
HAL Id: hal-03160056
https://laas.hal.science/hal-03160056v1

Submitted on 4 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Mode RCPSP with Safety Margin Maximization:
Models and Algorithms

Christian Artigues, Emmanuel Hébrard, Alain Quilliot, Hélène Toussaint

To cite this version:
Christian Artigues, Emmanuel Hébrard, Alain Quilliot, Hélène Toussaint. Multi-Mode RCPSP
with Safety Margin Maximization: Models and Algorithms. 10th International Conference on
Operations Research and Enterprise Systems, Feb 2021, Online Streaming, Austria. pp.129-136,
�10.5220/0010190101290136�. �hal-03160056�

https://laas.hal.science/hal-03160056v1
https://hal.archives-ouvertes.fr

Multi-Mode RCPSP with Safety Margin Maximization: Models and

Algorithms

Christian Artigues1, Emmanuel Hebrard1 Alain Quilliot2 and Helene Toussaint2
1LAAS Laboratory, CNRS, Toulouse, France

2LIMOS Laboratory, CNRS, Clermont-Ferrand, France

{artigues, hebrard}@laas.fr, {alain.quilliot, helene.toussaint}@isima.fr

Keywords: Scheduling, Resource Constrained Project Scheduling Problem, Evacuation Process, Network Flow, Branch

and Bound, Linear Programming.

Abstract: We study here a variant of the multimode Resource Constrained Project Scheduling problem (RCPSP),

which involves continuous modes, and a notion of Safety Margin maximization. Our interest was motivated

by a work package inside the GEOSAFE H2020 project, devoted to the design of evacuation plans in face of

natural disasters, and more specifically wildfire.

1 INTRODUCTION

RCPSP: Resource Constrained Project
Scheduling Problem (see (Hartmann, 2010),
Herroelen, 2005), (Orji, 2013)) involves jobs subject
to both temporal constraints and cumulative
resource constraints. In multimode RCPSP (see
(Bilseka, 2015), (Weglarz, 2011), resource
requirements are flexible and the scheduler may cut
a trade-off between speed and resource
consumption. The MSM-RCPSP (Multimode with
Safety Maximization RCPSP) model introduced is a
variant of multi-mode RCPSP: for any job j, we
must choose its evacuation rate vj, which
determines, for any resource e in the set (j) of
resources required by j, the amount of e consumed
by j. Release dates Rj and deadlines j are imposed,
and performance is about safety maximization, that
means the minimal difference (safety margin),
between job deadlines and ending times.

MSM-RCPSP was motivated by the H2020

GEOSAFE European project (GeoSafe, 2018),
related to the management of wildfires. At some
time during this project, we dealt with evacuation
schedules. While in practice evacuation is managed
in an empirical way, 2-step optimization approaches
have been recently tried (see (Artigues, 2018), and
(Bayram, 2016)): the first step (pre-process)
identifies the routes that evacuees are going to
follow; the second step schedules the evacuation of

estimated late evacuees along those routes. This last
step implies priority rules and evacuation rates
imposed to evacuees and resulting models may be
cast into the MSM-RCPSP framework.

The paper is structured as follows: Section II

describes the MSM-RCPSP model. Section III
solves the fixed topology case. In Section IV we
prove that MSM-RCPSP preemptive relaxation can
be solved in polynomial time. We design in Section
V and VI both fast heuristic network flow
techniques, well-fitted to real-time management, and
an exact branch and bound algorithm. Section VII is
devoted to numerical tests.

2 MULTI-MODE RCPSP WITH

SAFETY MAXIMIZATION

MSM-RCPSP is related to a set J of jobs,
subject to release dates Rj and deadlines j, j J,
which have to be scheduled while maximizing what
we call the Safety Margin. That means that we want
to compute starting times Tj and ending times T*j in
such a way that, for any job: Rj ≤ Tj < T*j ≤ j, and
that resulting Safety Margin, defined as equal to the
quantity Inf j J (j - T*j), is the largest possible. But
we do not know the durations of those jobs: as a
matter of fact, duration of j is determined as a
quantity P(j)/vj, where P(j) is some fixed coefficient

and vj is the speed of j, which is part of the problem
and which we also call evacuation rate in reference
to the Late Evacuation problem set in the context of
H2020 GEOSAFE project. The choice of those
evacuation rates is constrained in a cumulative way
by the existence of a resource set E: any job j
involves a subset J(e) E of resources and at any
time between Tj and T*j its consumption level of any
resource e E is equal to the evacuation rate vj,
while the amount of available resource e is bounded
by a fixed number CAP(e). Let us first link MSM-
RCPSP with evacuation problems and the
GEOSAFE H2020 Program.

2.1 Tree Late Evacuation (Tree-LEP)

We consider here a transit (evacuation) network

H = (V, E), supposed to be an oriented tree:

 Leaf subset J V, called evacuation node set,

identifies groups of P(j) j-evacuees who must

reach the anti-root safe node SAFE while

following the arcs of related path (j). The last

j-evacuee must reach SAFE before deadline j.

Only one arc e(j) has origin j and only one arc

has destination SAFE.

 Every arc e E is provided with time value

L(e), required for any evacuee to move along e;

L-length of(j) is denoted by Length(j). Every

arc e E is also provided with some capacity

CAP(e): no more than CAP(e) evacuees per

time unit may enter e at a given time t.

Practitioners impose that all j-evacuees move along

(j) according to the same evacuation rate vj. This

Non Preemption Hypothesis, makes the j-evacuation

process to be determined by its starting time TD
j

(when a first j-evacuee leaves j), its ending time TA
j,

(when the last j-evacuee arrives to SAFE) and its

evacuation rate vj, subject to (Evacuation Rate

Formula): TA
j = TD

j + Length(j) + P(j)/vj.

Then the Late Evacuation Problem (LEP)

consists in the search TD
j, TA

j, vj, j J, consistent
with deadlines and capacities, and maximizing the
global safety margin Inf j (j - TA

j).

Example 1: For any arc e in Fig. 1, the first
number means the length L(e) and the second one its
capacity CAP(e). In case 3 = 7; 2 = 1 = 13, we
make (optimal schedule) group 3 start at time zero
according to full rate v3 = 2, and both groups 1 and 2
start at time 4, according to rates v1 = v2 = ½.

1 2

4

5

6

3

P(1) = 3 P(2) = 3 P(3) = 4

(1, 1) (1, 1)

(1, 1)

(1, 2)

(4, 2)

Figure 1: An Instance of Tree-LEP.

Figure 2 represents related optimal schedule
according to a Gantt diagram: The height of
rectangle j is the evacuation rate; its width is
delimited by the time when population j starts
entering node 6 and the time when it has finished.

Evacuation
rate

Time1

1

5 7 13

3

2

0.5
1
2

T(3) T*(3)

Figure 2: TREE-LEP Schedule in RCPSP format.

In order to turn a Tree-LEP solution into
RCPSP format, we set, for any j in J: Rj = Length(j)
and vminj = P(j)/((j) –Rj)). Seadline constraint
implies vj ≥ vminj ; vmaxj = CAP(e(j)). Then we
consider the process defined by the j-evacuees when
they enter into the SAFE node, and call it evacuation
job j. Its starting time is Tj = TD

j + Length(j), its
ending time is T*j = TA

j and we want to maximize
Safe-Margin = Min j J (j – T*j). If vj denotes
related evacuation rate, we get the following
temporal constraints: Rj ≤ Tj ≤ T*j ≤ j and T*j = Tj
+ P(j)/vj. As for resource constraints, we say that 2
jobs j1, j2, overlap iff interval [Tj1, T*j1] [Tj2, T*j2]
is neither empty nor reduced to one point. Then
resource constraints tells that for any arc e in A and
for any Overlap clique J0 J(e) ={j such that e
(j)}, we should have: j J0 J(e) vj ≤ CAP(e). In
case J0 = e(j), this yields vj ≤ vmaxj.

2.2 The MSM-RCPSP Model

According to 2.1, MSM-RCPSP Inputs are:
The job set J and the resource set E; for any j J,
Population coefficient P(j), Release date Rj,
Deadline j, maximal evacuation rate vmaxj and set
subset (j) E of resources used by j; for any e E,
the Capacity CAP(e) = and the subset J(e) E of
jobs j which use e. Then MSM-RCPSP model,
conjectured to be NP-Hard, comes as follows:

 MSM-RCPSP Model: Compute Rational Vectors
T = (Tj, j = 1..N), T* = (T*j, j = 1..N), v =
(vj, j = 1..N) ≥ 0, and {0, 1, -1}-valued
vector = (j1,j2, j1, j2 = 1..N) with
Semantics : j1,j2 = 1 ~ j1 << j2; j1,j2= -1 ~
j2 << j1; j1,j2= 0 ~ j1 Overlap j2, such that:

 Structural Constraints: For any j1, j2,

j1,j2= - j2,j1.

 Temporal Constraints:

o For any j: Rj ≤ Tj ≤ T*j ≤ j and

T*j = Tj + P(j)/vj; (E1)

o For any pair j1, j2, the following implication

holds: j1,j2 = 1 -> Tj2 ≥ T*j; (E1*)

 Resource Constraints:

o For any j : vminj = P(j)/((j) –Rj))

 ≤ vj ≤ vmaxj ;

o For any arc e, (E2) implication holds: (E2)

 (J0 J is such that for any pair j1, j2 in J0,
j1,j2 = 0) -> j J0 J(e) vj ≤ CAP(e);

 Maximize : Safe-Margin = Inf j ((j) – T*j)}

This model fits with industrial contexts, where jobs j

involving continuous flows of items are applied a

sequence (j) = {ej
1, ej

2, .., ej
n(j)} of operations, and

pipe-lined through some set of machines.

3 FIXING THE TOPOLOGY

It will happen in next sections that we are
provided with some topological vector . So we
denote by MSM-RCPSP() resulting MSM-
RCPSP model. MSM-RCPSP() model is convex.
In order to linearize MSM-RCPSP(), we replace,
for any j, T*j by Tj+ P(j)/vj, and reformulate (E1) as:

o For any j, and any w [vminj, vmaxj]: (j -

RMin - Tj) ≥ (- vj + w).P(j)/w2 + P(j)/w.

This constraints tells us that for any w the 2D-point
(vj, (j - Tj - RMin)) must be located above the
tangent line in (w, P(j)/w) to the hyperbolic curve
whose equation is x -> P(j)/x. We proceed the same
way with E1* and get the following linear
formulation LINEAR-MSM-RCPSP():

LINEAR-MSM-RCPSP(): {Compute T = (Tj, j =

1..N), v = (vj, j = 1..N) ≥ 0 and RMin ≥ 0, s.t:

 Temporal constraints:

o For any j : Rj ≤ Tj ;

o For any j and any w [vminj, vmaxj]: (E1)

 (j – Rmin - Tj) ≥ (- vj + w).P(j)/w2 + P(j)/w;

o For any j1, j2 s.t j1,j2 = 1, any w [vminj1,

vmaxj1]: (E1*)

 Tj2 - Tj1 ≥ (- vj1 + w).P(j1)/w2 + P(j1)/w;

 Capacity Constraints :

o For any j : vminj ≤ vj ≤ vmaxj ;

o For any e, any subset J0 J s.t for any j1, j2 in

J0, j1,j2 = 0: j J0 J(e) vj ≤ CAP(e); (E2)

 Maximize : Safe-Margin = RMin}.

We apply a cutting plane process to (E1, E1*):

Linear-MSM-RCPSP-Cut(:
Initialize a set W of constraints (E1, E1*) and
condider related restriction LINEAR-MSM-
RCPSP(, W); Not Stop ;
While Not Stop do

Solve LINEAR-MSM-RCPSP(, W);
Search for j0 (j1, j2) and w0 such that (E1,
E1*) do not hold;
If Fail(Search) then Stop
Else Insert (E1, E1*) related to j0, w0 into W.

4 PREEMPTIVE MSM-RCPSP

Preemptive MSM-RCPSP means that jobs may
stop at some time and start again a little later.
Preemption allows any job j to be split into k(j) sub-
processes j1,.., jk(j), each with starting time tj,k, ending
time t*j,k, and evacuation rate vj,k. We denote by P-
MSM-RCPSP the resulting problem. Figure 3
below shows an example of preemptive schedule
related to example 1.

Figure 3: P-MSM-RCPSP Schedule.

Let us now suppose that we are provided with
some safety margin ≥ 0 which we want to ensure.
Then we set S = {Rj, (j –), j J} and label its
elements {t1,.., t2N}, in such a way that t1 ≤ t2 ≤… ≤
t2N. For any k = 1,…,2N-1, we set k = tk+1 – tk. This
leads to the following rational PL Preemptive():

Preemptive() Linear Program : Compute

rational vector w = (wj,k , j J, k = 1..2N-1) ≥ 0,

whose semantics is that wj,k is the evacuation rate for

j between tk and tk+1, and which satisfies the

 For any j, k, wj,k ≤vmaxj;

 For any j, k k .wj,k = P(j);

 For any arc e, any k: j J(e) wj,k ≤ CAP(e);

 For any j and any k such that tk+1 ≤ Rj, wj,k = 0 ;

 For any j, k such that tk ≥ (j –)wj,k = 0}.

Lemma 1: Preemptive() identifies a preemptive
schedule which is consistent with safety margin , in
case such a schedule exists.

Proof: If a preemptive schedule exists, consistent
with safety margin , release dates Rj, deadlines j, j
 J, and capacities CAP(e), e A, then it can be
chosen in such a way that for any job j and any k,
related evacuation rate of j is constant between tk
and tk+1. Then we get above linear program.

We solve P-MSM-RCPSP by applying the
following binary process Optimal-P-MSM-RCPSP,
which computes optimal safety margin -Val by
making iteratively evolve between a non feasible
value and a feasible one :

Optimal-P-MSM-RCPSP(Threshold):
<- 0 ; 1 <- Inf j [(j) – (Rj + P(j)/vmaxj)]; w-Sol
<- Nil ; Val <- - ; Solve Preemptive();
If Success(Solve) then Val <- 1; w-Sol <- related
vector w
Else

Solve Preemptive();
If Success(Solve) then

Val <- 0; w-Sol <- related vector w ;
Counter <- 0;
While Counter ≤ Threshold do

 <- (1+0)/2 ; Solve Preemptive();
If Success(Solve) then 0 <- ; Val <-
0; w-Sol <- related w Else 1 <- ;
Optimal-P-MSM-RCPSP <- (Val, w-
Sol);

Else Optimal-P-MSM-RCPSP <- Fail;

Theorem 1: Optimal-P-MSM-RCPSP solves the P-
MSM-RCPSP Problem in Polynomial Time.

Proof: Optimality comes in straightforward way
from the very meaning of linear program
Preemptive(). As for complexity, we set Threshold
= Log2(Sup j Maximal binary encoding size of j
and Rj + 1) and derive Time-Polynomiality from
time polynomiality of LP.

Sterilization: We may try to turn w into a non
preemptive schedule through 2 approaches:

 Sterilization1: Smoothing w while keeping safety

margin as in Figure 4 below:

Evacuation
Rate (wj)

TimeU1 U3 U4 U5 U6 U9

vj

kmin(j) = 2 kmax(j) = 7

U2 U8

Tj = U2 T*j = U8

U7

wj,3

Evacuation
rate

Time
Tj = U2 T*j = U8

vj

Preemptive solution for job j
Non Preemptive solution for

job j after Sterilization 1

Figure 4: Sterilization1 Scheme.

 Sterilization2: Deriving from w a topological

vector , and solving MSM-RCPSP().

5 A FLOW BASED HEURISTIC

This section is devoted to the description of a
network flow based heuristic, which implements
insertion mechanisms as in (Quilliot, 2012), and
computes an efficient feasible MSM-RCPSP
solution. We consider resources e as flow units, that
jobs j share or transmit: If we represent every job as
a rectangle whose length is the duration T*j – Tj and
height is the evacuation rate vj, then, if j1 precedes
j2, and if not jobs j is located between j1 and j2 on the
e-diagram, then we see (fig. 2 and 6) that part of
evacuation rate vj1 related to resource e is
transmitted to j2. In order to formalize this, we build
an auxiliary network G in which the vertex set is J
{s, p}, where s and p are two fictitious jobs source
and sink, whose arcs are all arcs (i, j), i, j J,
augmented with all arcs (s, j) and all arcs (j, p). Then
we consider that the backbone of a schedule is a
flow vector w = (we

j1,j2, j1, j2 J(e) {s, p}) ≥ 0,
which represents, for all resources e, the way jobs
share resource e. Clearly, this vector w must satisfy
standard flow conservation laws:

 For any e: j J we
s,j = j J we

j,p = we
p,s = CAP(e);

 For any resource e of E and any job j0 J(e),

j J {p} we
j0,j = j J {s} we

j,j0 = vj0.

Besides, if we introduce starting times Tj and

ending times T*j as in II, then, for any j1, j2, the

following implication is true: e we
j1,j2 ≠ 0 -> Tj2 ≥

T*j1. This logical constraint means that if job j1

provides j2 with some part of resource e, then j1

should be achieved before j2 starts. Clearly, we must

keep on with the other standard constraints:

 For any j: Rj ≤ Tj ≤ T*j ≤ j ; vj ≤ vmaxj; T*j = Tj

+ P(j)/vj; Ts = T*s = 0.

 Maximize Min j (j – T*j).

s

1

2

3 p
2

0.5

1

0.5

0.5 0.5

Figure 5: Example 2, with 3 = 7, 1 = 2 = 13.

5.1 An Adaptative Insertion Heuristic

We deal with MSM-RCPSP-Flow through an
insertion algorithm which manages two antagonistic
trends: when handling job j and trying to insert it
into a current partial schedule (T, T*, v), we first
compute Tj and next assign vj a value. But if we
choose a high value vj in order to make j finish fast,
then we may block the access to the most critical
resources of (j). In order to find a compromise we
control an adaptative safety margin through binary
search and a related adaptative priority list , which
drives the insertion process for a given . For a
given value of , and a current list , the procedure
Insert-MSM-RCPSP () scans the jobs j0 in ,
and try to compute Tj0 and vj0 in such a way that
MSM-RCPSP-Flow constraints are satisfied for all
jobs j before or equal to j0 according to , and that
vj0 is minimal. In case of success, then is
increased, else Insert- MSM-RCPSP() yields a
set of pairs j1, j2, asked to become such that j2 j1
(Instruction Update() below).

MSM-RCPSP-Flow(Precision:Number)
Algorithmic Scheme:
Step 1: Start from a non feasible margin -max,
a feasible one -min, a related Current-Schedule;
Initialize priority list : priority given to jobs j
with small P(j) and expected safety;
While (-max --min) ≥ Precision do

 <- (-min -max; Insert-MSM ()
If Success then set -min to and Update
Current-Schedule
Else Update(Retrieve topology from
Current-Schedule;
Step2: Solve resulting P-MSM-RCPSP().

5.2 Insert-MSM Procedure

This procedure works while scanning current
priority list and assigning Tj and vj values as far as
jobs j come. That means that at any time during the
process, we are considering some job j0, while all
jobs j such that j j0 have been scheduled: for any j
 J {s} such that j j0, we are provided with
values Tj, T*j, vj, as well as with values (e, j) which

represents the amount (evacuation rate) of e-
resource that j is able to transmit to j0, according to
flow vector we of the MSM-RCPSP-Flow model.
Then we proceed in 3 steps:

- 1st step : Scan (j0) according to decreasing

(e, j0) values, and for any e in (j0), provide j0

with an amount of resource e in such a way

resulting T*j0 does not exceed j0 - .

- 2nd Step : In case of success of previous first

step, we become provided with an evacuation

rate vj0 and, for any resource e ≠ e0 in (i0) with

an evacuation rate value v-auxe which may be

less than vi0; So the second step makes increase

the values we
j,i0 for any e e0, j J(e), in order

to make j0 run according to the same

evacuation rate for all arcs e of (j0).

- 3rd step: In case of success of previous second

step, last step is a clustering step, which aims

at making decrease the number of resources

provided with non null we
j,i0 values, and works

by shifting, as far as possible, values we
j,i0

which involve, for a given j, only one resource

e, to another job j’ such that j’ J(e), we
j’,i0 ≠ 0

and (e, j’) ≥ we
j,i0 + we

j’,i0.

Example 2: Suppose that we face here the

following situation: = s,…, j1, …, j2, ….j3, …., j0;

(x0) = {e1, e2}; CAP(e1) = 20, CAP(e2) = 25; j0 =

21; P(j0) = 5; Rj0 = 10; j1 J(e1) J(e2); j1 J(e1);

j3 J(e2); P(j1)/v1 = 6; P(j2)/v2 = 3; P(j3)/v3 = 4.

 Then we get:

Step1 -> we1
s,j0,= 2; w

e2
s,j0 = 3; w

e1
j1,j0 = 8; vj0 =

10; Success;
Step2 -> we2

j2,j0 = 7; Success; Step3 -> w
e1

j1,j0 =
0; w

e1
j2,j0 = 8; Tj0 = 21.

6 AN EXACT ALGORITHM

This Branch&Bound algorithm relies on sections
IV and V: Optimistic estimation (upper bound)
derives from IV, and an initial feasible solution is
computed according to V. We must specify:

- The nodes of related search tree and the way

optimistic estimation is adapted to those nodes;

- The Branching Strategy and the global Tree

Search process.

The nodes of the Search Tree: Such a node s

will be defined by a Release vector A = (Aj, j J) ≥
R = (Rj = j J), a Deadline vector B = (Bj, j J) ≤
and 2 partially defined Medium vectors U = (Uj, j
J(s)), U* = (U*j, j J(s) such that :

o J(s) denotes the set of jobs j such that Uj and

U*j are defined;

o If j J(s), then Aj ≤ Uj < U*j ≤ Bj ;

For a given job j, the meaning of Uj and U*j, j J(s)
is that wj = wj(t) must be constant on [Uj, U*j] and
such that, for any t’ outside [Uj, U*j], t inside [Uj,
U*j], wj(t) ≥ vj(t’). Then Branching from s. Given a
job j and 2 values and such that Aj < < , node
s gives rise to 3 sons:

 First son: Aj is replaced by

 Second son: Bj is replaced by

 Third son: Uj is replaced by and U*j by :

we must have: < Uj <U*j < .

The 3-uple (j,) defines the Branching

Signature. Once created, node s is applied an
optimistic estimation procedure, and next, in case
Sterilization does not work, stored into a Breadth-
First Search list together with resulting value -Val
and related Branching Signature Sign = (j0,).

Optimistic Estimation and Sterilization

Procedures: They derive from Section IV: we solve

P-MSM-RCPSP augmented with additional

constraints related to node s. More precisely:

 For any j, we set B*j = Inf (Bj, j –) and S =

{Aj, B*j, j J} {Uj, U*j, j J(s)}. We order S

= {t1,…, tk,…tK} through increasing values t1 <t2

< … < tK and set, for any k = 1.. K-1: k = tk+1 - tk

 We build 4 vectors k1, k2, k3, k4, with

indexation on J, and whose meaning is:

- k1j means the value k such that Aj = tk ;

- k2j means the value k such that B*j = tk ;

- k3j means the value k such that Uj = tk; (* If

Uj is undefined, then k3j = 0*)

- k4j means the value k such that U*j = tk ; (*If

Uj is undefined, then k4j = 0*)

According to this, we adapt the program

Preemptive() to node s by setting:

Preemptives(): {Compute w = wj,k , j J, k =

1..K-1} such that;

 For any e and any k, j J(e) wj,k ≤ CAP(e)

 For any j, k k . wj,k = P(j)

 For any j, any k ≤ k1(j) – 1, w,k = 0 ;

 For any j, any k ≥ k2(j), wj,k = 0 ;

 For any j, any k ≥ k3(j), w,k+1 ≤ w,k ;

 For any j, any k ≤ k4(j)-2, wj,k+1 ≥ wj,k .

We try to turn a solution of Preemptives() into

a MSM-RCPSP Solution through procedures

Sterilizationx , x = 1, 2 of IV, and adapt Optimal-P-
MSM-RCPSP into a procedure UB in order to make
it compute, for a given node s = (A, B, U, U*),
related optimistic estimation -Val = UB(s).

Branching Strategy: Let us suppose that we just

computed -Val = UB(s), got a preemptive solution

w, which we could not turn into a non preemptive

solution with better Safety Margin than our current

best feasible value. Then, for any job j, we scan the

index set 1..K, and compute a word j = {j
1,.., j

K}

representative of the resource profile induced by j:

o If = 1 then wj,k > wj,k-1;

o If = -1 then wj,k < wj,k-1;

o If = 0 then wj,k-1 = wj,k and h =0.

This word j enables us to identify:

- 1st Configuration: A hole (see Fig. 6) with some

depth and width and a weight = depth.width;

- 2sd Configuration: No hole but a left stair or a

right stair with once again a depth, a width and a

weight.

Evacuation
Rate (wj)

Time
α β

Figure 6: Hole (1st Configuration) Branching.

So our Branching Strategy comes as follows: In

case Configuration 1, then we compute branching
signature Sign as some related Sg with largest
weight = depth.width. In case it does not exist, then
we look for Sg related to configuration 2 with the
highest weight value.

Resulting Branch and Bound Algorithm B&B-
MSM-RCPSP: B&B- MSM-RCPSP is implemented
as follows, according to a BFS (Breadth First
Search) strategy. In case of interruption, we get a
lower bound BInf and an upper bound BSup.

7 NUMERICAL EXPERIMENTS

Technical Context: Algorithms are
implemented in C++, gcc 7.3. Linear models are
solved with Cplex 12.8. Hardware involves
Processors Intel(R) Xeon(R) CPU E7-8890 v3 @
2.50 GHz, run by Linux.

Instance Generation: Instances come from the

GEOSAFE project (see (Artigues, 2018)). They are

clustered into 10 instance groups dense_x,
medium_x, sparse_x, where x is the number of jobs,
and dense, medium and sparse are related to the
mean degree of the nodes in related tree.

Table 1: Characteristics of the Instances.

Instances Nodes Cap-Relax Congest

dense_10 19.80 155.06 1.69

dense_15 29.10 160.08 1.78

dense_20 38.60 164.88 1.84

medium_10 19.70 152.83 1.71

medium_15 29.10 159.39 1.80

medium_20 38.20 160.69 1.86

medium_25 46.80 169.91 1.91

sparse_10 19.50 146.17 1.75

sparse_15 28.80 153.92 1.87

sparse_20 38.30 157.78 1.87

sparse_25 47.60 154.73 1.89

For any 10 instances group, above Table 1

provides us with: the mean number Nodes of nodes,
the minimal duration Cap-Relax of the evacuation
process in case capacity constraints are relaxed and
the mean (for all nodes x) ratio Congest, between the
sum of capacities of the in-arcs and the capacity of
the out-arc related to x.

7.1 Evaluating Optimal-P-MSM-
RCPSP and MSM-RCPSP-Flow

We focus here on the ability of Optimal-P-
MSM-RCPSP and MSM-RCPSP-Flow to provide
us with a good MSM-RCPSP Lower/Upper
approximation window. Table 2 provides, for every
instance group:

 Opt-P-MSM: Optimal safety margin (Optimal-P-

MSM-RCPSP); Opt-P-CPU: Related CPU time;

 # fails : the number of instances for which

MSM-RCPSP-Flow yields a fail result;

 MSM-Flow: Safety margin computed by MSM-

RCPSP-Flow; Flow-CPU: Related CPU Time;

 Preempt-Gap: the gap between MSM-Flow and

the Opt-P-MSM.

Table 2: Behavior of MSM-RCPSP-Flow.

Instances Opt-P-MSM Opt-P-CPU

dense_10 106.25 0.05

dense_15 68.3 0.08

dense_20 39.29 0.11

medium_10 92.59 0.04

medium_15 65.35 0.08

medium_20 54.85 0.11

medium_25 49.55 0.32

sparse_10 113.78 0.04

sparse_15 78.33 0.06

sparse_20 64.45 0.11

sparse_25 21.69 0.45

Table 2-Bis: Behavior of MSM-RCPSP-Flow.

Instances MSM-

Flow

Preempt-

Gap

Flow-

CPU

fails

dense_10 97.09 9.23 2.01 0

dense_15 58.02 20.96 2.31 0

dense_20 34.75 20.03 2.97 2

medium_10 88.76 4.21 2.06 0

medium_15 52.87 18.24 2.82 0

medium_20 43.75 20.85 3.53 2

medium_25 36.78 26.87 1.96 1

sparse_10 110.38 3.65 1.88 0

sparse_15 75.77 3.24 2.75 0

sparse_20 48.70 28.50 3.94 0

sparse_25 32.67 * 1.18 4

Comment: Optimal-P-MSM-RCPSP and MSM-
RCPSP-Flow provide us with respectively efficient
optimistic and realistic approximations.

7.2 Evaluating B&B-MSM-RCPSP

We focus here on the filtering process and the

number of nodes of the search tree which are visited

during the process. We compute (Table 3):

 The value Opt-P-MSM as in Table 2;

 The lower (feasible) bound B&B- MSM-Inf

provided by B&B-MSM-RCPSP; The lower

bound B&B-MSM-Sup provided by B&B-

MSM-RCPSP; Related CPU time B&B- CPU;

 The number Nodes of nodes of the search tree

which were visited during the process.

Table 3: Behavior of B&B- MSM-RCPSP.

Instances Opt-P-

MSM

B&B-

MSM- Inf

B&B-

MSM-Sup

dense_10 106.25 105.75 105.76

dense_15 68.30 66.65 67.49

dense_20 39.29 38.86 39.29

medium_10 92.58 91.87 91.87

medium_15 65.35 63.42 64.48

medium_20 54.85 49.82 54.57

medium_25 51.60 49.19 51.60

sparse_10 113.78 113.75 113.78

sparse_15 78.33 78.33 78.33

sparse_20 64.45 59.21 64.38

sparse_25 34.34 32.49 34.34

Table 3-Bis: Behavior of B&B-MSM-RCPSP.

Instances Nodes B&B-CPU

dense_10 12077.80 361.14

dense_15 27148.80 1090.40

dense_20 11338.90 720.85

medium_10 4253.30 105.51

medium_15 28850.20 1440.62

medium_20 27254.90 1800.03

medium_25 10839.00 1081.33

sparse_10 57425.50 604.36

sparse_15 10668.30 360.32

sparse_20 15164.50 1440.08

sparse_25 17054.10 1800.28

Comment: B&B-MSM-Inf is always very close to
optimistic estimation Opt-P-MSM, and Optimal-P-
MSM-RCPSP provides us with a very good
approximation of optimality. Still, it is difficult to
make this optimistic estimation decrease.

8 CONCLUSIONS

We introduced here a Multi-Mode RCPSP
model with both discrete and continuous features,
solved its preemptive version, proposed a network
flow based heuristic as well as an exact
Branch&Bound algorithm. Further work will aim at
extending the model and exploring potential
industrial applications.

ACKNOWLEDGEMENTS

We thanks E.U Community for funding H2020

GeoSafe Project.

REFERENCES

Artigues.C, Hebrard.E, Pencolé.Y, Schutt.A, Stuckey.P,

2018. A study of evacuation planning for wildfires;

ModRef 2018 Workshop, Lille, France.

V.Bayram.V, 2016. Optimization models for large scale

network evacuation planning and management;

Surveys in O.R and Management Sciences.

Bilseka.U, Bilgea.Ü, Ulusoy.G, 2015. Multi-mode

resource constrained multi-project scheduling and

resource portfolio problem; EJOR, 240, 1, p 22-33.

Geo-Safe- geospatial based environment for optimization

systems addressing fire emergencies; MSCA-RISE

2015 H2020, http://fseg.gre.ac.uk/fire/geo-safe.html.

Accessed Jue 12, (2018).

Hartmann, S., Briskorn, D., 2010. A survey of variants and

extensions of the resource-constrained project

scheduling problem. EJOR, 207: 1-14.

Herroelen, W., 2005. Project scheduling - theory and

practice. Production and Operations Management,

14(4): 413-432.

Orji.M.J, Wei.S, 2013. Project Scheduling Under

Resource Constraints: A Recent Survey. IJERT Vol.

2 Issue 2.

Quilliot.A, Toussaint.H, 2012. Flow Polyedra and

RCPSP, RAIRO-RO, 46-04, p 379-409.

Weglarz. J, Jozefowska. J, Mika.M, Waligora.G, 2011.

Project scheduling finite/infinite processing modes -

A survey. EJOR, 208(10): 177-205.

https://www.sciencedirect.com/science/article/abs/pii/S0377221714005281#!
https://www.sciencedirect.com/science/article/abs/pii/S0377221714005281#!
https://www.sciencedirect.com/science/article/abs/pii/S0377221714005281#!
https://www.sciencedirect.com/science/journal/03772217/240/1
http://fseg.gre.ac.uk/fire/geo-safe.html.%20Accessed%20Jue%2012
http://fseg.gre.ac.uk/fire/geo-safe.html.%20Accessed%20Jue%2012

