Christian Artigues 
  
Emmanuel Hebrard 
email: hebrard@laas.fr
  
Alain Quilliot 
  
Helene Toussaint 
email: helene.toussaint@isima.fr
  
Multi-Mode RCPSP with Safety Margin Maximization: Models and Algorithms

Keywords: Scheduling, Resource Constrained Project Scheduling Problem, Evacuation Process, Network Flow, Branch and Bound, Linear Programming

We study here a variant of the multimode Resource Constrained Project Scheduling problem (RCPSP), which involves continuous modes, and a notion of Safety Margin maximization. Our interest was motivated by a work package inside the GEOSAFE H2020 project, devoted to the design of evacuation plans in face of natural disasters, and more specifically wildfire.

INTRODUCTION RCPSP:

Resource Constrained Project Scheduling Problem (see [START_REF] Hartmann | A survey of variants and extensions of the resource-constrained project scheduling problem[END_REF], [START_REF] Herroelen | Project scheduling -theory and practice[END_REF], (Orji, 2013)) involves jobs subject to both temporal constraints and cumulative resource constraints. In multimode RCPSP (see (Bilseka, 2015), [START_REF] Weglarz | Project scheduling finite/infinite processing modes -A survey[END_REF], resource requirements are flexible and the scheduler may cut a trade-off between speed and resource consumption. The MSM-RCPSP (Multimode with Safety Maximization RCPSP) model introduced is a variant of multi-mode RCPSP: for any job j, we must choose its evacuation rate vj, which determines, for any resource e in the set (j) of resources required by j, the amount of e consumed by j. Release dates Rj and deadlines j are imposed, and performance is about safety maximization, that means the minimal difference (safety margin), between job deadlines and ending times.

MSM-RCPSP was motivated by the H2020 GEOSAFE European project (GeoSafe, 2018), related to the management of wildfires. At some time during this project, we dealt with evacuation schedules. While in practice evacuation is managed in an empirical way, 2-step optimization approaches have been recently tried (see (Artigues, 2018), and (Bayram, 2016)): the first step (pre-process) identifies the routes that evacuees are going to follow; the second step schedules the evacuation of estimated late evacuees along those routes. This last step implies priority rules and evacuation rates imposed to evacuees and resulting models may be cast into the MSM-RCPSP framework.

The paper is structured as follows: Section II describes the MSM-RCPSP model. Section III solves the fixed topology case. In Section IV we prove that MSM-RCPSP preemptive relaxation can be solved in polynomial time. We design in Section V and VI both fast heuristic network flow techniques, well-fitted to real-time management, and an exact branch and bound algorithm. Section VII is devoted to numerical tests.

MULTI-MODE RCPSP WITH SAFETY MAXIMIZATION

MSM-RCPSP is related to a set J of jobs, subject to release dates Rj and deadlines j, j  J, which have to be scheduled while maximizing what we call the Safety Margin. That means that we want to compute starting times Tj and ending times T*j in such a way that, for any job: Rj ≤ Tj < T*j ≤ j, and that resulting Safety Margin, defined as equal to the quantity Inf j  J (j -T*j), is the largest possible. But we do not know the durations of those jobs: as a matter of fact, duration of j is determined as a quantity P(j)/vj, where P(j) is some fixed coefficient and vj is the speed of j, which is part of the problem and which we also call evacuation rate in reference to the Late Evacuation problem set in the context of H2020 GEOSAFE project. The choice of those evacuation rates is constrained in a cumulative way by the existence of a resource set E: any job j involves a subset J(e)  E of resources and at any time between Tj and T*j its consumption level of any resource e  E is equal to the evacuation rate vj, while the amount of available resource e is bounded by a fixed number CAP(e). Let us first link MSM-RCPSP with evacuation problems and the GEOSAFE H2020 Program.

Tree Late Evacuation (Tree-LEP)

We consider here a transit (evacuation) network H = (V, E), supposed to be an oriented tree:  Leaf subset J  V, called evacuation node set, identifies groups of P(j) j-evacuees who must reach the anti-root safe node SAFE while following the arcs of related path (j). The last j-evacuee must reach SAFE before deadline j.

Only one arc e(j) has origin j and only one arc has destination SAFE.  Every arc e  E is provided with time value L(e), required for any evacuee to move along e; L-length of(j) is denoted by Length(j). Every arc e  E is also provided with some capacity CAP(e): no more than CAP(e) evacuees per time unit may enter e at a given time t. Practitioners impose that all j-evacuees move along (j) according to the same evacuation rate vj. This Non Preemption Hypothesis, makes the j-evacuation process to be determined by its starting time T D j (when a first j-evacuee leaves j), its ending time T A j, (when the last j-evacuee arrives to SAFE) and its evacuation rate vj, subject to (Evacuation Rate Formula): T A j = T D j + Length(j) + P(j)/vj.

Then the Late Evacuation Problem (LEP) consists in the search T D j, T A j, vj, j  J, consistent with deadlines and capacities, and maximizing the global safety margin Inf j (j -T A j).

Example 1: For any arc e in Fig. 1, the first number means the length L(e) and the second one its capacity CAP(e). In case 3 = 7; 2 = 1 = 13, we make (optimal schedule) group 3 start at time zero according to full rate v3 = 2, and both groups 1 and 2 start at time 4, according to rates v1 = v2 = ½. (1, 1) (1, 1)

(1, 1)

(1, 2) (4, 2)

Figure 1: An Instance of Tree-LEP.

Figure 2 represents related optimal schedule according to a Gantt diagram: The height of rectangle j is the evacuation rate; its width is delimited by the time when population j starts entering node 6 and the time when it has finished. In order to turn a Tree-LEP solution into RCPSP format, we set, for any j in J: Rj = Length(j) and vminj = P(j)/((j) -Rj)). Seadline constraint implies vj ≥ vminj ; vmaxj = CAP(e(j)). Then we consider the process defined by the j-evacuees when they enter into the SAFE node, and call it evacuation job j. Its starting time is Tj = T D j + Length(j), its ending time is T*j = T A j and we want to maximize Safe-Margin = Min j  J (j -T*j ). If vj denotes related evacuation rate, we get the following temporal constraints: Rj ≤ Tj ≤ T*j ≤ j and T*j = Tj + P(j)/vj. As for resource constraints, we say that 2 jobs j1, j2, overlap iff interval [Tj1, T*j1]  [Tj2, T*j2] is neither empty nor reduced to one point. Then resource constraints tells that for any arc e in A and for any Overlap clique J0  J(e) ={j such that e  (j)}, we should have:  j  J0  J(e) vj ≤ CAP(e). In case J0 = e(j), this yields vj ≤ vmaxj.

The MSM-RCPSP Model

According to 2.1, MSM-RCPSP Inputs are: The job set J and the resource set E; for any j  J, Population coefficient P(j), Release date Rj, Deadline j, maximal evacuation rate vmaxj and set subset (j)  E of resources used by j; for any e  E, the Capacity CAP(e) = and the subset J(e)  E of jobs j which use e. Then MSM-RCPSP model, conjectured to be NP-Hard, comes as follows:

MSM-RCPSP Model: Compute Rational Vectors

T = (Tj, j = 1..N), T* = (T*j, j = 1..N), v = (vj, j = 1..N) ≥ 0, and {0, 1, -1}-valued vector  = (j1,j2, j1, j2 = 1..N) with Semantics : j1,j2 = 1 ~ j1 << j2; j1,j2= -1 ~ j2 << j1; j1,j2= 0 ~ j1 Overlap j2, such that:  Structural Constraints: For any j1, j2, j1,j2= -j2,j1.  Temporal Constraints: o For any j: Rj ≤ Tj ≤ T*j ≤ j and T*j = Tj + P(j)/vj; (E1) o For any pair j1, j2, the following implication holds:

j1,j2 = 1 -> Tj2 ≥ T*j; (E1*)  Resource Constraints: o For any j : vminj = P(j)/((j) -Rj)) ≤ vj ≤ vmaxj ; o For any arc e, (E2) implication holds: (E2) (J0  J is such that for any pair j1, j2 in J0, j1,j2 = 0) ->  j  J0  J(e) vj ≤ CAP(e);  Maximize : Safe-Margin = Inf j ((j) -T*j)}
This model fits with industrial contexts, where jobs j involving continuous flows of items are applied a sequence (j) = {e j 1, e j 2, .., e j n(j)} of operations, and pipe-lined through some set of machines. 

FIXING THE TOPOLOGY

PREEMPTIVE MSM-RCPSP

Preemptive MSM-RCPSP means that jobs may stop at some time and start again a little later. Preemption allows any job j to be split into k(j) subprocesses j1,.., jk(j), each with starting time tj,k, ending time t*j,k, and evacuation rate vj,k. We denote by P-MSM-RCPSP the resulting problem. Figure 3 below shows an example of preemptive schedule related to example 1. Let us now suppose that we are provided with some safety margin ≥ 0 which we want to ensure. Then we set S = {Rj, (j -), j  J} and label its elements {t1,.., t2N}, in such a way that t1 ≤ t2 ≤… ≤ t2N. For any k = 1,…,2N-1, we set k = tk+1tk. This leads to the following rational PL Preemptive(): Preemptive() Linear Program : Compute rational vector w = (wj,k , j  J, k = 1..2N-1) ≥ 0, whose semantics is that wj,k is the evacuation rate for j between tk and tk+1, and which satisfies the  For any j, k, wj,k ≤vmaxj;  For any j,  k k .wj,k = P(j);  For any arc e, any k:  j  J(e) wj,k ≤ CAP(e);  For any j and any k such that tk+1 ≤ Rj, wj,k = 0 ;  For any j, k such that tk ≥ (j -)wj,k = 0}.

Lemma 1: Preemptive() identifies a preemptive schedule which is consistent with safety margin , in case such a schedule exists.

Proof: If a preemptive schedule exists, consistent with safety margin , release dates Rj, deadlines j, j  J, and capacities CAP(e), e  A, then it can be chosen in such a way that for any job j and any k, related evacuation rate of j is constant between tk and tk+1. Then we get above linear program. 

We solve P-MSM-RCPSP by applying the following binary process Optimal-P-MSM-RCPSP, which computes optimal safety margin -Val by making  iteratively evolve between a non feasible value and a feasible one :  Sterilization2: Deriving from w a topological vector , and solving MSM-RCPSP().

Optimal-P-MSM-RCPSP(Threshold

A FLOW BASED HEURISTIC

This section is devoted to the description of a network flow based heuristic, which implements insertion mechanisms as in (Quilliot, 2012), and computes an efficient feasible MSM-RCPSP solution. We consider resources e as flow units, that jobs j share or transmit: If we represent every job as a rectangle whose length is the duration T*j -Tj and height is the evacuation rate vj, then, if j1 precedes j2, and if not jobs j is located between j1 and j2 on the e-diagram, then we see (fig. 2 and6) that part of evacuation rate vj1 related to resource e is transmitted to j2. In order to formalize this, we build an auxiliary network G in which the vertex set is J  {s, p}, where s and p are two fictitious jobs source and sink, whose arcs are all arcs (i, j), i, j  J, augmented with all arcs (s, j) and all arcs (j, p). Then we consider that the backbone of a schedule is a flow vector w = (w e j1,j2, j1, j2  J(e)  {s, p}) ≥ 0, which represents, for all resources e, the way jobs share resource e. Clearly, this vector w must satisfy standard flow conservation laws:  For any e: j  J w e s,j =  j  J w e j,p = w e p,s = CAP(e);  For any resource e of E and any job j0  J(e),  j  J  {p} w e j0,j =  j  J  {s} w e j,j0 = vj0.

Besides, if we introduce starting times Tj and ending times T*j as in II, then, for any j1, j2, the following implication is true:  e w e j1,j2 ≠ 0 -> Tj2 ≥ T*j1. This logical constraint means that if job j1 provides j2 with some part of resource e, then j1 should be achieved before j2 starts. Clearly, we must keep on with the other standard constraints:  For any j: Rj ≤ Tj ≤ T*j ≤ j ; vj ≤ vmaxj; T*j = Tj + P(j)/vj; Ts = T*s = 0.  Maximize Min j (j -T*j). 

An Adaptative Insertion Heuristic

We deal with MSM-RCPSP-Flow through an insertion algorithm which manages two antagonistic trends: when handling job j and trying to insert it into a current partial schedule (T, T*, v), we first compute Tj and next assign vj a value. But if we choose a high value vj in order to make j finish fast, then we may block the access to the most critical resources of (j). In order to find a compromise we control an adaptative safety margin  through binary search and a related adaptative priority list , which drives the insertion process for a given . For a given value of , and a current list , the procedure Insert-MSM-RCPSP () scans the jobs j0 in , and try to compute Tj0 and vj0 in such a way that MSM-RCPSP-Flow constraints are satisfied for all jobs j before or equal to j0 according to , and that vj0 is minimal. In case of success, then  is increased, else Insert-MSM-RCPSP() yields a set of pairs j1, j2, asked to become such that j2  j1 (Instruction Update() below).

MSM-RCPSP-Flow(Precision:Number) Algorithmic Scheme:

Step 1: Start from a non feasible margin -max, a feasible one -min, a related Current-Schedule; Initialize priority list : priority given to jobs j with small P(j) and expected safety; While (-max --min) ≥ Precision do  <-(-min -max; Insert-MSM () If Success then set -min to and Update Current-Schedule Else Update(Retrieve topology  from Current-Schedule;

Step2: Solve resulting P-MSM-RCPSP().

Insert-MSM Procedure

This procedure works while scanning current priority list  and assigning Tj and vj values as far as jobs j come. That means that at any time during the process, we are considering some job j0, while all jobs j such that j  j0 have been scheduled: for any j  J  {s} such that j j0, we are provided with values Tj, T*j, vj, as well as with values (e, j) which represents the amount (evacuation rate) of eresource that j is able to transmit to j0, according to flow vector w e of the MSM-RCPSP-Flow model. Then we proceed in 3 steps: -1st step : Scan (j0) according to decreasing (e, j0) values, and for any e in (j0), provide j0

with an amount of resource e in such a way resulting T*j0 does not exceed j0 -.

- 2nd Step : In case of success of previous first step, we become provided with an evacuation rate vj0 and, for any resource e ≠ e0 in (i0) with an evacuation rate value v-auxe which may be less than vi0; So the second step makes increase the values w e j,i0 for any e  e0, j  J(e), in order to make j0 run according to the same evacuation rate for all arcs e of (j0).

-3rd step: In case of success of previous second step, last step is a clustering step, which aims at making decrease the number of resources provided with non null w e j,i0 values, and works by shifting, as far as possible, values w e j,i0 which involve, for a given j, only one resource e, to another job j' such that j'  J(e), w e j',i0 ≠ 0 and ( e, j') ≥ w e j,i0 + w e j',i0.

Example 2: Suppose that we face here the following situation: = s,…, j1, …, j2, ….j3, …., j0; (x0) = {e1, e2}; CAP(e1) = 20, CAP(e2) = 25; j0 = 21; P(j0) = 5; Rj0 = 10; j1  J(e1)  J(e2); j1  J(e1); j3  J(e2); P(j1)/v1 = 6; P(j2)/v2 = 3; P(j3)/v3 = 4.  Then we get:

Step1 -> w e1 s,j0,= 2; w e2 s,j0 = 3; w e1 j1,j0 = 8; vj0 = 10; Success; Step2 -> w e2 j2,j0 = 7; Success; Step3 -> w e1 j1,j0 = 0; w e1 j2,j0 = 8; Tj0 = 21.

AN EXACT ALGORITHM

This Branch&Bound algorithm relies on sections IV and V: Optimistic estimation (upper bound) derives from IV, and an initial feasible solution is computed according to V. We must specify:

-The nodes of related search tree and the way optimistic estimation is adapted to those nodes;

-The Branching Strategy and the global Tree Search process.

The nodes of the Search Tree: Such a node s will be defined by a Release vector A = (Aj, j  J) ≥ R = (Rj = j  J), a Deadline vector B = (Bj, j  J) ≤  and 2 partially defined Medium vectors U = (Uj, j  J(s)), U* = (U*j, j  J(s) such that : o J(s) denotes the set of jobs j such that Uj and U*j are defined; o If j  J(s), then Aj ≤ Uj < U*j ≤ Bj ; For a given job j, the meaning of Uj and U*j, j  J(s) is that wj = wj(t) must be constant on [Uj, U*j] and such that, for any t' outside [Uj, U*j], t inside [Uj, U*j], wj(t) ≥ vj(t'). Then Branching from s. Given a job j and 2 values  and  such that Aj <  < , node s gives rise to 3 sons:

 First son: Aj is replaced by   Second son: Bj is replaced by   Third son: Uj is replaced by  and U*j by : we must have:  < Uj <U*j < .

The 3-uple (j, ) defines the Branching Signature. Once created, node s is applied an optimistic estimation procedure, and next, in case Sterilization does not work, stored into a Breadth-First Search list together with resulting value -Val and related Branching Signature Sign = (j0, ).

Optimistic Estimation and Sterilization

Procedures: They derive from Section IV: we solve P-MSM-RCPSP augmented with additional constraints related to node s. More precisely:  For any j, we set B*j = Inf (Bj, j -) and S = {Aj, B*j, j  J}  {Uj, U*j, j  J(s)}. We order S = {t1,…, tk,…tK} through increasing values t1 <t2 < … < tK and set, for any k = 1.. K-1: k = tk+1 -tk  We build 4 vectors k1, k2, k3, k4, with indexation on J, and whose meaning is:

-k1j means the value k such that Aj = tk ; -k2j means the value k such that B*j = tk ; -k3j means the value k such that Uj = tk; (* If Uj is undefined, then k3j = 0*) -k4j means the value k such that U*j = tk ; (*If Uj is undefined, then k4j = 0*)

According to this, we adapt the program Preemptive() to node s by setting:

Preemptive s (): {Compute w = wj,k , j  J, k = 1..K-1} such that;  For any e and any k, j  J(e) wj,k ≤ CAP(e)  For any j,  k k . wj,k = P(j)  For any j, any k ≤ k1(j) -1, w,k = 0 ;  For any j, any k ≥ k2(j), wj,k = 0 ;  For any j, any k ≥ k3(j), w,k+1 ≤ w,k ;  For any j, any k ≤ k4(j)-2, wj,k+1 ≥ wj,k .

We try to turn a solution of Preemptive s () into a MSM-RCPSP Solution through procedures Sterilizationx , x = 1, 2 of IV, and adapt Optimal-P-MSM-RCPSP into a procedure UB in order to make it compute, for a given node s = (A, B, U, U*), related optimistic estimation -Val = UB(s).

Branching Strategy: Let us suppose that we just computed -Val = UB(s), got a preemptive solution w, which we could not turn into a non preemptive solution with better Safety Margin than our current best feasible value. Then, for any job j, we scan the index set 1..K, and compute a word  j = { j 1,..,  j K} representative of the resource profile induced by j:

o If  = 1 then wj,k > wj,k-1; o If  = -1 then wj,k < wj,k-1; o If  = 0 then wj,k-1 = wj,k and h =0.
This word  j enables us to identify:

-1 st Configuration: A hole (see Fig. 6) with some depth and width and a weight = depth.width; -2 sd Configuration: No hole but a left stair or a right stair with once again a depth, a width and a weight.

Evacuation Rate (w j ) Time α β So our Branching Strategy comes as follows: In case Configuration 1, then we compute branching signature Sign as some related Sg with largest weight = depth.width. In case it does not exist, then we look for Sg related to configuration 2 with the highest weight value.

Resulting Branch and Bound Algorithm B&B-MSM-RCPSP: B&B-MSM-RCPSP is implemented

as follows, according to a BFS (Breadth First Search) strategy. In case of interruption, we get a lower bound BInf and an upper bound BSup.

NUMERICAL EXPERIMENTS

Technical

Context: Algorithms are implemented in C++, gcc 7.3. Linear models are solved with Cplex 12.8. Hardware involves Processors Intel(R) Xeon(R) CPU E7-8890 v3 @ 2.50 GHz, run by Linux.

Instance Generation: Instances come from the GEOSAFE project (see (Artigues, 2018)). They are clustered into 10 instance groups dense_x, medium_x, sparse_x, where x is the number of jobs, and dense, medium and sparse are related to the mean degree of the nodes in related tree. 

Evaluating Optimal-P-MSM-RCPSP and MSM-RCPSP-Flow

We here on the ability of Optimal-P-MSM-RCPSP and MSM-RCPSP-Flow to provide us with a good MSM-RCPSP Lower/Upper approximation window. Table 2 provides 

Evaluating B&B-MSM-RCPSP

We focus here on the filtering process and the number of nodes of the search tree which are visited during the process. We compute (Table 3):  The value Opt-P-MSM as in Table 2 

CONCLUSIONS

We introduced here a Multi-Mode RCPSP model with both discrete and continuous features, solved preemptive version, proposed a network flow based heuristic as well as an exact Branch&Bound algorithm. Further work will aim at extending the model and exploring potential industrial applications.

Figure 2 :

 2 Figure 2: TREE-LEP Schedule in RCPSP format.

  It will happen in next sections that we are provided with some topological vector . So we denote by MSM-RCPSP() resulting MSM-RCPSP model. MSM-RCPSP() model is convex. In order to linearize MSM-RCPSP(), we replace, for any j, T*j by Tj+ P(j)/vj, and reformulate (E1) as: o For any j, and any w  [vminj, vmaxj]: (j -RMin -Tj) ≥ (vj + w).P(j)/w 2 + P(j)/w. This constraints tells us that for any w the 2D-point (vj, (j -Tj -RMin)) must be located above the tangent line in (w, P(j)/w) to the hyperbolic curve whose equation is x -> P(j)/x. We proceed the same way with E1* and get the following linear formulation LINEAR-MSM-RCPSP(): LINEAR-MSM-RCPSP(): {Compute T = (Tj, j = 1..N), v = (vj, j = 1..N) ≥ 0 and RMin ≥ 0, s.t:  Temporal constraints: o For any j : Rj ≤ Tj ; o For any j and any w  [vminj, vmaxj]: (E1) (j -Rmin -Tj ) ≥ (vj + w).P(j)/w 2 + P(j)/w; o For any j1, j2 s.t j1,j2 = 1, any w  [vminj1, vmaxj1]: (E1*) Tj2 -Tj1 ≥ (-vj1 + w).P(j1)/w 2 + P(j1)/w;  Capacity Constraints : o For any j : vminj ≤ vj ≤ vmaxj ; o For any e, any subset J0  J s.t for any j1, j2 in J0, j1,j2 = 0: j  J0  J(e) vj ≤ CAP(e); (E2)  Maximize : Safe-Margin = RMin}. We apply a cutting plane process to (E1, E1*): Linear-MSM-RCPSP-Cut(: Initialize a set W of constraints (E1, E1*) and condider related restriction LINEAR-MSM-RCPSP(, W); Not Stop ; While Not Stop do Solve LINEAR-MSM-RCPSP(, W); Search for j0 (j1, j2) and w0 such that (E1, E1*) do not hold; If Fail(Search) then Stop Else Insert (E1, E1*) related to j0, w0 into W.

Figure 3 :

 3 Figure 3: P-MSM-RCPSP Schedule.

Figure 4 :

 4 Figure 4: Sterilization1 Scheme.

Figure 5 :

 5 Figure 5: Example 2, with 3 = 7, 1 = 2 = 13.

Figure 6 :

 6 Figure 6: Hole (1st Configuration) Branching.

  , for every instance group:  Opt-P-MSM: Optimal safety margin (Optimal-P-MSM-RCPSP); Opt-P-CPU: Related CPU time;  # fails : the number of instances for which MSM-RCPSP-Flow yields a fail  MSM-Flow: Safety margin computed by MSM-RCPSP-Flow; Flow-CPU: Related CPU Time;  Preempt-Gap: the gap between MSM-Flow and the Opt-P-MSM.

  ;  The lower (feasible) bound B&B-MSM-Inf provided by B&B-MSM-RCPSP; The lower bound B&B-MSM-Sup provided by B&B-MSM-RCPSP; Related CPU time B&B-CPU;  The number Nodes of nodes of the search tree which were visited during the process.

Table 1 :

 1 Characteristics of the Instances.For any 10 instances group, above Table1provides us with: the mean number Nodes of nodes, the minimal duration Cap-Relax of the evacuation process in case capacity constraints are relaxed and the mean (for all nodes x) ratio Congest, between the sum of capacities of the in-arcs and the capacity of the out-arc related to x.

	Instances	Nodes	Cap-Relax	Congest
	dense_10	19.80	155.06	1.69
	dense_15	29.10	160.08	1.78
	dense_20	38.60	164.88	1.84
	medium_10	19.70	152.83	1.71
	medium_15	29.10	159.39	1.80
	medium_20	38.20	160.69	1.86
	medium_25	46.80	169.91	1.91
	sparse_10	19.50	146.17	1.75
	sparse_15	28.80	153.92	1.87
	sparse_20	38.30	157.78	1.87
	sparse_25	47.60	154.73	1.89

Table 2 :

 2 Behavior of MSM-RCPSP-Flow.

	Instances	Opt-P-MSM	Opt-P-CPU
	dense_10	106.25	0.05
	dense_15	68.3	0.08
	dense_20	39.29	0.11
	medium_10	92.59	0.04
	medium_15	65.35	0.08
	medium_20	54.85	0.11

Table 2 -

 2 Bis: Behavior of MSM-RCPSP-Flow.

	Instances	MSM-	Preempt-	Flow-	#
		Flow	Gap	CPU	fails
	dense_10	97.09	9.23	2.01	0
	dense_15	58.02	20.96	2.31	0
	dense_20	34.75	20.03	2.97	2
	medium_10	88.76	4.21	2.06	0
	medium_15	52.87	18.24	2.82	0
	medium_20	43.75	20.85	3.53	2
	medium_25	36.78	26.87	1.96	1
	sparse_10	110.38	3.65	1.88	0
	sparse_15	75.77	3.24	2.75	0
	sparse_20	48.70	28.50	3.94	0
	sparse_25	32.67	*	1.18	4

Comment: Optimal-P-MSM-RCPSP and MSM-RCPSP-Flow provide us with respectively efficient optimistic and realistic approximations.

Table 3 :

 3 Behavior of B&B-MSM-RCPSP.

	Instances	Opt-P-	B&B-	B&B-
		MSM	MSM-Inf	MSM-Sup
	dense_10	106.25	105.75	105.76
	dense_15	68.30	66.65	67.49
	dense_20	39.29	38.86	39.29
	medium_10	92.58	91.87	91.87
	medium_15	65.35	63.42	64.48
	medium_20	54.85	49.82	54.57
	medium_25	51.60	49.19	51.60
	sparse_10	113.78	113.75	113.78
	sparse_15	78.33	78.33	78.33
	sparse_20	64.45	59.21	64.38
	sparse_25	34.34	32.49	34.34

Table 3 -

 3 Bis: Behavior of B&B-MSM-RCPSP. RCPSP provides us with a very good approximation of optimality. Still, it is difficult to make this optimistic estimation decrease.

	Instances	Nodes	B&B-CPU
	dense_10	12077.80	361.14
	dense_15	27148.80	1090.40
	dense_20	11338.90	720.85
	medium_10	4253.30	105.51
	medium_15	28850.20	1440.62
	medium_20	27254.90	1800.03
	medium_25	10839.00	1081.33
	sparse_10	57425.50	604.36
	sparse_15	10668.30	360.32
	sparse_20	15164.50	1440.08
	sparse_25	17054.10	1800.28
	Comment: B&B-MSM-Inf is always very close to
	optimistic estimation Opt-P-MSM, and Optimal-P-
	MSM-		

ACKNOWLEDGEMENTS

We thanks E.U Community for funding H2020 GeoSafe Project.