we apply an IPM transformation
as another preprocessing.

The two geometric methods use a color selection function
for the line detection. When working on line detection, the
reference color can easily vary from one location to another,
or from the scene lighting. Some authors ([8], [4]) propose to
work in other color spaces, such as HSV, Lab or YCbCr, that
have the particularity to differentiate lightness information
from chromatic information. Other authors ([12] and [5])
try to use a local adaptative threshold in order to be robust
to shadowing or lightness variation. However, all of these
methods still require to define the desired color which is
chosen arbitrary.

We decided to implement these functions as parts of the
methods instead of considering them as a preprocessing, be-
cause methods do not share the same color assumption. The
particle filter method is based on [9] which includes the
color assumption as part of the whole process, while the
color assumption used for our implementation of the Hough
Transform method is specific to our application and based on
technical specifications defined in the xyz color space. The
Hough transform takes as an input a binary image obtained
from features extraction. Since we want to use the color as
a feature, we have to define a threshold (i.e. a subset from
the color space) to obtain the binary image. In contrast, the
particle filter requires a weight map representing the proba-
bility of pixels to be on a line. The color extraction is done

by computing the distance between the pixels’ color and a
reference color, different for the two methods.

The output of the three algorithms is a list of clusters.
A cluster is a part of the image considered as a line (or a
marking). It can be composed of all the consecutive pixels
selected as part of the line (when using the particle filter or
the LaneNet algorithm) or the two line extremities (when
using the Hough transform).

2.1 Preprocessing: The IPM transform

We do not detail the IPM transform but it can be found
in [9]. The result of the IPM transform can be observed in
Figure 2. We decided to study the result of the three line
detection algorithms with and without the IPM transform
preprocessing because one of our assumption is that the IPM
transform corrects the perspective effects on the lines which
could simplify the detection. Moreover, the IPM transform
creates additional synthetic information. It can be consid-
ered as a noise addition and degrading for the image. How-
ever, distant parts of a line are represented by few pixels in
the raw image. The IPM transform will increase the num-
ber of pixels representing the line. Our second assumption
is that this phenomenon, while adding noise to the image,
should ameliorate the line detection on distant areas.

(a) (b)

Figure 2: (a) Original image, (b) IPM transform

2.2 First Method: Particle Filter

The first method we proposed for this comparison is an al-
gorithm using the particle filter principle and presented in
[9]. The philosophy of this method is to consider a pixel
as a particle and a line of the image as an instant ¢. The
particle filter is launched from the bottom line to the top
line of the image. For each instant ¢, a number of particles
are generated and a weight is assigned to them. The weight
given by the weight map computed beforehand represents
an observation whereas the pixel is a possible explanation of
the hidden state of the system. The observation helps de-
termine which pixel is prone to be a description of a line in
the image. The weight map contains information from color
and edges. A prediction of the particle positions on the next
line (at time ¢+ 1) is made following a transition probability
density to determine. In this implementation, the state is
assumed to spread up vertically in the image but other cases
can be thought upon such as in [16].

2.3 Second Method: Hough Transform

The Hough transform is based on the extraction of the color
and edges information. The color extraction is dependent on



the definition of the reference color which is more difficult
to express than the edges. In our approach, we proposed to
use a more specific color definition.

In aeronautics, airport signs and markings are well defined
by the ICAO recommendation [3]. From these recommen-
dations, the color of airport lines are defined by a subset of
the xyz color space. With that definition, it is possible to
select a threshold to extract most of the lines from the im-
age. However, images used for this comparison are defined
in the sSRGB space (a sub-space of the xyz color space). The
yellow definition provided by ICAO is defined for the full
xyz space. For our implementation we applied an empirical
modification of this definition.

The first step of this method is to apply a chromatic
thresholding using this yellow definition. A binary image
is produced and the edge extraction method applied is the
morphological gradient which is more adapted in this case
than the Sobel or Canny filters usually found in the litera-
ture ([17], [13]). The line detection is performed by a Hough
transform of the resulting image and the clustering of the
results are provided by a hierarchical clustering algorithm
such as presented in [2].

2.4 Third Method: Neural network approach

CNNs (Convolutional Neural Network) provide the best per-
formances for computer vision applications including lane
detection. They obtain the best results on most of the au-
tomotive benchmarks. However, the nature of airport areas
is quite different from automotive ones and could degrade
CNNs performances.

We chose to use the LaneNet CNN ([11]). It is a CNN
architecture composed of three networks, one encoder and
two decoders. The first decoder is used to provide a binary
image containing pixels with potential line information. The
second decoder is used to construct a pixel embeddings map
that will be used to cluster pixels from the binary image in
different lanes. Since our comparison is based on pixel com-
parison, (see Section 3), we only require the binary image.

Because of the low number of images in our dataset, we
could not train this network again but test the already pre-
trained version of this network from TuSimple. This com-
parison is to argue about the possibility of using algorithms
from the automotive field directly for aeronautics.

3. CRITERIA

In order to compare those three algorithms, we decided to
base our analysis on multiple criteria that can be divided in
categories, depending on the added knowledge value:

1. Based on detection range

e Maximum range of detection
One of the objectives in aeronautics is to have a
wide detection field, because the aircrafts speed
implies that decisions have to be taken as soon as
possible. This value is given in pixels, computed
on the overall image and represents the highest
line in the image where pixels are detected.

2. Based on detection precision

e Mean of the clusters’ pixels’ distances to
the ground truth

This criterion is the main one to quantify the al-
gorithm precision. It computes, for each cluster,
the distance between the proposed pixels to rep-
resent a marking and the ground truth.
e Recall
This criterion is used to analyze the pertinence of
an algorithm, dividing the number of true posi-
tives by the total number of detections.

The aim of this article is to compare methods and analyze
their relevance on real images. We are not concerned by the
computation time because we are not working on the final
implementation of the algorithm (in GPU or FPGA).

4. RESULTS AND DISCUSSION

Multiple datasets are available in the automotive field for
the benchmark of algorithms (e.g. KITTI, Oxford Robotcar
or TuSimple data sets). In aeronautics, images acquired by
cameras embedded on aircrafts are more difficult to recover.
Thanks to a joint project with AIRBUS, we can use the
OKTAL-SE simulator to build synthetic images on airport
areas. The three methods have been compared mostly on
simulated images but also from few real images acquired
by cameras placed at different spots in the aircraft, such as
shown in Figure 1.

The aim of this comparison is to discuss three points. The
first is to compare the results of the three methods on several
images, varying the environment and image quality. The
second point is to question the use of an IPM transform as
a preprocessing and its contribution to the improvement of
the algorithms performances. The third point of this study
is to challenge the three algorithms by providing images with
degraded meteorological conditions.

4.1 Performance of the three methods

Figure 3 presents the different precision criteria computed
from the results obtained from both real and simulated im-
ages without IPM preprocessing nor degraded weather con-
ditions. Figures 5(a) and 5(b) present the precision criteria
with IPM processing and Figures 5(c) and 5(d) present
the precision criteria with degraded weather conditions for
images provided by the cockpit and fin cameras. Figure 4
presents the maximum range of detection for each use case.

The particle filter method recall is mostly higher than
the recall of the other methods. This value should be com-
pared with the mean distance between the detection and
the ground truth. The particle filter has a higher mean dis-
tance because it returns a bigger set of points in each cluster.
It increases the recall after the convergence of the clusters
around the patterns to detect but also impact the preci-
sion. On contrary, the Hough Transform method returns
few points, which are mostly well detected but a few false
detections can lower significantly the recall of the method.
LaneNet performances seem bad at first view. However,
these performances have to be put in opposition with our
annotation system. Because of its nature, the network tries
to extrapolate more lines to describe a whole lane. Our aim
is to detect only lines and the addition of lines from the
LaneNet algorithm to recreate a lane strongly impacts the
recall and precision.
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Figure 3: Mean distance to the ground truth and recall performances for real and simulated images from
cockpit and fin cameras. Results in blue for Hough Transform, red for the Particle Filter and green for

LaneNet.

4.2 TImpact of the IPM transform on the per-
formances

The IPM transformation requires a good estimation of the
camera position on the aircraft, which we have not been
provided with for the real images. We evaluate the inter-
est of the IPM transform for synthetic images, acquired
from simulated fin and cockpit cameras with a resolution
of 1280pX960p and an horizontal field of view of 80 degrees.
We also provide results for the real images, with an approxi-
mation of the position and field of view of the camera in real
images but it should be noted that precision in this infor-
mation can greatly impact the result of the IPM transform
and the performances.

Figure 5 gives an overview of the impact of the IPM and
the effect of degraded weather conditions on the results. The
use of the IPM transform does not increase massively the re-
call results from the three methods. For LaneNet it consider-
ably degrades the results, probably because of the nature of
its training (TuSimple). It is predictable as the IPM trans-
form adds noise to the image when trying to reconstruct an
information not present in the initial image.

While this preprocess increases the detection range, it also
decreases the precision and recall of each methods. It is due
to the interpolations used to commute from the initial view
to the bird’s eye view. A pixel chosen in the IPM view
is computed from two interpolations. When compared to
the ground truth in the initial view, it is assumed that the
precision of the detection will be impacted. The results of
the IPM show that this preprocess can benefit the detection
when the position of the camera is well known. However,
while applied to the real images, with an approximated po-
sition of the camera, we noticed that the IPM transform is
more likely to degrade the detection.

We observed an impact of the IPM on simulated images
on the long range detection. Results from the top part of
the images have been greatly improved. On contrary, the
IPM impact is not relevant on this part of the images from
the cockpit camera. Thoses pixels are far from the airplane
and they are not distinguishable for the two cameras. The

IPM transform adds noise, increasing the detection range
for those pixels.

4.3 Impact of the degraded weather conditions

For the first two methods, we can observe a drop in maxi-
mum detection range. This was predictable as these meth-
ods strongly rely on color assumptions that are impacted
by variations of the visibility in the environment. However,
LaneNet does not seem to be strongly affected, in terms of
results only. Qualitatively, the algorithm detects less lines
and it virtually increases the precision (see Figure 6).

4.4 Qualitative comparison

Figure 6 is based on Figure 2(a) and offers a comparison
of line detection of the same scene in two different weather
conditions (either normal conditions or dusk and some fog).
Figure 6(b) represents the detection for clear weather. We
can see that the Particle Filter and Hough Transform meth-
ods detect lines homogeneously in the image. LaneNet en-
counters difficulties with this image as the pattern of the
lines is specific to aeronautics and is not found in the auto-
motive field. It performs at the top of the image where we
can found two parallel lines, a mostly found configuration in
automotive datasets. The detection in Figure 6(c) is sparse.
The lines detections are reduced as the contrast between the
line and the tarmac is more difficult to observe.

In Figure 7, we selected a fin camera image and a cockpit
camera to present a qualitative comparison of the algorithm
where the results of the particle filter are represented in red,
the results of the Hough transform are represented in blue
and the results of LaneNet are represented in green.

We observe that the three methods offer a satisfactory
performance on real images. However, the particle filter is
subject to false detection on far range pixels due to the color
assumption. The Hough transform method does not perform
as well as the other methods on far range detection for fin
camera images. LaneNet recreate lines based on its training.
It enables the algorithm to be resistant to occlusions but
degrades virtually the precision.
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Figure 6: (a) Degraded conditions. Results of yellow area (blue for Hough Transform, red for the Particle
Filter and green for LaneNet) for (b) clear weather and (c) degraded weather

Figure 7: Real images from (a) a fin camera and (e) a cockpit camera. Ground truth and results (b)(f) for
Hough Transform, (c)(g) for the Particle Filter and (d)(h) for LaneNet.



5.  CONCLUSIONS

In this paper, we described three algorithms used in the lit-
erature for line detection. We compared those algorithms
on simulated and real images, obtained by mounting cam-
eras on several positions in an aircraft. We also studied
the impact of performing an IPM transformation on the in-
put image before running the algorithms and the impact of
degraded weather conditions. The results presented above
have been discussed based on average values of the detection
on several images.

For the particle filter method, we observe that results on
simulated images are satisfactory but this evaluation must
be mitigated on real images. A number of thresholds have
to be fixed in this method which implies difficulties to adapt
for real images or degraded weather conditions. The Hough
Transform method is based on a strong color assumption.
It is easy to fix on simulation but harder to fix in real im-
ages, as many other computer vision applications. LaneNet
provides unsatisfactory results as expected. The change of
field from automotive to aeronautics prevents the network
from detecting a good number of lines because of the differ-
ences in line patterns. The IPM Transform requires a precise
setup. It can improve detection range in simulated images
but minor changes in parameters on real images can heav-
ily degrade the results. Lastly, the methods still give good
results at a near range but the degraded weather conditions
have a great impact on middle and far range detections.

In future studies, we will work on the color assumption.
Combining ICAO information and a method to perform an
automatic detection of a reference color in the image should
improve results on real images. We also plan to implement
a new algorithm for the particle filter based on an idea pre-
sented in [16] where the particle can be expressed as a win-
dow of pixels instead of a simple pixel. Combined with a
better appreciation of the line color, it should reduce the
false detections and improve the precision. We plan to in-
crease the number of test images as it will be beneficial for
further CNN-based studies. It will enable us to retrain the
LaneNet network to adapt to the aeronautic context. We
are currently working on an estimation of the angular vari-
ation of the aircraft position in regards to the centerline of
the tarmac. It can be added as another criterion to select
the preferred line detection algorithm and it could be used
to perform a lane departure estimation algorithm.
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