TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2021

TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization

Résumé

The Julia library TSSOS aims at helping polynomial optimizers to solve large-scale problems with sparse input data. The underlying algorithmic framework is based on exploiting correlative and term sparsity to obtain a new moment-SOS hierarchy involving potentially much smaller positive semidefinite matrices. TSSOS can be applied to numerous problems ranging from power networks to eigenvalue and trace optimization of noncommutative polynomials, involving up to tens of thousands of variables and constraints.
Fichier principal
Vignette du fichier
2103.00915v1.pdf (180.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03155742 , version 1 (12-07-2024)

Identifiants

Citer

Victor Magron, Jie Wang. TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization. Effective Methods in Algebraic Geometry, Jun 2021, Tromso, Norway. ⟨10.48550/arXiv.2103.00915⟩. ⟨hal-03155742⟩
156 Consultations
29 Téléchargements

Altmetric

Partager

More