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Abstract: We study here a variant of the multimode Resource Constrained Project Scheduling problem (RCPSP), 

which involves continuous modes, and a notion of Safety Margin maximization. Our interest was motivated 

by a work package inside the GEOSAFE H2020 project, devoted to the design of evacuation plans in face of 

natural disasters, and more specifically wildfire. 

1 INTRODUCTION 

RCPSP: Resource Constrained Project 
Scheduling Problem (see (Hartmann, 2010), 
Herroelen, 2005), (Orji, 2013)) involves jobs subject 
to both temporal constraints and cumulative 
resource constraints. In multimode RCPSP (see 
(Bilseka, 2015), (Weglarz, 2011), resource 
requirements are flexible and the scheduler may cut 
a trade-off between speed and resource 
consumption. The MSM-RCPSP (Multimode with 
Safety Maximization RCPSP) model introduced is a 
variant of multi-mode RCPSP: for any job j, we 
must choose its evacuation rate vj, which 
determines, for any resource e in the set (j) of 
resources required by j, the amount of e consumed 
by j. Release dates Rj and deadlines j are imposed, 
and performance is about safety maximization, that 
means the minimal difference (safety margin), 
between job deadlines and ending times. 

 
MSM-RCPSP was motivated by the H2020 

GEOSAFE European project (GeoSafe, 2018), 
related to the management of wildfires. At some 
time during this project, we dealt with evacuation 
schedules. While in practice evacuation is managed 
in an empirical way, 2-step optimization approaches 
have been recently tried (see (Artigues, 2018), and 
(Bayram, 2016)): the first step (pre-process) 
identifies the routes that evacuees are going to 
follow; the second step schedules the evacuation of 

estimated late evacuees along those routes. This last 
step implies priority rules and evacuation rates 
imposed to evacuees and resulting models may be 
cast into the MSM-RCPSP framework.   

 
The paper is structured as follows: Section II 

describes the MSM-RCPSP model. Section III 
solves the fixed topology case. In Section IV we 
prove that MSM-RCPSP preemptive relaxation can 
be solved in polynomial time. We design in Section 
V and VI both fast heuristic network flow 
techniques, well-fitted to real-time management, and 
an exact branch and bound algorithm. Section VII is 
devoted to numerical tests.  

2 MULTI-MODE RCPSP WITH 

SAFETY MAXIMIZATION 

MSM-RCPSP is related to a set J of jobs, 
subject to release dates Rj and deadlines j, j  J, 
which have to be scheduled while maximizing what 
we call the Safety Margin. That means that we want 
to compute starting times Tj and ending times T*j in 
such a way that, for any job: Rj  ≤ Tj  < T*j  ≤ j, and 
that resulting Safety Margin, defined as equal to the 
quantity Inf j  J (j - T*j), is the largest possible. But 
we do not know the durations of those jobs: as a 
matter of fact, duration of j is determined as a 
quantity P(j)/vj, where P(j) is some fixed coefficient 



and vj is the speed of j, which is part of the problem 
and which we also call evacuation rate in reference 
to the Late Evacuation problem set in the context of 
H2020 GEOSAFE project. The choice of those 
evacuation rates is constrained in a cumulative way 
by the existence of a resource set E: any job j 
involves a subset J(e)  E of resources and at any 
time between Tj and T*j its consumption level of any 
resource e  E is equal to the evacuation rate vj, 
while the amount of available resource e is bounded 
by a fixed number CAP(e). Let us first link MSM-
RCPSP with evacuation problems and the 
GEOSAFE H2020 Program. 

2.1 Tree Late Evacuation (Tree-LEP) 

We consider here a transit (evacuation) network 

H = (V, E), supposed to be an oriented tree:   

 Leaf subset J  V, called evacuation node set, 

identifies groups of P(j) j-evacuees who must 

reach the anti-root safe node SAFE while 

following the arcs of related path (j). The last 

j-evacuee must reach SAFE before deadline j. 

Only one arc e(j) has origin j and only one arc 

has destination SAFE. 

 Every arc e  E is provided with time value 

L(e), required for any evacuee to move along e; 

L-length of(j) is denoted by Length(j). Every 

arc e  E is also provided with some capacity 

CAP(e): no more than CAP(e) evacuees per 

time unit may enter e at a given time t. 

Practitioners impose that all j-evacuees move along 

(j) according to the same evacuation rate vj. This 

Non Preemption Hypothesis, makes the j-evacuation 

process to be determined by its starting time TD
j 

(when a first j-evacuee leaves j), its ending time TA
j, 

(when the last j-evacuee arrives to SAFE) and its 

evacuation rate vj, subject to (Evacuation Rate 

Formula): TA
j = TD

j + Length(j) + P(j)/vj.   
 
Then the Late Evacuation Problem (LEP) 

consists in the search TD
j, TA

j, vj, j  J, consistent 
with deadlines and capacities, and maximizing the 
global safety margin Inf j (j - TA

j).   
 

Example 1: For any arc e in Fig. 1, the first 
number means the length L(e) and the second one its 
capacity CAP(e). In case 3 = 7; 2 = 1 = 13, we 
make (optimal schedule) group 3 start at time zero 
according to full rate v3 = 2, and both groups 1 and 2 
start at time 4, according to rates v1 = v2 = ½. 
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Figure 1: An Instance of Tree-LEP.    

Figure 2 represents related optimal schedule 
according to a Gantt diagram: The height of 
rectangle j is the evacuation rate; its width is 
delimited by the time when population j starts 
entering node 6 and the time when it has finished.  
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Figure 2: TREE-LEP Schedule in RCPSP format. 

In order to turn a Tree-LEP solution into 
RCPSP format, we set, for any j in J: Rj = Length(j) 
and vminj  =  P(j)/((j) –Rj)). Seadline constraint 
implies vj ≥ vminj  ; vmaxj = CAP(e(j)). Then we 
consider the process defined by the j-evacuees when 
they enter into the SAFE node, and call it evacuation 
job j. Its starting time is Tj = TD

j + Length(j), its 
ending time is T*j = TA

j and we want to maximize 
Safe-Margin = Min j  J (j – T*j ). If vj denotes 
related evacuation rate, we get the following 
temporal constraints: Rj  ≤ Tj ≤ T*j ≤ j and T*j = Tj 
+ P(j)/vj. As for resource constraints, we say that 2 
jobs j1, j2, overlap iff interval [Tj1, T*j1]  [Tj2, T*j2] 
is neither empty nor reduced to one point. Then 
resource constraints tells that for any arc e in A and 
for any Overlap clique J0  J(e) ={j such that e  
(j)}, we should have:  j  J0  J(e) vj ≤ CAP(e). In 
case J0 = e(j), this yields vj  ≤ vmaxj. 

2.2 The MSM-RCPSP Model 

According to 2.1, MSM-RCPSP Inputs are: 
The job set J and the resource set E; for any j  J, 
Population coefficient P(j), Release date Rj,  
Deadline j, maximal evacuation rate vmaxj and set 
subset (j)  E of resources used by j; for any e  E, 
the Capacity CAP(e) = and the subset J(e)  E of 
jobs j which use e. Then MSM-RCPSP model, 
conjectured to be NP-Hard, comes as follows: 



 MSM-RCPSP Model: Compute Rational Vectors 
T = (Tj, j = 1..N), T* = (T*j, j = 1..N), v = 
(vj, j = 1..N) ≥ 0, and {0, 1, -1}-valued 
vector  = (j1,j2, j1, j2 = 1..N) with 
Semantics : j1,j2 = 1 ~ j1 << j2; j1,j2= -1  ~ 
j2 << j1; j1,j2= 0 ~ j1 Overlap j2, such that: 

 Structural Constraints: For any j1, j2,  

j1,j2= - j2,j1. 

 Temporal Constraints:  

o For any j:  Rj  ≤ Tj ≤ T*j ≤ j and  

T*j = Tj + P(j)/vj;   (E1) 

o For any pair j1, j2, the following implication 

holds:  j1,j2 = 1 -> Tj2 ≥ T*j; (E1*) 

 Resource Constraints:  

o For any j : vminj = P(j)/((j) –Rj))  

                                           ≤ vj ≤ vmaxj ;  

o For any arc e, (E2) implication holds: (E2) 

     (J0  J is such that for any pair j1, j2 in J0, 
j1,j2 = 0) ->  j  J0  J(e) vj ≤ CAP(e); 

 Maximize : Safe-Margin = Inf j ((j) – T*j)}   
 

This model fits with industrial contexts, where jobs j 

involving continuous flows of items are applied a 

sequence (j) = {ej
1, ej

2, .., ej
n(j)} of operations, and 

pipe-lined through some set of machines. 

3 FIXING THE TOPOLOGY      

It will happen in next sections that we are 
provided with some topological vector . So we 
denote by MSM-RCPSP() resulting MSM-
RCPSP model. MSM-RCPSP() model is convex. 
In order to linearize MSM-RCPSP(), we replace, 
for any j, T*j by Tj+ P(j)/vj, and reformulate (E1) as: 

o For any j, and any w  [vminj, vmaxj]: (j - 

RMin - Tj) ≥ (- vj + w).P(j)/w2 + P(j)/w.  

This constraints tells us that for any w the 2D-point 
(vj, (j - Tj - RMin)) must be located above the 
tangent line in (w, P(j)/w) to the hyperbolic curve 
whose equation is x -> P(j)/x. We proceed the same 
way with E1* and get the following linear 
formulation LINEAR-MSM-RCPSP():  
 

LINEAR-MSM-RCPSP(): {Compute T = (Tj, j = 

1..N), v = (vj, j = 1..N) ≥ 0 and RMin ≥ 0, s.t:  

 Temporal constraints:  

o For any j : Rj ≤ Tj ; 

o For any j and any w  [vminj, vmaxj]: (E1) 

  (j – Rmin - Tj ) ≥ (- vj + w).P(j)/w2 + P(j)/w; 

o For any j1, j2 s.t  j1,j2 = 1, any w  [vminj1, 

vmaxj1]:                                       (E1*) 

  Tj2 - Tj1 ≥ (- vj1 + w).P(j1)/w2 + P(j1)/w; 

 Capacity Constraints : 

o For any j : vminj ≤ vj ≤ vmaxj ;   

o For any e, any subset  J0   J s.t for any j1, j2 in 

J0,  j1,j2 = 0: j  J0  J(e) vj ≤ CAP(e);   (E2) 

 Maximize : Safe-Margin = RMin}.   

   
We apply a cutting plane process to (E1, E1*):   

 
Linear-MSM-RCPSP-Cut(: 
Initialize a set W of constraints (E1, E1*) and 
condider related restriction LINEAR-MSM-
RCPSP(, W); Not Stop ; 
While Not Stop do 

Solve LINEAR-MSM-RCPSP(, W); 
Search for j0 (j1, j2) and w0 such that (E1, 
E1*) do not hold;  
If Fail(Search) then Stop  
Else Insert (E1, E1*) related to j0, w0 into W. 

4 PREEMPTIVE MSM-RCPSP  

Preemptive MSM-RCPSP means that jobs may 
stop at some time and start again a little later.  
Preemption allows any job j to be split into k(j) sub-
processes j1,.., jk(j), each with starting time tj,k, ending 
time t*j,k, and evacuation rate vj,k. We denote by P-
MSM-RCPSP the resulting problem. Figure 3 
below shows an example of preemptive schedule 
related to example 1.  

 

Figure 3: P-MSM-RCPSP Schedule. 

Let us now suppose that we are provided with 
some safety margin ≥ 0 which we want to ensure. 
Then we set S = {Rj, (j – ), j  J} and label its 
elements {t1,.., t2N}, in such a way that t1 ≤ t2 ≤… ≤ 
t2N. For any k = 1,…,2N-1, we set k = tk+1 – tk. This 
leads to the following rational PL Preemptive(): 

 

Preemptive() Linear Program : Compute 

rational vector w = (wj,k , j  J, k = 1..2N-1) ≥ 0, 

whose semantics is that wj,k is the evacuation rate for 

j between tk and tk+1, and which satisfies the  

 For any j, k, wj,k ≤vmaxj; 

 For any j,  k k .wj,k = P(j); 



 For any arc e, any k:  j  J(e) wj,k  ≤ CAP(e); 

 For any j and any k such that tk+1 ≤ Rj, wj,k  = 0 ; 

 For any j, k such that tk ≥  (j – )wj,k  = 0}. 
 

Lemma 1: Preemptive() identifies a preemptive 
schedule which is consistent with safety margin , in 
case such a schedule exists. 

 
Proof: If a preemptive schedule exists, consistent 
with safety margin , release dates Rj, deadlines j, j 
 J, and capacities CAP(e), e  A, then it can be 
chosen in such a way that for any job j and any k, 
related evacuation rate of j is constant between tk 
and tk+1. Then we get above linear program.  
 

We solve P-MSM-RCPSP by applying the 
following binary process Optimal-P-MSM-RCPSP, 
which computes optimal safety margin -Val by 
making  iteratively evolve between a non feasible 
value and a feasible one : 

 
Optimal-P-MSM-RCPSP(Threshold): 
<- 0 ;  1 <- Inf j [(j) – (Rj + P(j)/vmaxj)]; w-Sol 
<- Nil ; Val <- -  ; Solve Preemptive(); 
If Success(Solve) then Val <- 1; w-Sol <- related 
vector w  
Else  

Solve Preemptive(); 
If Success(Solve) then  

Val <- 0; w-Sol <- related vector w ; 
Counter <- 0; 
While Counter ≤ Threshold do 

 <- (1+0)/2 ; Solve Preemptive(); 
If Success(Solve) then 0 <-  ; Val <- 
0; w-Sol <- related w  Else 1 <-  ;  
Optimal-P-MSM-RCPSP <- (Val, w-
Sol); 

Else Optimal-P-MSM-RCPSP <- Fail; 
 
Theorem 1: Optimal-P-MSM-RCPSP solves the P-
MSM-RCPSP Problem in Polynomial Time. 

 
Proof: Optimality comes in straightforward way 
from the very meaning of linear program 
Preemptive(). As for complexity, we set Threshold 
= Log2(Sup j Maximal binary encoding size of j 
and Rj + 1) and derive Time-Polynomiality from 
time polynomiality of LP. 

 
Sterilization: We may try to turn w into a non 
preemptive schedule through 2 approaches:   

 Sterilization1: Smoothing w while keeping safety 

margin  as in Figure 4 below: 

Evacuation 
Rate (wj)

TimeU1 U3 U4 U5 U6 U9

vj

kmin(j) = 2 kmax(j) = 7

U2 U8

Tj = U2 T*j = U8

U7

wj,3

Evacuation 
rate

Time
Tj = U2 T*j = U8

vj

Preemptive solution for job j
Non Preemptive solution for 

job j after Sterilization 1  

Figure 4: Sterilization1 Scheme. 

 Sterilization2: Deriving from w a topological 

vector , and solving MSM-RCPSP().  

5 A FLOW BASED HEURISTIC  

This section is devoted to the description of a 
network flow based heuristic, which implements 
insertion mechanisms as in (Quilliot, 2012), and 
computes an efficient feasible MSM-RCPSP 
solution. We consider resources e as flow units, that 
jobs j share or transmit: If we represent every job as 
a rectangle whose length is the duration T*j – Tj and 
height is the evacuation rate vj, then, if j1 precedes 
j2, and if not jobs j is located between j1 and j2 on the 
e-diagram, then we see (fig. 2 and 6) that part of 
evacuation rate vj1 related to resource e is 
transmitted to j2. In order to formalize this, we build 
an auxiliary network G in which the vertex set is J  
{s, p}, where s and p are two fictitious jobs source 
and sink, whose arcs are all arcs (i, j), i, j  J, 
augmented with all arcs (s, j) and all arcs (j, p). Then 
we consider that the backbone of a schedule is a 
flow vector w = (we

j1,j2, j1, j2  J(e)  {s, p}) ≥ 0, 
which represents, for all resources e, the way jobs 
share resource e. Clearly, this vector w must satisfy 
standard flow conservation laws:  

 For any e: j  J we
s,j =  j  J we

j,p = we
p,s = CAP(e); 

 For any resource e of E and any job  j0  J(e),   

j  J  {p}  we
j0,j =  j  J  {s} we

j,j0  = vj0.  

 

Besides, if we introduce starting times Tj and 

ending times T*j as in II, then, for any j1, j2, the 

following implication is true:  e we
j1,j2 ≠ 0 -> Tj2 ≥ 

T*j1. This logical constraint means that if job j1 

provides j2 with some part of resource e, then j1 

should be achieved before j2 starts. Clearly, we must 

keep on with the other standard constraints:  

 For any j:  Rj  ≤ Tj ≤ T*j ≤ j ; vj ≤ vmaxj; T*j = Tj 

+ P(j)/vj; Ts = T*s = 0.   

 Maximize Min j (j – T*j). 
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Figure 5: Example 2, with 3 = 7, 1 = 2 = 13. 

5.1 An Adaptative Insertion Heuristic 

We deal with MSM-RCPSP-Flow through an 
insertion algorithm which manages two antagonistic 
trends: when handling job j and trying to insert it 
into a current partial schedule (T, T*, v), we first 
compute Tj and next assign vj a value. But if we 
choose a high value vj in order to make j finish fast, 
then we may block the access to the most critical 
resources of (j). In order to find a compromise we 
control an adaptative safety margin  through binary 
search and a related adaptative priority list , which 
drives the insertion process for a given . For a 
given value of , and a current list , the procedure 
Insert-MSM-RCPSP () scans the jobs j0 in , 
and try to compute Tj0 and vj0 in such a way that 
MSM-RCPSP-Flow constraints are satisfied for all 
jobs j before or equal to j0 according to , and that 
vj0 is minimal. In case of success, then  is 
increased, else Insert- MSM-RCPSP() yields a 
set of pairs j1, j2, asked to become such that j2  j1 
(Instruction Update() below). 

 
MSM-RCPSP-Flow(Precision:Number) 
Algorithmic Scheme: 
Step 1: Start from a non feasible margin -max, 
a feasible one -min, a related Current-Schedule;  
Initialize priority list : priority given to jobs j 
with small P(j) and expected safety; 
While (-max --min) ≥ Precision do 

 <- (-min -max; Insert-MSM () 
If Success then set -min to and Update 
Current-Schedule  
Else Update(Retrieve topology  from 
Current-Schedule;  
Step2: Solve resulting P-MSM-RCPSP(). 

5.2 Insert-MSM Procedure 

This procedure works while scanning current 
priority list  and assigning Tj and vj values as far as 
jobs j come. That means that at any time during the 
process, we are considering some job j0, while all 
jobs j such that j  j0 have been scheduled: for any j 
 J  {s} such that j j0, we are provided with 
values Tj, T*j, vj, as well as with values (e, j) which 

represents the amount (evacuation rate) of e-
resource that j is able to transmit to j0, according to 
flow vector we of the MSM-RCPSP-Flow model.  
Then we proceed in 3 steps: 

- 1st step : Scan (j0) according to decreasing 

(e, j0) values, and for any e in (j0), provide j0 

with an amount of resource e in such a way 

resulting T*j0 does not exceed j0 - .   

- 2nd Step : In case of success of previous first 

step, we become provided with an evacuation 

rate vj0 and, for any resource e ≠ e0 in (i0) with 

an evacuation rate value v-auxe which may be 

less than vi0; So the second step makes increase 

the values we
j,i0 for any e  e0, j  J(e), in order 

to make j0 run according to the same 

evacuation rate for all arcs e of (j0).   

- 3rd step: In case of success of previous second 

step, last step is a clustering step, which aims 

at making decrease the number of resources 

provided with non null we
j,i0 values, and works 

by shifting, as far as possible, values we
j,i0 

which involve, for a given j, only one resource 

e, to another job j’ such that j’  J(e), we
j’,i0 ≠ 0 

and ( e, j’) ≥ we
j,i0 + we

j’,i0. 

 

Example 2: Suppose that we face here the 

following situation: = s,…, j1, …, j2, ….j3, …., j0; 

(x0) = {e1, e2}; CAP(e1) = 20, CAP(e2) = 25; j0 = 

21;  P(j0) = 5; Rj0  = 10; j1  J(e1)  J(e2); j1  J(e1); 

j3  J(e2); P(j1)/v1 = 6; P(j2)/v2 = 3; P(j3)/v3 = 4. 

 Then we get: 

Step1 -> we1
s,j0,= 2; w 

e2
s,j0 = 3; w 

e1
j1,j0 = 8; vj0 = 

10; Success; 
Step2 -> we2

j2,j0 = 7; Success; Step3 -> w 
e1

j1,j0 = 
0; w 

e1
j2,j0 = 8; Tj0 = 21. 

6 AN EXACT ALGORITHM 

This Branch&Bound algorithm relies on sections 
IV and V: Optimistic estimation (upper bound) 
derives from IV, and an initial feasible solution is 
computed according to V. We must specify: 

- The nodes of related search tree and the way 

optimistic estimation is adapted to those nodes; 

- The Branching Strategy and the global Tree 

Search process.    

 
The nodes of the Search Tree: Such a node s 

will be defined by a Release vector A = (Aj, j  J) ≥ 
R = (Rj = j  J), a Deadline vector B = (Bj, j  J) ≤  
and 2 partially defined Medium vectors U = (Uj, j  
J(s)), U* = (U*j, j  J(s) such that : 



o J(s) denotes the set of jobs j such that Uj and 

U*j are defined; 

o If j  J(s), then Aj ≤ Uj < U*j ≤ Bj ; 

 
For a given job j, the meaning of Uj and U*j, j  J(s) 
is that wj = wj(t) must be constant on [Uj, U*j] and 
such that, for any t’ outside [Uj, U*j], t inside [Uj, 
U*j], wj(t) ≥ vj(t’). Then Branching from s. Given a 
job j and 2 values  and  such that Aj <  < , node 
s gives rise to 3 sons: 

 First son: Aj is replaced by 

 Second son: Bj is replaced by 

 Third son: Uj is replaced by  and U*j  by : 

we must have:  < Uj  <U*j < . 

 
The 3-uple (j, ) defines the Branching 

Signature. Once created, node s is applied an 
optimistic estimation procedure, and next, in case 
Sterilization does not work, stored into a Breadth-
First Search list together with resulting value -Val 
and related Branching Signature Sign = (j0, ). 

 

Optimistic Estimation and Sterilization 

Procedures: They derive from Section IV: we solve 

P-MSM-RCPSP augmented with additional 

constraints related to node s. More precisely: 

 For any j, we set B*j = Inf (Bj, j – ) and S = 

{Aj, B*j, j  J}  {Uj, U*j, j  J(s)}. We order S 

= {t1,…, tk,…tK} through increasing values t1 <t2 

< … < tK and set, for any k = 1.. K-1: k = tk+1 - tk 

 We build 4 vectors k1, k2, k3, k4, with 

indexation on J, and whose meaning is: 

- k1j means the value k such that Aj = tk ; 

- k2j means the value k such that B*j = tk ; 

- k3j means the value k such that Uj = tk; (* If 

Uj is undefined, then k3j = 0*) 

- k4j means the value k such that U*j = tk ; (*If 

Uj is undefined, then k4j = 0*) 

 

According to this, we adapt the program 

Preemptive() to node s by setting:   

 

Preemptives(): {Compute w = wj,k , j  J, k = 

1..K-1} such that; 

 For any e and any k, j  J(e) wj,k ≤ CAP(e) 

 For any j,  k k . wj,k = P(j)    

 For any j, any k ≤ k1(j) – 1, w,k  = 0 ;   

 For any j, any k ≥ k2(j), wj,k  = 0 ;   

 For any j, any k ≥ k3(j), w,k+1 ≤   w,k ;  

 For any j, any k ≤ k4(j)-2, wj,k+1 ≥   wj,k . 

      
We try to turn a solution of Preemptives() into 

a MSM-RCPSP Solution through procedures 

Sterilizationx , x = 1, 2 of IV, and adapt Optimal-P-
MSM-RCPSP into a procedure UB in order to make 
it compute, for a given node s =  (A, B, U, U*), 
related optimistic estimation -Val = UB(s).     

  
Branching Strategy: Let us suppose that we just 

computed -Val = UB(s), got a preemptive solution 

w, which we could not turn into a non preemptive 

solution with better Safety Margin than our current 

best feasible value. Then, for any job j, we scan the 

index set 1..K, and compute a word j = {j
1,.., j

K} 

representative of the resource profile induced by j:  

o If  = 1 then wj,k > wj,k-1; 

o If  = -1 then wj,k < wj,k-1; 

o If  = 0 then wj,k-1 = wj,k and h =0. 

This word j enables us to identify:  

- 1st Configuration: A hole (see Fig. 6) with some 

depth and width and a weight =  depth.width; 

- 2sd Configuration: No hole but a left stair or a 

right stair with once again a depth, a width and a 

weight.     
 

Evacuation 
Rate (wj)

Time
α β

 
Figure 6: Hole (1st Configuration) Branching. 

 
So our Branching Strategy comes as follows: In 

case Configuration 1, then we compute branching 
signature Sign as some related Sg with largest 
weight = depth.width. In case it does not exist, then 
we look for Sg related to configuration 2 with the 
highest weight value. 
 

Resulting Branch and Bound Algorithm B&B- 
MSM-RCPSP: B&B- MSM-RCPSP is implemented 
as follows, according to a BFS (Breadth First 
Search) strategy. In case of interruption, we get a 
lower bound BInf and an upper bound BSup.    

7 NUMERICAL EXPERIMENTS 

Technical Context: Algorithms are 
implemented in C++, gcc 7.3. Linear models are 
solved with Cplex 12.8. Hardware involves 
Processors Intel(R) Xeon(R) CPU E7-8890 v3 @ 
2.50 GHz, run by Linux. 

 
Instance Generation: Instances come from the 

GEOSAFE project (see (Artigues, 2018)). They are 



clustered into 10 instance groups dense_x, 
medium_x, sparse_x, where x is the number of jobs, 
and dense, medium and sparse are related to the 
mean degree of the nodes in related tree.   

Table 1: Characteristics of the Instances. 

Instances Nodes Cap-Relax Congest 

dense_10 19.80 155.06 1.69 

dense_15 29.10 160.08 1.78 

dense_20 38.60 164.88 1.84 

medium_10 19.70 152.83 1.71 

medium_15 29.10 159.39 1.80 

medium_20 38.20 160.69 1.86 

medium_25 46.80 169.91 1.91 

sparse_10 19.50 146.17 1.75 

sparse_15 28.80 153.92 1.87 

sparse_20 38.30 157.78 1.87 

sparse_25 47.60 154.73 1.89 

 
For any 10 instances group, above Table 1 

provides us with: the mean number Nodes of nodes, 
the minimal duration Cap-Relax of the evacuation 
process in case capacity constraints are relaxed and 
the mean (for all nodes x) ratio Congest, between the 
sum of capacities of the in-arcs and the capacity of 
the out-arc related to x. 

7.1 Evaluating Optimal-P-MSM-
RCPSP and MSM-RCPSP-Flow 

We focus here on the ability of Optimal-P- 
MSM-RCPSP and MSM-RCPSP-Flow to provide 
us with a good MSM-RCPSP Lower/Upper 
approximation window. Table 2 provides, for every 
instance group: 

 Opt-P-MSM: Optimal safety margin (Optimal-P-

MSM-RCPSP); Opt-P-CPU: Related CPU time; 

  # fails : the number of instances for which 

MSM-RCPSP-Flow yields a fail result; 

 MSM-Flow: Safety margin computed by MSM-

RCPSP-Flow; Flow-CPU: Related CPU Time; 

 Preempt-Gap: the gap between MSM-Flow and 

the Opt-P-MSM. 

Table 2: Behavior of MSM-RCPSP-Flow. 

Instances Opt-P-MSM Opt-P-CPU  

dense_10 106.25 0.05 

dense_15 68.3 0.08 

dense_20 39.29 0.11 

medium_10 92.59 0.04 

medium_15 65.35 0.08 

medium_20 54.85 0.11 

medium_25 49.55 0.32 

sparse_10 113.78 0.04 

sparse_15 78.33 0.06 

sparse_20 64.45 0.11 

sparse_25 21.69 0.45 

Table 2-Bis: Behavior of MSM-RCPSP-Flow. 

Instances MSM- 

Flow  

Preempt-

Gap 

Flow-

CPU   

# 

fails 

dense_10 97.09 9.23 2.01 0 

dense_15 58.02 20.96 2.31 0 

dense_20 34.75 20.03 2.97 2 

medium_10 88.76 4.21 2.06 0 

medium_15 52.87 18.24 2.82 0 

medium_20 43.75 20.85 3.53 2 

medium_25 36.78 26.87 1.96 1 

sparse_10 110.38 3.65 1.88 0 

sparse_15 75.77 3.24 2.75 0 

sparse_20 48.70 28.50 3.94 0 

sparse_25 32.67 * 1.18 4 

 
Comment: Optimal-P-MSM-RCPSP and MSM-
RCPSP-Flow provide us with respectively efficient 
optimistic and realistic approximations.   

7.2 Evaluating B&B-MSM-RCPSP 

We focus here on the filtering process and the 

number of nodes of the search tree which are visited 

during the process. We compute (Table 3): 

 The value Opt-P-MSM as in Table 2; 

 The lower (feasible) bound B&B- MSM-Inf 

provided by B&B-MSM-RCPSP; The lower 

bound B&B-MSM-Sup provided by B&B- 

MSM-RCPSP; Related CPU time B&B- CPU; 

 The number Nodes of nodes of the search tree 

which were visited during the process. 

Table 3: Behavior of B&B- MSM-RCPSP. 

Instances Opt-P-

MSM 

B&B-

MSM- Inf 

B&B-

MSM-Sup 

dense_10 106.25 105.75 105.76 

dense_15 68.30 66.65 67.49 

dense_20 39.29 38.86 39.29 

medium_10 92.58 91.87 91.87 

medium_15 65.35 63.42 64.48 

medium_20 54.85  49.82 54.57 

medium_25 51.60 49.19 51.60 

sparse_10 113.78 113.75 113.78 

sparse_15 78.33 78.33 78.33 

sparse_20 64.45 59.21 64.38 

sparse_25 34.34 32.49 34.34 



Table 3-Bis: Behavior of B&B-MSM-RCPSP. 

Instances Nodes B&B-CPU 

dense_10 12077.80 361.14 

dense_15 27148.80 1090.40 

dense_20 11338.90 720.85 

medium_10 4253.30 105.51 

medium_15 28850.20 1440.62 

medium_20 27254.90 1800.03 

medium_25 10839.00 1081.33 

sparse_10 57425.50 604.36 

sparse_15 10668.30 360.32 

sparse_20 15164.50 1440.08 

sparse_25 17054.10 1800.28 

 
Comment: B&B-MSM-Inf is always very close to 
optimistic estimation Opt-P-MSM, and Optimal-P-
MSM-RCPSP provides us with a very good 
approximation of optimality. Still, it is difficult to 
make this optimistic estimation decrease.   

8 CONCLUSIONS 

We introduced here a Multi-Mode RCPSP 
model with both discrete and continuous features, 
solved its preemptive version, proposed a network 
flow based heuristic as well as an exact 
Branch&Bound algorithm. Further work will aim at 
extending the model and exploring potential 
industrial applications.   
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