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Polynomial superlevel set approximation of swept-volume for
computing collision probability in space encounters

D. Arzelier, F. Bréhard, M. Joldeş, J.-B. Lasserre, S. Laurens, A. Rondepierre

Abstract— Computing long-term collision probability in
space encounters is usually based on integration of a
multivariate Gaussian distribution over the volume of ini-
tial conditions which generate collisions in the considered
time interval. As this collision set is very difficult to
determine analytically, for practical computation various
simplifications are made in the literature. We present a
new method for computing the collision probability based
on two steps. Firstly, a higher-order outer-approximation
of the swept-volume by a polynomial superlevel set is ob-
tained as an optimal solution of a polynomial optimization
problem. This has the advantage of providing approximate
closed-form descriptions of the collision-prone states which
can then be effectively used for long-term and repeated
conjunctions analysis. From a computational viewpoint,
one has to solve a hierarchy of linear matrix inequality
problems of increasing size, which provide approximations
(i) of increasing accuracy and (ii) convergent in volume to
the original set. Secondly, once such a polynomial repre-
sentation is computed, a high-order quadrature scheme
for volumes implicitly defined by a polynomial superlevel
sets is employed. Finally, the method is illustrated on some
numerical examples borrowed from the literature.

I. INTRODUCTION

Since the collision between the Russian satellite COS-
MOS 1934 and one debris of COSMOS 926 in Decem-
ber 1991, no less than eight orbital collisions have been
reported between operational satellites. Space agencies
and operators of the field have established alert pro-
cedures to assess the risks of collision for controlled
satellites, and to authorize avoidance maneuvers if the
predicted risk, measured by a probability of collision,
exceeds some tolerance threshold. Risk evaluation is
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also performed after an avoidance maneuver to assess
its benefit. When assessing conjunctions between two
objects, the information usually available is: (1) a bound
on the radius of the involved objects assumed to be
spherical; (2) normal probability distributions (mean and
covariance values) of the state vectors of the objects at
the Time of Closest Approach (TCA, when their nominal
relative distance is estimated to be minimal).
In this context, two classes of encounters are defined.
For the so-called short-term encounters [9], [1], [4], [21],
the objects’ relative velocity is assumed to be very high
(several km/s), so that the relative motion is considered
rectilinear on the encounter time interval. When the
cross-correlations between the estimated states of the
two objects, as well as their velocity uncertainty are
neglected, the formulation of the collision probability is
greatly simplified. In brief, the relative positions which
generate collisions lie in a three-dimensional cylinder
(also called collision tube), on which a Gaussian density
is to be integrated. Finally, this reduces to computing a
two-dimensional Gaussian integral on a disk.
In the second class, called long-term encounters [4],
[7], the relative velocity is of the order of m/s and
both objects spend a significant amount of time in
proximity to each other. This type of encounter is
more common in the context of formation flying or
proximity operations. Computing collision probabilities,
in this so-called nonlinear framework, is considerably
more difficult than for the short-term case. Even though
the state distribution at TCA is a Gaussian one, the
integration volume is no-longer a cylinder and can be
very intricate (see Section III for details). Due to this,
generalization attempts were proposed for specific cases
of configurations [18], [16], [4], but these approaches
are relatively limited because of their characterization
for particular relative trajectories.
In [7], V. Coppola proposes a different mathematical
formalization and generalization. Roughly speaking, us-
ing a change of variable, the complicated integration
volume at TCA is mapped via the dynamics at each
time on the so-called hard-body sphere (which is a
three-dimensional sphere of known radius equal to sum
of the objects radii). In turn, this implies propagating
the TCA distribution (both position and velocity) via
the non-rectilinear dynamics. This change of variable



is correct when imposing for each relative trajectory at
most one entry crossing the hard-body sphere, which
means that multiple encounters between the two objects
are excluded. To tackle a practical implementation, the
propagated distribution is assumed to remain Gaussian
during the encounter interval. These two assumptions
provide a rather restricted framework, which is however
currently one of the most accomplished in the literature.
Another approach, sketched in the works of Chan [5],
[6], consists in focusing on a different mathematical
description of the integration volume at TCA, which is
also calledthe swept-volume. Generated by the propa-
gation of the hard-body during the encounter duration,
it is defined as a union of ellipsoids (see Section III-A)
and numerically characterized by its envelope in the 3-
dimensional case, or in anad-hocmanner, with various
trivial simplifications for lower dimensional cases. How-
ever, a general method relying on both (i) an effective
characterization of the swept-volume (when its shape is
not trivially reduced to a cylinder), and (ii) computation
of the subsequent integral of the Gaussian density over
such a volume, is missing in the literature.
Following up this intuition, in this article we invoke
polynomial optimization to provide approximate closed-
form descriptions of the collision-prone states, which
can be effectively used for long-term and repeated
conjunctions. This is a generalization with respect to
Coppola’s formulation which cannot handle multiple
conjunctions correctly. Actually, even a visual accurate
outer-approximation of the swept volume can provide
important insights on the practical type of encounter. For
instance, a straight cylinder form can confirm some of
the encounter assumptions of the short-term framework.
The proposed method is based on two steps: (1) higher-
order implicit1 outer-approximation of the swept-volume
by a Polynomial Superlevel Set (PSS). From a compu-
tational viewpoint, one has to solve a hierarchy of linear
matrix inequality problems (each providing an outer-
approximation of increasing accuracy) with convergence
in volume to the original set. (2) Once such a polynomial
representation has been computed, a high-order quadra-
ture scheme for volumes implicitly defined by a PSS is
employed. With PSS approximation, highly non-convex
shapes can be outer-approximated accurately, which
in turn allows for further analysis of so-called long-
term encounters. The method is illustrated on numerical
examples borrowed from the literature.

II. ENCOUNTER MODELING AND PROBLEM
STATEMENT

Consider an operational spacecraft (called primary and
denoted byp) in orbit around the Earth and a space

1Implicit meansdefined by an inequality constraint, as opposed to
an explicit parametric representation of each point of the set.

debris (called secondary and denoted bys). Their state
is described by their position and velocity vectorsr⋆ and
v⋆, in a reference framêR (⋆ = p or ⋆ = s). Classically
the objects are modeled as spheres [1], [18], [4], [7], of
known radiiR⋆, since this allows for factoring out their
orientation (attitude) and, for a conservative modeling
of the secondary object, whose geometry is often poorly
known (see Figure 1). With this assumption, a collision
occurs when the relative distance betweenrp and rs
is less than the so-called hard-body radiusR = Rp +
Rs. Based on this notion, it is natural to focus on the
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Fig. 1: Encounter between two spherical objects.

relative state vectorxT
r =

(

(rs − rp)
T , (vs − vp)

T
)

∈
R

6, whose dynamics are given by:
{

ẋr(t) = f(t, xr(t)), t ∈ [t0, tf ],
xr(t0) = x0

r.
(1)

where f is a real Lipschitz continuous vector field
and T := [t0, tf ] is the given time interval of the
encounter. In general, these equations include the New-
tonian gravitational central field and possible orbital
perturbations (non spherical Earth, atmospheric drag,
e.g.). It is assumed that, for each given relative initial
condition x0

r ∈ R
6, the solutionxr(t|x

0
r) (also called

trajectory or sample path) of the system (1) exists and
is unique fort ∈ T .
The initial conditionsx0

r ∈ R
6 are usually subject

to uncertainties, and so, they are supposed to be dis-
tributed according to a given probability measureµI ,
with density ρI . As mentioned in the introduction, in
practice the uncertainty distribution is usually given and
estimated to be Gaussian attTCA ∈ T . In the following,
without loss of generality, we suppose thattTCA = t0
(the proposed algorithms are easily tunable for the case
t0 < tTCA < tf , as illustrated by examples in Sec. VI).
Assumption 1 (Initial Gaussian distribution):The rela-
tive initial conditions are normally distributed:

ρI(x
0
r) :=

e−
1
2 (x

0
r−mI )

TP−1
I

(x0
r−mI)

(2π)3
√

det(PI)
, (2)

with mean relative vectormI and covariance matrixPI .
In relative dynamics, the notion of collision transcribes
to a relative trajectory entering aforbidden regionXR:

XR = {xT
r = (rTr , vTr ) ∈ R

6 | ‖rr‖
2
2 −R2

6 0}. (3)



Definition 1 (Collision): Given a relative initial condi-
tion x0

r ∈ R
6, a time intervalT and a forbidden region

XR, a collision occurs if there existst ∈ T such that
xr(t|x

0
r) ∈ XR.

Definition 2 (Collision domain/swept-volume):The do-
main of collisionX 0

T is the set of relative initial condi-
tions leading to collision on the time intervalT , namely:

X 0
T = {x0

r ∈ R
6 | ∃ t ∈ T , xr(t|x

0
r) ∈ XR}. (4)

The problem ofcomputing the collision probabilityis
formally stated as:
Problem 1 (General formulation):Let the dynamics
in (1), a time intervalT and a forbidden regionXR.
Provided that the initial conditionsx0

r ∈ R
6 are dis-

tributed according to a given probability measureµI ,
compute the probability that a collision occurs:

Pc(T ) := P(x0
r ∈ X 0

T ) = µI(X
0
T ) =

∫

X 0
T

dµI . (5)

Note that with Assumption 1, Eq. (5) becomes:

Pc(T ) =

∫

X 0
T

ρI(xr)dxr. (6)

Problem 1 is in general very difficult. A first issue is to
determine the domain of integration, which strongly de-
pends on the chosen model for the relative dynamics [4].
A theoretical solution was proposed for a polynomial
vector fieldf , in the framework of moments-measures,
sum-of-squares (SOS) in a series of works [23], [11],
[3]: using Liouville’s equation, the nonlinear dynamics
is lifted into a linear equation on measures, which is
then solved using the Lasserre moment-SOS hierarchy of
relaxations. However, in addition to the inherent numeri-
cal complexity of the present high-dimensional situation,
we have also encountered numerical issues. This led us
to consider other numerically-tractable solutions with a
more practical utility, as discussed in what follows.

III. SWEPT-VOLUME AS A UNION OF BASIC
SEMI-ALGEBRAIC SETS

The main goal is to obtain a more tractable characteriza-
tion of the integration domainX 0

T . From Equation (4),
one obtains a description ofX 0

T as a union of sets,
by retro-propagating with the inverse flowϕt0

t of the
relative dynamics the setXR at each timet ∈ T :

X 0
T =

⋃

t∈T

{

ϕt0
t (xr) | xr ∈ XR

}

. (7)

However, due to the complicated nature of the inverse
flow (no closed-form solution in general), this set can
hardly be analytically described, so various additional
assumptions have been made in the literature [4], [7],
[5]. In this work, the assumption of linearized relative
dynamics is employed, which is quite commonly used

for uncertainty propagation in such applications [2] (see
Sec. VI for a specific example of linearization).
Assumption 2 (Linearized relative dynamics):The rel-
ative dynamics flow is linear and invertible. The solution
of the relative dynamics equation is therefore known via
a given state transition matrixΦ(·, t0) : T → R

6:

xr(t|x
0
r) = Φ(t, t0)x

0
r , for t ∈ T . (8)

From Equations (8) and (4), the swept-volume becomes:

X 0
T =

{

x0
r ∈ R

6 : ∃ t ∈ T ,

R2 − x0T

r Φ(t, t0)
T I11Φ(t, t0)x

0
r > 0

}

,
(9)

where the matrixI11 ∈ R
6×6 is defined byI11 :=

(

I3 0
0 0

)

. This appears in the formula simply because

only the positions (first3 coordinates ofxr(t|x
0
r)) are

constrained to belong toXR. An observation made in [5]
is that when the last 3 coordinates ofx0

r are fixed (no
velocity uncertainty), the above inequality describes an
ellipsoid for each timet. Since this simplification is
important in practice, we detail it in what follows.

A. No velocity uncertainty

Denote the initial state vectorx0
r ∈ R

6 by x0
r

T
:=

(r0
T

r , v0
T

r ), where the relative velocityv0r ∈ R
3 is

exactly known (not a random vector). Firstly, note that
the integral in Equation (6) becomes three-dimensional.
Secondly, we are only interested in relative positions in
the swept-volumeX 0

T . Straightforward calculations lead
to the following characterization.
Proposition 1 (3D Swept-volume):Let the relative dy-
namics transition matrixΦ(t, t0) be given and denoted

by blocks byΦ :=

(

Φ11 Φ12

Φ21 Φ22

)

.

Assume thatΦ11(t, t0) is invertible for eacht ∈ T .
The swept-volumeX 0

rT ∈ R
3, containing all the relative

positionsr0r ∈ R
3 which lead to collisions during the

time intervalT , is described by a union of ellipsoids,

X 0
rT =

⋃

t∈T

Et,t0 ,

with

Et,t0 :=
{

r0r ∈ R
3 :

R2 − (r0r − c(t, t0))
TQ(t, t0)

−1(r0r − c(t, t0)) > 0
}

,

where

c(t, t0) = −Φ11(t, t0)
−1Φ12(t, t0)v

0
r ,

Q(t, t0) = Φ11(t, t0)
−1Φ11(t, t0)

−T
.

Remark 1 (The 3D swept-volume as a compact set):
Provided that the matrixΦ11(t, t0) is invertible for
eacht ∈ T , each ellipsoidEt,t0 is proper i.e.,Q(t, t0)
has full rank, and thus their union is compact. This
is important for practical implementations which are



developed in Sec. IV-C. Otherwise, the swept-volume
can still be described by the union of non-necessary
proper 3D quadratic forms.

B. Gaussian integral of union of semi-algebraic sets

Motivated by the previous description of the swept-
volume as a union of ellipsoids, one observes that in the
general case, by taking a sufficiently fine discretization
of size N , τN := {t0 6 · · · ti 6 · · · 6 tf}, the
constraints describing subsetsKi ⊆ X 0

T :

Ki := {x
0
r ∈ R

6 : R2 − x0T

r Φ(ti, t0)
T I11Φ(ti, t0)x

0
r > 0},

(10)
provide an approximate description ofX 0

T as a union
of basic semi-algebraic sets (which are neither disjoint,
nor compact in general):

K :=

N
⋃

i=1

Ki ⊆ X
0
T . (11)

The main advantage of expressing the swept-volume
as a union of basic semi-algebraic sets, is that it can
be exploited in the framework ofPolynomial Optimiza-
tion [12]. The simplified formulation of Pb. 1 reads:
Problem 2 (Integration on union of semi-algebraic sets):
Given a union of basic semi-algebraic sets as in
Eq. (11), (10), and a Gaussian probability measureµI

compute the integral:

P̃c(T ) := µI (K) =

∫

K

dµI . (12)

This problem has a theoretical interest of its own and has
been already addressed in the literature [14] based on the
measure-moments framework. In brief, it can be proven
that Problem (2) is equivalent to an infinite-dimensional
linear program on positive measures.
Firstly, let us fix some necessary notations. Given a
Borel setΩ ⊂ R

n, let M(Ω) be the Banach space
of finite signed Borel measures onΩ, equipped with
the total variation norm. Forµ, ν ∈ M(Ω), denote by
supp(µ) the support ofµ (i.e. the smallest closed set
Γ of Ω s.t. |µ|(Ω \ Γ) = 0); denoteµ 6 ν when
µ(A) 6 ν(A) for any measurable setA ⊆ Ω; finally,
a positive measureµ is denoted byµ > 0.
Proposition 2 (Thm. 3 [14]):The following problem
has an optimal solution andκ∗

K = P̃c(T ).

κ∗
K = sup

µ1,...,µN∈M(R6)

N
∑

i=1

µi (Ki) ,

s.t.

N
∑

i=1

µi 6 µI ,

supp(µi) ⊆ Ki, i = 1, . . . , N
µi > 0, i = 1, . . . , N.

(13)

Roughly speaking, this problem aims at maximizing
the sum of masses ofN positive measuresµi (with
supp(µi) ⊆ Ki) whose sum is dominated by the known
Gaussian measureµI . Problem (13) is numerically

solved via a monotone sequence of upper bounds con-
verging to the optimal value of (13). Each upper bound is
obtained by solving a truncated-moment problem similar
to the one applied in [10] and [13] for the computation
of respectively Lebesgue or Gaussian measures of a
basic semi-algebraic set. The monotonic convergence,
which is rather slow in general, may be significantly
improved using a technique based on Stokes’ formula.
This requires to use a polynomial which vanishes on the
algebraic boundary of the considered set [14]. Unfortu-
nately this acceleration technique cannot be directly used
here, due to the high number of setsKi involved. Indeed
a polynomial that vanishes on the boundary of the union
can have a potential very high degree, which results in
intractable additional Stokes’ constraints. Another limi-
tation of directly solving (13) is that when its optimal
value is very small, very high order relaxations are
needed. The latter have a large size and are numerically
ill-conditioned because of high values of some moments
of the Gaussian to be computed.
Hence, motivated also by the practical question of
obtaining a closed-form representation of the swept-
volume, we chose instead another similar approach for
Problem 2, with two main steps: (1) Find an implicit
representation of the integration domainK by a PSS [8],
[14]; (2) Compute the integral (12) with a high-order
quadrature for volumes implicitly defined by a PSS [20].

IV. PSS APPROXIMATIONS OF THE
SWEPT-VOLUME

It was shown in [8] (see also [10], [14] for similar works)

that a unionK =
N
⋃

i=1

Ki ⊆ R
n, of compact basic semi-

algebraic setsKi (given by a conjunction of polynomial
inequalities), can be efficiently approximated by a PSS.
Let R[x]d be the vector space of polynomials in the
variablesx = (x1, . . . , xn) over reals, of total degree
at most d. Moreover, suppose thatK can be outer-
bounded by a hyper-rectangleK ⊆ B := [a, b] =
{x ∈ R

n, ai 6 xi 6 bi, for i = 1, . . . , n} , a, b ∈ R
n.

Definition 3 (PSS):A degreed-PSS approximation for
K is defined by a polynomialpd ∈ R[x]d, s.t.

K ⊆ PSSpd
:= {x ∈ B : pd(x) > 1}. (14)

A first technical issue is that the swept-volume in
Eq. (11) is not compact in general. An exception is
the 3D case (no velocity uncertainty, cf. Remark 1) for
which the method of [8] can be directly applied.
For the 6D general case, a straightforward solution is to
rely on the fact that the approximation computed forK
is to be used afterwards for integrating the multivariate
Gaussian density (12). Hence, one can consider a suit-
ableh-σ ellipsoid corresponding to the given covariance
matrix PI (say h = 8.5 in practice, to be tuned
depending on numerical requirements) and bound it by a



hyper-rectangleB. Then, one uses the setsKi = Ki∩B,
which are compact. With this additional approximation,
we next proceed with a description of the method and
algorithms adapted from [8], [14] to our case, to obtain
a PSS of fixed degreed via semidefinite optimization.

A. PSS approximations of the 6D swept-volume

The polynomial optimization problem reads:
Problem 3 (Approximate PSS for the swept-volume):
Let the semi-algebraic setK =

⋃

i=1,...,N

Ki be given by

the union ofN basic compact semi-algebraic setsKi, a
given bounding hyper-rectangleB ⊇ K and also a fixed
degreed. Solve the optimization problem

w∗
d,K

= inf
p∈R[x0

r]d
‖p‖1 =

∫

B

p(x0
r)dx

0
r ,

s.t.

p > 0 onB,
p > 1 onK1,

. . . ,

p > 1 onKN .

(15)

The main result is the following (its proof is very similar
to the one given in [8, Thm. 2]).
Theorem 1:The infimum in Problem (15) is attained for
a polynomialp∗

d,K
∈ R[x0

r ]d. Moreover,PSSp∗

d,K
⊇ K,

w∗
d+1,K

6 w∗
d,K

and lim
d→∞

w∗
d,K

= vol(K).

The polynomialp∗
d,K

can be seen as an approximation

of the indicator function1K of the setK. Such an
approximation can be obtained by solving a convex
optimization problem whose constraints are Linear Ma-
trix Inequalities (LMIs). Moreover, as the degree of
the approximationd increases, the sequence(pd)d>1

converges inL1-norm, almost uniformly and almost
everywhere to the indicator function of the setK of
interest. This can be thought as a direct generalization of
classical approximation by ellipsoids. Indeed if degree-2
PSS approximations are used, we exactly recover well-
known semi-definite optimization-based approaches.
Note that Problem (15) has a dual infinite-dimensional
linear problem on measures, namely, denoting the clas-
sical Lebesgue measure onB by λB:

v∗
K
= sup

µ1,...,µN∈M(B)

N
∑

i=1

µi

(

Ki

)

,

s.t.

N
∑

i=1

µi 6 λB,

supp(µi) ⊆ Ki, i = 1, . . . , N
µi > 0, i = 1, . . . , N.

(16)

In addition,v∗
K
= lim

d→∞
w∗

d,K
= vol(K) [8].

Remark 2: It is very interesting to observe that Pb. (13)
and (16) are very similar: the main difference resides
only in the initial measure considered. For Pb. (13), one
aims at computing the integral of a Gaussian measureµI

to a union of semi-algebraic setsK, while for Pb. (16)
the Lebesgue measureλB is used instead, which simply
corresponds to computing the integration of a union of
semi-algebraic sets.
We provide in what follows the basic details of the
numerical computation of the solution of Problem (15),
which is more or less standard in the field ofPolynomial
Optimization[12].

B. SOS relaxations of Problem(3)

Recall that the constraints of Problem (3) are:

- the polynomialp is positive onB,
- p− 1 is positive onKi, ∀ i = 1, · · · , N .

A common strategy for enforcing positivity is by re-
quiring the polynomial to be sum-of-squares (SOS). Let
us denote the convex cone of real polynomials that are
SOS by Σ2[x] ⊂ R[x] and respectively,Σ2[x]2k ⊂
R[x]2k, its subcone of SOS polynomials of degree at
most 2k. Using Putinar’s Positivstellensatz [19], [12],
Problem (15) becomes, when fixingℓ ∈ N:

w∗2ℓ,d,K = inf
p∈R[x0

r ]d

∫

B

p(x0
r)dx

0
r,

s.t.










p − σ0,B −
∑

16j66

gj,Bσj,B = 0

σ0,B ∈ Σ2[x0
r]2ℓ,

σj,B ∈ Σ2[x0
r]2(ℓ−1), ∀j = 1, · · · , 6,



















p − σ0,K1 − g1σ1,K1 −
∑

16j66

gj,Bσ1,j,B = 1

σ0,K1 ∈ Σ2[x0
r]2ℓ,

σ1,K1 ∈ Σ2[x0
r]2(ℓ−1),

σ1,j,B ∈ Σ2[x0
r]2(ℓ−1), ∀j = 1, · · · , 6,

. . .



















p − σ0,KN
− gNσN,KN

−
∑

16j66

gj,BσN,j,B = 1

σ0,KN
∈ Σ2[x0

r]2ℓ,

σN,KN
∈ Σ2[x0

r]2(ℓ−1),

σN,j,B ∈ Σ2[x0
r]2(ℓ−1), ∀j = 1, · · · , 6

(17)

where the constraints defining the setsKi are:

Ki := {x0
r ∈ R

6 : gi(x
0
r) > 0, gj,B > 0, j = 1, . . . , 6},

i = 1, . . . , N,
(18)

and the polynomialgi is obtained from Equation (10),

gi(x
0
r) := R2 − x0T

r Φ(ti, t0)
T I11Φ(ti, t0)x

0
r ,

i = 1, . . . , N,
(19)

The polynomialsgj,B form the constraints defining the
hyper-rectangleB,

gj,B(x
0
r) := (x0

rj − aj)(bj − x0
rj), j = 1, . . . , 6. (20)

Proposition 3 (Convergence of LMI hierarchy):
For each fixedd ∈ N, the value of Problem (17)
converges tow∗

d,K
, as ℓ → ∞ and moreover, for any

2ℓ > d, the solutionp∗
2ℓ,d,K

of Problem (17) satisfies
the constraints of Problem (15) i.e.,PSSp∗

2ℓ,d,K
is a PSS

approximation ofK.



Proof: The proof can be found in [14].
Let us briefly discuss the simplification obtained when
the Gaussian uncertainty on the velocity can be ne-
glected in the six dimensional relative dynamics (po-
sition, velocity), during the encounter time intervalT .

C. No velocity uncertainty

In this simplified setting, the swept-volume is described
as a compact union of 3-dimensional ellipsoids ac-
cording to Proposition 1. Algorithm 1 summarizes the
computation of the PSS approximation in this case. Its
correctness follows from Propositions 1 and 3. The only
technicality (described for completeness in Lines3−4),
resides in computing a bounding boxB.

Algorithm 1 PSSAPPROX3D(τN ,Φ(t, t0), v
0
r , R, d, l)

Input: time grid τN , Φ(t, t0) with invertible upper-left block
for t ∈ τN , known initial relative velocitiesv0r ∈ R

3,
radiusR, degrees2ℓ > d, d > 1.

Output: pd ∈ R[x]d is a PSS approximation of the dis-
cretized collision set{r0r ∈ R

3 : ∃t ∈ τN s.t. x0
r =

[r0
T

r v0
T

r ]T , x0T

r Φ(t, t0)
T I11Φ(t, t0)x

0
r 6 R2} .

⊲ Define ellipsoids
Eti,t0 :=

{

r0r ∈ R
3 :

R2 − (r0r − c(ti, t0))
TQ(ti, t0)

−1(r0r − c(ti, t0)) > 0
}

1: c(ti, t0)← −Φ11(ti, t0)
−1Φ12(ti, t0)v

0
r , for ti ∈ τN ;

2: Q(ti, t0)← Φ11(ti, t0)
−1Φ11(ti, t0)

−T , for ti ∈ τN ;

⊲ Find a bounding boxBr := {x ∈ R
3 : a 6 x 6 b}

3: δ(ti, t0)←
√

diag
(

1
R2 Q(ti, t0)

)

, for ti ∈ τN ;

4:
[a, b]←

[

min
ti∈τN

(c(ti, t0)− δ(ti, t0)),

max
ti∈τN

(c(ti, t0) + δ(ti, t0))

]

;

⊲ Solve the optimization problem
5: gti ← R2 − (x− c(ti, t0))

T Q(ti, t0)
−1 (x− c(ti, t0))

for ti ∈ τN ;
6: gj,B0

r
← (xj − aj) (bj − xj), for j = 1, 2, 3;

w∗2ℓ,d = min
p∈R[x]d

∫

B0
r

p(x)dx,

s.t.










p− σ0,B0
r
−

∑

16j63

gj,B0
r
σj,B0

r
= 0

σ0,B0
r
∈ Σ2[x0

r]2ℓ,

σj,B0
r
∈ Σ2[x0

r]2(ℓ−1), ∀j = 1, 2, 3,







p− σ0,ti − gtiσ1,ti = 1
σ0,ti ∈ Σ2[x0

r]2ℓ,
σ1,ti ∈ Σ2[x0

r]2(ℓ−1),
.

(21)

7: return p∗2ℓ,d = argmin (21)

For the general6-dimensional case a similar algorithm
can be designed, which solves Problem 17, with the ad-

ditional requirement (and approximation) that a compact
bounding box needs to be provided as input. Moreover,
these algorithms are easily tractable in software.

D. Implementation Details

Firstly, the objective function
∫

B

p(x)dx =
∑

06|i|6d

pi

∫

B

xidx,

which is a linear function of the coefficientspi of the
polynomialp, requires the computation of the Lebesgue

momentsmi :=

∫

B

xidx, which is straightforward.

Remark 3 (Box scaling):In the implementation, a scal-
ing of B, to the unit box [−1, 1]n is important for
the numerical quality of the results. Also, in line with
Remark 2, from a theoretical perspective, working with
the Lebesgue or the Gaussian measure is similar. In
practice, computing the Lebesgue moments on[−1, 1]n,
offered the best quality numerical results.
Secondly, the constraints can be recast in terms of Linear
Matrix Inequalities (LMIs); this is already a classical
strategy and several software tools are available to
model problems of the form above, like for instance the
Matlab Toolbox YALMIP [15]. Finally, this boils down
to solving only a semi-definite programming problem
(whenever the degreesd and l are fixed), which was
done with the Mosek SDP solver [17].

V. GAUSSIAN INTEGRATION ON THE SWEPT-VOLUME

While a compact description of the swept-volume as
a PSS is interesting in itself, recall that the complete
goal of Problem 2 was the integration of a Gaussian
distribution on this swept-volume. To this end, besides
the formulation of the optimization Problem (13), we
have developed two different strategies that use the
obtained PSS directly, and depend upon the assumption
on velocity uncertainties:
- The 3D case: Algorithm 1 returns a polynomial
p∗2ℓ,d, which provides an implicit representation of the
approximated volume. This is used as input for [20,
Algorithm 3], which automatically determines a high-
order accurate numerical quadrature for the evaluation
of integrals over volumes, whose geometry is defined
implicitly via a fixed level set of a smooth function
φ : R3 → R. Obviously in our case,φ = p∗2ℓ,d.
- The 6D case: Similarly, after Problem 17 is solved for
an optimalp∗2ℓ,d, the integral of a Gaussian distribution
over the volumePSSp∗

2ℓ,d
has to be evaluated. Since

the code of [20] is currently restricted to 3D, a basic
Monte Carlo sampling is done, which consists in simply
checking whetherp∗2ℓ,d(Xs,i) > 1 for each sampleXs,i.
This procedure is to be replaced by a 6D implementation
of the algorithm in [20].



Moreover, to cross-check the validity and quality of the
proposed methods, a brute-force Monte Carlo process
was also designed. Given for completeness in Algo-
rithm 2, it uses the very idea of the representation of
the swept-volumeas a unionK of compact setsKi. It
is simply based on testing whether an initial condition
x0
r ∈ R

6 leads to a collision in the time intervalT , i.e.
whetherx0

r belongs to one of theKi (i = 1, . . . , N ).

Algorithm 2 BFVT(τN ,Φ(t, t0),B, R,M, PI)

Input: A time grid τN , transition matrixΦ(t, t0), bounding
box B ∈ R

6, hardbody radiusR, Gaussian samples no.
M and corresponding covariance matrixPI .

Output: approximative value of collision probability

1: Generate the Gaussian samples
(

x0
r

)

j=1,...,M
∈ R

6 from
the covariance matrixPI ;

2: C ← Cardinality of {x0
rj ∈ B : ∃ i ∈ {1, . . . , N} s.t.

gi(x
0
rj) > 0}

3: return C/M

VI. NUMERICAL EXAMPLES

Two numerical examples borrowed from the paper by
S. Alfano [2] are used to illustrate the proposed ap-
proach. The Gaussian distribution of both the primary
and secondary is known at TCA. A nonlinear two-body
Keplerian analytical propagation is used for both the
primary and secondary mean vectors, then the norm of
the mean relative position (miss distance) is computed
on the time interval of the encounter and plotted. The
transition matrixΦ(·, t0) is computed by performing
a linearization of the Keplerian dynamics with respect
to the primary object trajectory, following the classi-
cal algorithm of Shepperd [22]. For completeness, the
Gaussian distribution of the relative state at TCA (with
or without velocity uncertainty) is propagated using the
transition matrix on the time interval of the encounter.
Then, the so-called instantaneous collision probability is
plotted for both cases. This indicator is useful in practice
since it shows the probability of collision at each given
instant. The formula consists in computing a Gaussian
integral over a 3D ball and semi-analytical efficient
algorithms are available [21]. Finally, the 3D swept-
volume shape and its PSS approximation are depicted.

A. Example 1

The first example is the case 7 from [2], involving
nonlinear relative motion for two satellites in Low Earth
Orbits (LEO) where the mean miss distance at TCA is
less than the hard-body radius and the relative velocity
at TCA is low (0.19 m/s). This example was intended
to test the sampling methods of the literature, since
a low probability of collision is expected and a great
number of Monte Carlo samples is needed to get an
accurate result. Let us first check the impact of velocity
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Fig. 2: (a) Miss distance (m.) (b) Instantaneous probability
of collision P(t) with (blue) or without velocity uncertainties
(red) at TCA (c) 3D Swept-volume shape (no velocity uncer-
tainty) (d) PSS approximation of degreed = 4.

uncertainty at TCA. The instantaneous probability is
plotted in Figure 2b, computed with or without relative
velocity uncertainty at TCA. Considering the similarity
of the two curves, one can consider that the velocity
uncertainty at TCA may be neglected in this specific
case and the 3D version of Algorithm 1 may be applied.
On the time intervalT = [−1420, 1420], the exact union
of ellipsoids is plotted in Figure 2c, with various colors
for each time discretization. Withd = 2ℓ = 4 this
algorithm allows for plotting in Figure 2d the PSS (in a
unit cube scaled box). Then, applying the quadrature
gives P̃c = 0.000165, while Algorithm 2 with 106

samples gives a collision probability of0.000158, con-
firming that we get a good approximation. Note that
this result agrees with the ones presented in [2] where
the probability is evaluated as0.000161 for a highly
computationally demanding Monte Carlo approach (662
million Monte Carlo runs needed) and0.000164 for
the voxels method. Finally, the results are consistent
with Coppola’s formulation when assuming no velocity
uncertainty (formula (40) of [7]) which gives0.000159.

B. Example 2

We consider the encounter [2, Example No. 9], of two
objects in highly-eccentric orbits (HEO) where the mean
miss distance at TCA is greater than the combined object
radius. The computed instantaneous collision probability
is given in Figure 3(b) and (c) with/without relative
velocity uncertainty considered at TCA.
Firstly, our method is applied assuming that there is
no velocity uncertainty (the 3D case). In Figure 3(d),
the exact swept-volume (union of40 ellipsoids obtained
on the time intervalT = [−10800, 10800]) is plotted.
Algorithm 1, applied withd = 2l = 8, requires about
10 seconds (Matlab execution on a classical workstation)
for obtaining the degree-8 PSS, plotted in Figure 3(e).



Finally, the code of [20, Algorithm 3] requires less than
10 seconds to evaluate the Gaussian integral over the
PSS computed before, leading tõPc = 0.2825, which is
confirmed by brute-force simulations. Formula (40) in
[7] gives 0.2715.
As observed in Figure 3(b) and (c) and also confirmed
by the results in [2], the relative velocity uncertainty
does matter in this case: Algorithm 2 provides a value
similar to that of [2], of0.36511. Our 6D method, with
d = 2l = 8, provides a PSS volume, whose projection
in 3D, for the fixed mean velocity value at TCA is
plotted in Figure 3(e). One observes an overestimation
for this case. Depending on theh-σ bounding ellipsoid
considered as bounding, the results obtained with our
method range from0.50 for 6-σ to 0.371 for 1-σ.
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Fig. 3: (a) Miss distance (m) (b) Instantaneous collision
probabilityP(t) with (c) and without (d) velocity uncertainty
(d) 3D Swept-volume shape (no velocity uncertainty) (e) PSS
approximationd = 8 (f) Projection of 6D PSS approx,d = 8,
for a fixed mean velocity.

VII. CONCLUSION

By using models from polynomial optimization, we have
provided (i) a theoretical framework and (ii), practical
algorithms to obtain approximate closed-form descrip-
tions of the set of collision-prone states (and an approx-
imation of their Gaussian measure). This allows efficient
approximations of non-convex shapes which can be used
effectively for long-term and repeated conjunctions, gen-
eralizing both Chan’s and Coppola’s formulations. We
are confident that visual accurate outer-approximation
of the swept volume can provide further insight on
classifying the types of encounter occurring in practice.
Along these lines, a further complexity and numerical
analysis on the provided algorithms would help to better
assess and design more tuned and efficient algorithms
for special practical cases.
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