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Polynomial superlevel set approximation of swept-volumedr
computing collision probability in space encounters

D. Arzelier, F. Bréhard, M. Joldes, J.-B. Lasserre, S. easr A. Rondepierre

Abstract— Computing long-term collision probability in
space encounters is usually based on integration of a
multivariate Gaussian distribution over the volume of ini-
tial conditions which generate collisions in the consideid
time interval. As this collision set is very difficult to
determine analytically, for practical computation various
simplifications are made in the literature. We present a
new method for computing the collision probability based
on two steps. Firstly, a higher-order outer-approximation
of the swept-volume by a polynomial superlevel set is ob-
tained as an optimal solution of a polynomial optimization
problem. This has the advantage of providing approximate
closed-form descriptions of the collision-prone states wibh
can then be effectively used for long-term and repeated
conjunctions analysis. From a computational viewpoint,
one has to solve a hierarchy of linear matrix inequality
problems of increasing size, which provide approximations
(i) of increasing accuracy and (ii) convergent in volume to
the original set. Secondly, once such a polynomial repre-
sentation is computed, a high-order quadrature scheme
for volumes implicitly defined by a polynomial superlevel
sets is employed. Finally, the method is illustrated on some
numerical examples borrowed from the literature.

I. INTRODUCTION

also performed after an avoidance maneuver to assess
its benefit. When assessing conjunctions between two
objects, the information usually available is: (1) a bound
on the radius of the involved objects assumed to be
spherical; (2) normal probability distributions (mean and
covariance values) of the state vectors of the objects at
the Time of Closest Approach (TCA, when their nominal
relative distance is estimated to be minimal).

In this context, two classes of encounters are defined.
For the so-called short-term encounters [9], [1], [4], [21]
the objects’ relative velocity is assumed to be very high
(several km/s), so that the relative motion is considered
rectilinear on the encounter time interval. When the
cross-correlations between the estimated states of the
two objects, as well as their velocity uncertainty are
neglected, the formulation of the collision probability is
greatly simplified. In brief, the relative positions which
generate collisions lie in a three-dimensional cylinder
(also called collision tube), on which a Gaussian density
is to be integrated. Finally, this reduces to computing a
two-dimensional Gaussian integral on a disk.

In the second class, called long-term encounters [4],

Since the collision between the Russian satellite COEm the relative velocity is of the order of m/s and
MOS 1934 and one debris of COSMOS 926 in Decempy, objects spend a significant amount of time in

ber 1991, no less than eight orbital gollisions have beeﬁ‘roximity to each other. This type of encounter is
reported between opergtlonal satellltes._ Space agenci&s e common in the context of formation flying or
and operators of the field have established alert proyyimir operations. Computing collision probabilities
cedur_es to assess the _nsks Of collision for contrt_)llem this so-called nonlinear framework, is considerably
satel_htes, a_md to authorize avoidance maneuvers !f Mfore difficult than for the short-term case. Even though
predicted risk, measured by a probability of coII|5|on,t.he state distribution at TCA is a Gaussian one, the

exceeds some tolerance threshold. Risk evaluation iﬁtegration volume is no-longer a cylinder and can be
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is correct when imposing for each relative trajectory atlebris (called secondary and denotedspyTheir state
most one entry crossing the hard-body sphere, whidk described by their position and velocity vectefsand
means that multiple encounters between the two objects, in a reference fram®& (x = p or » = s). Classically
are excluded. To tackle a practical implementation, ththe objects are modeled as spheres [1], [18], [4], [7], of
propagated distribution is assumed to remain Gaussi&nown radii R,, since this allows for factoring out their
during the encounter interval. These two assumptiorgrientation (attitude) and, for a conservative modeling
provide a rather restricted framework, which is howeveof the secondary object, whose geometry is often poorly
currently one of the most accomplished in the literature&known (see FigurgEl1). With this assumption, a collision
Another approach, sketched in the works of Chan [5pccurs when the relative distance betwegnand r

[6], consists in focusing on a different mathematicals less than the so-called hard-body radfas= R, +
description of the integration volume at TCA, which isR,. Based on this notion, it is natural to focus on the
also calledthe swept-volumeGenerated by the propa-
gation of the hard-body during the encounter duration,
it is defined as a union of ellipsoids (see Secfion TIl-A)
and numerically characterized by its envelope in the 3-
dimensional case, or in aamd-hocmanner, with various
trivial simplifications for lower dimensional cases. How-
ever, a general method relying on both (i) an effective
characterization of the swept-volume (when its shape is
not trivially reduced to a cylinder), and (ii) computation '
of the subsequent integral of the Gaussian density over Fig. 1: Encounter between two spherical objects.
such a volume, is missing in the literature.

Following up this intuition, in this article we invoke relative state vector? = ((rs — )", (vs —v,)T) €
polynomial optimization to provide approximate closed®R®, whose dynamics are given by:

form descriptions of the collision-prone states, which . _

can be effectively used for long-term and repeated { &) = Jta(t), teltot] (1)
conjunctions. This is a generalization with respect to ] ) . ) ]
Coppola’s formulation which cannot handle multiplehere f is a real Lipschitz continuous vector field
conjunctions correctly. Actually, even a visual accurat@Nd 7 := [to,tf] is the given time interval of the
outer-approximation of the swept volume can providg€ncounter. In general, these equations include the New-
important insights on the practical type of encounter. FdiPnian gravitational central field and possible orbital
instance, a straight cylinder form can confirm some operturbations (non spherical Earth, atmospheric drag,
the encounter assumptions of the short-term frameworR:9-)- It is assumed that, for each given relative initial
The proposed method is based on two steps: (1) highé&ondition ;. € R the solutionz,(t[z7) (also called
order implici] outer-approximation of the swept-volumetrajectory or sample path) of the systef (1) exists and
by a Polynomial Superlevel Set (PSS). From a compd$ unique fort € 7. _
tational viewpoint, one has to solve a hierarchy of lineaf N€ initial cpndltlonSxQ € R° are usually subject _
matrix inequality problems (each providing an outeri® uncertainties, and so, they are supposed to be dis-
approximation of increasing accuracy) with convergenciibuted according to a given probability measuyrg,

in volume to the original set. (2) Once such a polynomiafVith density p;. As mentioned in the introduction, in
representation has been computed, a high-order quadPéQCt'Ce the uncertalnty distribution is usually given and
ture scheme for volumes implicitly defined by a PSS i§Stimated to be Gaussiantaic4 € 7. In the following,
employed. With PSS approximation, highly non-conveyVithout loss of generality, we suppose that 4 = to
shapes can be outer-approximated accurately, whiékhe proposed aIgorlthms are easily tunablg for the case
in turn allows for further analysis of so-called long-fo < trca <ty as illustrated by examples in SeclVi).

term encounters. The method is illustrated on numeric4SSUmption 1 (Initial Gaussian distribution)the rela-
examples borrowed from the literature. tive initial conditions are normally distributed:

_1

II. ENCOUNTER MODELING AND PROBLEM pl(xg) — €2 7
STATEMENT (27)3 \/det(Pr)

Consider an operational spacecraft (called primary analith mean relative vectom; and covariance matri¥’.

denoted byp) in orbit around the Earth and a spaceln relative dynamics, the notion of collision transcribes
to a relative trajectory entering farbidden regionXy:

z.(ty) = b

(2 =mn)" Pyt (2 —mr)

)

Limplicit meansdefined by an inequality constrajras opposed to T T T 9 )
an explicit parametric representation of each point of the set. Xr={zl = (T, o) € RO | ||r |3 — R* < 0}. (3)

T o



for uncertainty propagation in such applications [2] (see
Definition 1 (Collision): Given a relative initial condi- Sec[V] for a specific example of linearization).
tion 20 € RS, a time interval7 and a forbidden region Assumption 2 (Linearized relative dynamicsJhe rel-
Xr, a collision occurs if there exists € 7 such that ative dynamics flow is linear and invertible. The solution
x,.(t)zd) € Xg. of the relative dynamics equation is therefore known via
Definition 2 (Collision domain/swept-volumeJhe do- a given state transition matrik(-,¢) : 7 — RS:
main of collision X is the set of relative initial condi-

tions leading to collision on the time interval, namely: i
g y From Equationd(8) andl(4), the swept-volume becomes:
XL ={22 eRC |3 teT, 2(t]z2) € Xr}. (4)

The problem ofcomputing the collision probabilitys X7 = {ﬁg €R®: 3ieT, )
formally stated as: R? — ) ®(t,to) " 111 ®(t, to)x;) > 0} :
Problem 1 (General formulation)Let the dynamics
in (@), a time interval7 and a forbidden regiority.
Provided that the initial conditions® € RS are dis- <I3 O). This appears in the formula simply because

. : . o 00
tributed according to a given probability measure, . ) . o
compute the probability that a collision occurs: only the positions (first coordinates ofr, (|z;)) are

constrained to belong t&z. An observation made in [5]
PAT) = P2 € X)) = (X2 :/ 5) is that when the last 3 coordinates df are fixed (no
) _ (@r T)_ ur( A7) X0 ®) velocity uncertainty), the above inequality describes an
Note that with Assumptiohl1, Ed.I(5) becomes: ellipsoid for each timet. Since this simplification is
important in practice, we detail it in what follows.
PAT) = /pf(:vr)dxr. (6)

g

z, (txd) = ®(t, to)a?, for t € T. (8)
where the matrixl;; € R®%6 is defined byl;; :=

d,u;.
0

A. No velocity uncertainty

Denote the initial state vectar? € RS by 207 :=

Proble is in general very difficult. A first issue is to ) . .
ml g y (r9" 10", where the relative velocity? € R3 is

determine the domain of integration, which strongly de K ¢ d ; Firstl te that
pends on the chosen model for the relative dynamics [4 ﬁ(a‘_: ty n(?v_vn E(no ? ran6 olgn vec or);{h Irs gi note. al
A theoretical solution was proposed for a polynomia € integral in Equatiori{6) becomes three-dimensional.

vector field f, in the framework of moments-measuresthecondlyt’ wel are@(%nl)étlntgrﬁ;ted n drelaltmle i)_osm?ns dm
sum-of-squares (SOS) in a series of works [23], [11] € swept-volumet . straightiorward caiculations lea

[3]: using Liouville’s equation, the nonlinear dynamicsfo the f_olllowmg characterization. ) .

is lifted into a linear equation on measures, which igrop_osmon 1. §3D Swe_pt-volume)_et_ the relative dy-
then solved using the Lasserre moment-SOS hierarchy ggmics transition mrgn@(t(i)to) be given and denoted
relaxations. However, in addition to the inherent numeriby blocks by® := <I>11 @12 .

cal complexity of the present high-dimensional situation, .o thatd (¢ tO)Qils inverible for eacht c T
we have also encountered numerical issues. This led I

. . _ _ e swept-volumet’- € R?, containing all the relative
to consider other numerically-tractable solutions with ?JositionSrO € R® which lead to collisions during the
more practical utility, as discussed in what follows. r

time interval 7, is described by a union of ellipsoids,
1. SWEPT-VOLUME AS A UNION OF BASIC Pr <
SEMI-ALGEBRAIC SETS T U tito)

The main goal is to obtain a more tractable characteriza-. h ad
tion of the integration domaii’?. From Equation[{#4), wit

one obtains a description ot} as a union of sets, Eity = {T? eR?:
by retro-propagating with the inverse flow/® of the  R®— (1)

relative dynamics the sety at each time € 7 where

XY = U {(pio (zy) | € XR}. (7 c(t,to) = —P11(t, to) 1 Pr2(t, to)v?,
teT Q(t, to) = (I)ll(t,to)ilq)ll(t,to)i,r.

However, due to the complicated nature of the inverse
flow (no closed-form solution in general), this set carRemark 1 (The 3D swept-volume as a compact set):
hardly be analytically described, so various additionaProvided that the matrix,,(¢,t) is invertible for
assumptions have been made in the literature [4], [7gacht € T, each ellipsoidt, ;, is proper i.e..Q(t, o)
[5]. In this work, the assumption of linearized relativehas full rank, and thus their union is compact. This
dynamics is employed, which is quite commonly useds important for practical implementations which are



developed in Sed. TVAC. Otherwise, the swept-volumeolved via a monotone sequence of upper bounds con-
can still be described by the union of non-necessamerging to the optimal value of (13). Each upper bound is
proper 3D quadratic forms. obtained by solving a truncated-moment problem similar
to the one applied in [10] and [13] for the computation
B. Gaussian integral of union of Semi'algebraic sets of respective'y Lebesgue or Gaussian measures of a
Motivated by the previous description of the sweptbasic semi-algebraic set. The monotonic convergence,
volume as a union of ellipsoids, one observes that in thghich is rather slow in general, may be significantly
g]?ns‘?zrgl ]c\:fase, by talangg SUﬁf'thly f|ne< dfc}reiﬁgt'o'ﬂnproved using a technique based on Stokes’ formula.
s TN T U0 S Sy S W This requires to use a polynomial which vanishes on the
constraints describing subse(s < A7 algebraic boundary of the considered set [14]. Unfortu-
Ki={z0 cR®: R? - x2T<I>(ti,to)TIu<I>(ti,to)x9 > 01, nately this acceleration technique cannot be directly used
(10) here, due to the high number of s&fsinvolved. Indeed
provide an approximate description 4f as a union g polynomial that vanishes on the boundary of the union
g‘;rbf:‘g'r% s:gli—r?lgebraml sets (which are neither disjoinkan have a potential very high degree, which results in
P general): intractable additional Stokes’ constraints. Another 4imi
N tation of directly solving[(IB) is that when its optimal
K:=JK: car. (1) value is very small, very high order relaxations are
=t needed. The latter have a large size and are numerically
The main advantage of expressing the swept-volum#-conditioned because of high values of some moments
as a union of basic semi-algebraic sets, is that it capf the Gaussian to be computed.
be exploited in the framework dfolynomial Optimiza- Hence, motivated also by the practical question of
tion [12]. The simplified formulation of PIi.]1 reads:  obtaining a closed-form representation of the swept-
Problem 2 (Integration on union of semi-algebraic setsjolume, we chose instead another similar approach for
Given a union of basic semi-algebraic sets as ifProblem[2, with two main steps: (1) Find an implicit
Eqg. (11), [10), and a Gaussian probability measure representation of the integration domairby a PSS [8],
compute the integral: [14]; (2) Compute the integra[(12) with a high-order
guadrature for volumes implicitly defined by a PSS [20].

PelT) i= pr (K) = | dpr. (12) IV. PSS APPROXIMATIONS OF THE
This problem has a theoretical interest of its own and has SWEPT-VOLUME

been already addressed in the literature [14] based on tn
measure-moments framework. In brief, it can be proven o _ . _
that Problem([{R) is equivalent to an infinite-dimensionathat a union = |J K; C R", of compact basic semi-

. . =1
linear program on positive measures. algebraic set¥’; (given by a conjunction of polynomial

Firstly, let us fix some necessary notations. Given fhequalities), can be efficiently approximated by a PSS.

Borel setQ C R", let M(Q) be the Banach space | o R[z]4 be the vector space of polynomials in the
of finite signed Borel measures dn, equipped With 5 iapjeg, — (x1,...,2,) Over reals, of total degree
the total variation norm. Fop,v € M(Q), denote by o+ most 4. Morec;ver: suppose that can be outer-
supp(u) the support ofu (i.e. the smallest closed set bounded by a hyper-rectanglé C B = [a,b] =
I of @ st [u[(Q\T) = 0); denotey < v when (¢ €R", a; < 2: < by, fori — 1’”:”}’ a,be’R".
#(4) < v(A) for any measurable set C € finally,  pefinition 3 (PSS):A degreed-PSS approximation for

a positive measurg is denoted by. > 0. K is defined by a polynomigh,; € R[z]g, S.t.
Proposition 2 (Thm. 3 [14]):The following problem

has an optimal solution ari- = P.(T). K C PSS, ={zeB: pafr) >1}.  (14)
A first technical issue is that the swept-volume in
Eq. (I1) is not compact in general. An exception is

§vas shown in [8] (see also [10], [14] for similar works)
N

N

e = #17___7:;15/\4(]1@6)1; i (i) the 3D case (no velocity uncertainty, cf. Remark 1) for
i\’: o (13) which the method of [8] can be directly applied.
izl’“ S A For the 6D general case, a straightforward solution is to
8.t supp(pi) €Ki, i=1,...,N rely on the fact that the approximation computed Xor
p; =0,i=1,...,N. is to be used afterwards for integrating the multivariate

Roughly speaking, this problem aims at maximizingGaussian density (12). Hence, one can consider a suit-
the sum of masses oV positive measureg; (with ableh-o ellipsoid corresponding to the given covariance
supp(u;) € K;) whose sum is dominated by the knownmatrix P; (say h = 8.5 in practice, to be tuned
Gaussian measurg;. Problem [(IB) is numerically depending on numerical requirements) and bound it by a



hyper-rectanglds. Then, one uses the séfs = K;NB, to a union of semi-algebraic set$ while for Pb. [16)
which are compact. With this additional approximationthe Lebesgue measuhg is used instead, which simply
we next proceed with a description of the method andorresponds to computing the integration of a union of
algorithms adapted from [8], [14] to our case, to obtairsemi-algebraic sets.

a PSS of fixed degree via semidefinite optimization. We provide in what follows the basic details of the
numerical computation of the solution of Problem](15),

which is more or less standard in the fieldReflynomial
The polynomial optimization problem reads: Optimization[12].

Problem 3 (Approximate PSS for the swept-volume): )
Let the semi-algebraic s& = |J K; be given by B- SOS relaxations of Proble(d)

) . i=1,....N L Recall that the constraints of Problel (3) are:
the union of N basic compact semi-algebraic séfs a - the polynomialp is positive onB

glven :;ugdllngtr;]yper—trlegtarlg&g ICb:I:\nd also a fixed - p—1is positive onK;, Vi=1,---,N.
egreed. Solve the optimization probiem A common strategy for enforcing positivity is bg)re-

A. PSS approximations of the 6D swept-volume

quiring the polynomial to be sum-of-Sﬁuares_(SO . Let

wie = inf pli= /p(w?)dx?, us denote the convex cone of real polynomials that are
: PER[z0]4 B SOS by ¥?[z] C R[z] and respectivelyy?[x]a, C

p=0onhB, (15) R[z]2x, its subcone of SOS polynomials of degree at

ot P >1lonk;, most 2k. Using Putinar’s Positivstellensatz [19], [12],
.t e

- Problem [[Ib) becomes, when fixirge N:
p=zlonKy. wrpax = nf B/p(w?)dw&
The main result is the following (its proof is very similar st

to the one given in [8, Thm. 2]).
Theorem 1:The infimum in Problen{(15) is attained for
a polynomialp’, - € R[29]4. Moreover,PSS,- _ 2 I,

— pP—ooK; —9101,K, — D, 9580158 =1

1<5<6
00,8 € Ej[wg]zz,
05,8 € X[z, ]a—1), Vi=1,---,6,

{pdo,s > 9;89;,8=0

Wi SWik and dli—>I§o Wi = vol(KC). . 1<5%e

The polynom|alp2K can be seen as an approximation aszj c 22[z§]zf2,1),

of the indicator functionlg of the setX. Such an o1,5,5 € B2 [2)]a¢e—1), Vi=1,---,6,
approximation can be obtained by solving a convex

optimization problem whose constraints are Linear Ma-

trix Inequalities (LMIs). Moreover, as the degree of PTOOKN TINONKN = 3o 9580N.58 =1
the approximationd increases, the sequen¢g,)is1 Zokn 662222?50]]2;} 1

converges inL'-norm, almost uniformly and almost ,,ijygezz[mg’jm;;)),’ Vj=1,---.,6
everywhere to the indicator function of the st of an

interest. This can be thought as a direct generalization $fhere the constraints defining the séisare:
classical approximation by ellipsoids. Indeed if degzee- I, .— {20 € RS : g;(2) > 0,956 >0,j=1,...,6},
PSS approximations are used, we exactly recover well; — 1~

known semi-definite optimization-based approaches. (18)

Note that Problem[(15) has a dual infinite-dimensionadnd the polynomial; is obtained from Equatiofi (10),
linear problem on measures, namely, denoting the clas-

T
sical Lebesgue measure #hby \z: Qi(fg) = f;\; —x) ®(ti, to) T 11 ®(ti, to)ay, (19)
i=1,...,N,
N —
vE = sup > i (Ki) The polynomialsy; 5 form the constraints defining the

H1yes b EM(B) 1=1

N

Z i < )\Ba (16)
s.t. =1 _—

Supp(:uz) - ICia v = 17 . '7N

pi 2 0,i=1,...,N. Proposition 3 (Convergence of LMI hierarchy):
In addition, vz = lim w* — = vol(K) [8]. For each fixedd € N, the value of Problem[(17)
d—o0

m W .
Remark 2: It is very interesting to observe that PB](13)C0NVerges towy ¢, ast — oo and moreover, for any

and [I6) are very similar: the main difference resideg? = d the solutionp3, , - of Problem [(1V) satisfies
only in the initial measure considered. For Ffh] (13), onthe constraints of Problern (15) i.€35,; _ is a PSS

aims at computing the integral of a Gaussian meagure approximation ofiC.

hyper-rectangles,

gij(Ig) = (.IE] - aj)(bj - Ig_j)vj = 13 .. '76' (20)



Proof: The proof can be found in [14]. ]

ditional requirement (and approximation) that a compact

Let us briefly discuss the simplification obtained wherbounding box needs to be provided as input. Moreover,
the Gaussian uncertainty on the velocity can be nehese algorithms are easily tractable in software.
glected in the six dimensional relative dynamics (po-

sition, velocity), during the encounter time interval

C. No velocity uncertainty

In this simplified setting, the swept-volume is described
as a compact union of 3-dimensional ellipsoids ac-

D. Implementation Details
Firstly, the objective function

/p(a:)d:c: > pi/a:ida:,

B oglil<d g

cording to Propositiof]1. Algorithl 1 summarizes the =~ . o
computation of the PSS approximation in this case. It¢/hich is a linear function of the coefficienis of the
correctness follows from Propositiofls 1 did 3. The onlf0lynomialp, requires the computation of the Lebesgue

technicality (described for completeness in Lides4),
resides in computing a bounding bdk

Algorithm 1 PSSAPROX3D(ry, ®(t,t0),v", R, d, 1)

» Yo

Input: time grid 7w, ®(¢, to) with invertible upper-left block

for t € 7, known initial relative velocitiess? € R3,
radius R, degree/ > d, d > 1.

Output: ps € R[z]q is a PSS approximation of the dis-

cretized collision set{r® € R® : 3t € rnst.z) =
T T T
[0 W2 )T, 22 ®(t,t0) T L1 D(¢, t0)2d < R?} .

> Define ellipsoids

gtiato = {r? S RS :

R? — (r) — c(ti, t0)) " Q(ti, to) ' (ry — c(ti, to)) = 0}
1: C(ti,to) — —@11(ti,t0)71‘1312 (ti,to)vf, for t; € mn;
2. Q(ti,to) P11 (ti,to) " Pua(ts,to) ", for t; € Tn;

> Find a bounding box3, := {z € R®: a < z < b}

3: 5(ti,t0) — \/diag (%Q(ti,to)) I, for t; € ™n;

[a, b] <+ L?éiTIZlV(C(ti,to) — (i, t0)),

4:
max (c(ts, to) + 6(ts, to))} ;

t,€ETN

v

Solve the optimization problem

Dgy — RP = (z—c(tito)” Q(ti to) "t (z — clti, to))
for t; € 7n;

6: 95,89 (z; —aj) (b —x;), for j =1,2,3;

)]

i d
pgl{l[gld/p(w) x,

59

W*2¢,d =

s.t.

P — 00,80 — > 95,8005,80 =0
1<7<3

00,50 € X2[x7]ae,
;50 € D2allae—1), Vi =1,2,3,

O'O,ti 6 22 [IE?]Q[,

P —o0o0,t; —Ggt;01,t; = 1
O1,t; € 22[509]2(271)7

(1)

7: return  p3, 4 = argmin 1)

momentsm; := [ z'dz, which is straightforward.

Remark 3 (Box sBcaIing)ln the implementation, a scal-
ing of B, to the unit box[—1,1]™ is important for
the numerical quality of the results. Also, in line with
Remarl 2, from a theoretical perspective, working with
the Lebesgue or the Gaussian measure is similar. In
practice, computing the Lebesgue moments-en, 1],
offered the best quality numerical results.

Secondly, the constraints can be recast in terms of Linear
Matrix Inequalities (LMIs); this is already a classical
strategy and several software tools are available to
model problems of the form above, like for instance the
Matlab Toolbox YALMIP [15]. Finally, this boils down

to solving only a semi-definite programming problem
(whenever the degrees and (! are fixed), which was
done with the Mosek SDP solver [17].

V. GAUSSIAN INTEGRATION ON THE SWEP¥VOLUME

While a compact description of the swept-volume as
a PSS is interesting in itself, recall that the complete
goal of ProblenTR was the integration of a Gaussian
distribution on this swept-volume. To this end, besides
the formulation of the optimization Problerh {13), we
have developed two different strategies that use the
obtained PSS directly, and depend upon the assumption
on velocity uncertainties:

- The 3D case: Algorithm [ returns a polynomial
P3¢.q4» Which provides an implicit representation of the
approximated volume. This is used as input for [20,
Algorithm 3], which automatically determines a high-
order accurate numerical quadrature for the evaluation
of integrals over volumes, whose geometry is defined
implicitly via a fixed level set of a smooth function
¢ : R® — R. Obviously in our casep = p}, ;.

- The 6D case: Similarly, after Probleri 17 is solved for
an optimalp3, ,, the integral of a Gaussian distribution
over the vqu'mePSSp;u has to be evaluated. Since
the code of [20] is currently restricted to 3D, a basic
Monte Carlo sampling is done, which consists in simply
checking whetheps, ;(X ;) > 1 for each sampleX ;.

For the genera-dimensional case a similar algorithm This procedure is to be replaced by a 6D implementation
can be designed, which solves Problerh 17, with the adf the algorithm in [20].



Moreover, to cross-check the validity and quality of tf -
proposed methods, a brute-force Monte Carlo proc
was also designed. Given for completeness in Al¢ -
rithm [2, it uses the very idea of the representation
the swept-volumeas a unionC of compact setsC;. It ‘ ‘
is simply based on testing whether an initial condition (a) (b)
20 € RS leads to a collision in the time intervd, i.e.
whetherz? belongs to one of thé&; (i = 1,..., N).

Algorithm 2 BFVT(rn, ®(t,t0), B, R, M, Pr)

Input: A time grid 7w, transition matrix®(¢,to), bounding
box B € R®, hardbody radiusk, Gaussian samples no. (© (d)
M and corresponding covariance matix.

Output: approximative value of collision probability

Fig. 2: (a) Miss distance (m.) (b) Instantaneous probability
of collision P(t) with (blue) or without velocity uncertainties
(red) at TCA (c) 3D Swept-volume shape (no velocity uncer-
tainty) (d) PSS approximation of degrde= 4.

1: Generate the Gaussian samp(es))
the covariance matri¥’s;

2: C «+ Cardinality of {z); € B: 3i € {l,...,N} st
Gi (Igj) > 0}

§=1,...,

3 retun C/M uncertainty at TCA. The instantaneous probability is
plotted in Figurd 2b, computed with or without relative
VI. NUMERICAL EXAMPLES velocity uncertainty at TCA. Considering the similarity

Two numerical examples borrowed from the paper b)(?f the t_WO curves, one can consider that the veIO(_:i_ty
S. Alfano [2] are used to illustrate the proposed apyncertalnty at TCA may be neglected in this specific

proach. The Gaussian distribution of both the primar ase and the 3D version of Algoritm 1 may be applied.

and secondary is known at TCA. A nonlinear two-bod n the time ipterva’T - [_1,420’ 1420}, Fhe exf’;\ct union
Keplerian analytical propagation is used for both th@f ellipsoids is plotted in Figure_2c, with various colors

primary and secondary mean vectors, then the norm %‘]r egﬁh tlrlre dlfcret||za_t|on.. Wit = gﬁ h: 4Stsh|s_
the mean relative position (miss distance) is computedd0rithm allows for plotting in Figurg 2d the PSS (in a

on the time interval of the encounter and plotted. Thémit cube scaled box). Then, applying the quadrature

. g _ . . . 6
transition matrix ®(-,¢y) is computed by performing gives P N 0'00016_5’_ while AIg_o_nthm[Z with 10
a linearization of the Keplerian dynamics with respecﬁampIeS gives a collision probability 6{000158, con-
to the primary object trajectory, following the classi- !

rming that we get a good approximation. Note that
cal algorithm of Shepperd [22]. For completeness, th

[{Iis result agrees with the ones presented in [2] where
Gaussian distribution of the relative state at TCA (Witht e probability is evaluated a8.000161 for a highly

or without velocity uncertainty) is propagated using thé:omputationally demanding Monte Carlo approach (662

transition matrix on the time interval of the encounter.mIIIIOn Monte Carlo runs needed) an@000164 for

Then, the so-called instantaneous collision probabiiity i€ VOxels method. Finally, the results are consistent

plotted for both cases. This indicator is useful in practicd/ith Co_ppole;’s fonl”nulationfwhen :F]lss#m_ing no velocity
since it shows the probability of collision at each giveriNcertainty (formula (40) of [7]) which gives.000159.

instant. The formula consists in computing a Gaussia@
integral over a 3D ball and semi-analytical efficient .
algorithms are available [21]. Finally, the 3D swept-We consider the encounter [2, Example No. 9], of two

volume shape and its PSS approximation are depicte@®bjects in highly-eccentric orbits (HEO) where the mean
miss distance at TCA is greater than the combined object

A. Example 1 radius. The computed instantaneous collision probability
The first example is the case 7 from [2], involvingis given in Figure[B(b) and (c) with/without relative
nonlinear relative motion for two satellites in Low Earthvelocity uncertainty considered at TCA.

Orbits (LEO) where the mean miss distance at TCA i§irstly, our method is applied assuming that there is
less than the hard-body radius and the relative velocityo velocity uncertainty (the 3D case). In Figlre 3(d),
at TCA is low (0.19 m/s). This example was intendedthe exact swept-volume (union a6 ellipsoids obtained

to test the sampling methods of the literature, sincen the time interval7 = [—10800,10800]) is plotted.

a low probability of collision is expected and a greatAlgorithm [, applied withd = 2I = 8, requires about
number of Monte Carlo samples is needed to get at) seconds (Matlab execution on a classical workstation)
accurate result. Let us first check the impact of velocityor obtaining the degre&-PSS, plotted in Figurg] 3(e).

Example 2



Finally, the code of [20, Algorithm 3] requires less than [2]
10 seconds to evaluate the Gaussian integral over th%]
PSS computed before, leading = 0.2825, which is
confirmed by brute-force simulations. Formula (40) in
[7] gives 0.2715.

As observed in Figurel3(b) and (c) and also confirmeo{4]
by the results in [2], the relative velocity uncertainty [5]
does matter in this case: Algorithioh 2 provides a value
similar to that of [2], 0f0.36511. Our 6D method, with [6]
d = 2] = 8, provides a PSS volume, whose projection
in 3D, for the fixed mean velocity value at TCA is [7]
plotted in Figurd B(e). One observes an overestimation
for this case. Depending on thies bounding ellipsoid [8]
considered as bounding, the results obtained with our
method range frond.50 for 6-o to 0.371 for 1-o. (9]

\ N \
\\ / \ “s‘/ \
N/ / [10]
(@ (b) (©) (]
,,,,,,,,,,,,, "
[13]
@ © 0 .

Fig. 3: (a) Miss distance (m) (b) Instantaneous collision[15]
probability P(¢) with (c) and without (d) velocity uncertainty

(d) 3D Swept-volume shape (no velocity uncertainty) (e) PSE6]
approximationd = 8 (f) Projection of 6D PSS approx, = 8,

for a fixed mean velocity.

[17]

VIl. CONCLUSION [18]

By using models from polynomial optimization, we have
provided (i) a theoretical framework and (ii), practicalf19]
algorithms to obtain approximate closed-form descrip-
tions of the set of collision-prone states (and an approigo]
imation of their Gaussian measure). This allows efficient
approximations of non-convex shapes which can be usétl
effectively for long-term and repeated conjunctions, gen-
eralizing both Chan’s and Coppola’s formulations. We
are confident that visual accurate outer-approximatida?]
of the swept volume can provide further insight 0Ny
classifying the types of encounter occurring in practice.
Along these lines, a further complexity and numerical
analysis on the provided algorithms would help to better
assess and design more tuned and efficient algorithms
for special practical cases.
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