
HAL Id: hal-03167058
https://laas.hal.science/hal-03167058v1

Submitted on 11 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Vehicle-to-Cloud Data Transfers using Soft
Real-Time Scheduling Concepts

Jean Ibarz, Michaël Lauer, Matthieu Roy, Jean-Charles Fabre, Olivier Flébus

To cite this version:
Jean Ibarz, Michaël Lauer, Matthieu Roy, Jean-Charles Fabre, Olivier Flébus. Optimizing Vehicle-
to-Cloud Data Transfers using Soft Real-Time Scheduling Concepts. RTNS 2020: 28th International
Conference on Real-Time Networks and Systems, Jun 2020, virtual conference, France. pp.161-171,
�10.1145/3394810.3394818�. �hal-03167058�

https://laas.hal.science/hal-03167058v1
https://hal.archives-ouvertes.fr


Optimizing Vehicle-to-Cloud Data Transfers using Soft
Real-Time Scheduling Concepts

Jean Ibarz1,2,3, Michaël Lauer1,4, Matthieu Roy1,5, Jean-Charles Fabre1,3, Olivier Flébus2

1. CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2. Continental Digital Services France, 1 Avenue Paul Ourliac, F-31100 Toulouse, France

3. Univ de Toulouse, INP, F-31400 Toulouse, France
4. Univ de Toulouse, UPS, F-31400 Toulouse, France
5. Univ de Toulouse, LAAS, F-31400 Toulouse, France

ABSTRACT
The main promise of intelligent transportation systems (ITS) is
that leveraging the information sensed by millions of vehicles
will increase the quality of the user’s experience. However, the
unpredictable nature of road events, combined with a projected
network overload, calls for a careful optimization of the vehicles’
data transfers, taking into account spatio-temporal, safety and
value constraints. In this article, we provide a methodical solution
to optimize vehicle-to-cloud (V2C) data transfers, based on a
series of steps. First, we show that this optimization problem can
be modeled as a soft real-time scheduling problem. Second, we
provide an extension of a classical algorithm for the generation
of workloads, by increasing its coverage with regards to our
use-case representation. Third, we estimate the bounds of an
optimal clairvoyant algorithm in order to have a baseline for a fair
comparison of existing scheduling algorithms. The results show
that, within all these algorithms, one clearly outperforms the others
regardless of the load rate. Interestingly, its performance gain
increases when overload grows, and it can be implemented very
efficiently, which makes it highly suitable for embedded systems.
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1 INTRODUCTION
Intelligent transportation systems (ITS) promise a dramatic in-
crease of the safety and efficiency levels of vehicles while reducing
CO2 emissions, by harnessing the power of global and real-time
information on traffic and road status [28]. Developing a reliable
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level of environment awareness at global scale requires that mil-
lions of connected vehicles act as crowdsourcers in a massive
distributed system. For this purpose, each vehicle is equipped with
several sensors to capture local information from the highly dy-
namic environment it is evolving in. All vehicles will generate
events depending on their respective perception, and will send
these events to the Cloud using vehicle-to-cloud (V2C) communi-
cations [14]. Such an aggregation paves the way for reliable and
up-to-date knowledge of the environment, using big data mining.

However, Cisco [20] forecasts a tremendous increase of mobile
accesses to the infrastructure, with mobile traffic speeds growing
by roughly 60% —from 18 to 29Mbps—, while the mobile traffic is
expected to increase by 170% —from 29 to 77 Exabytes per month—.
Furthermore, the V2C data flow is expected to be so enormous
that optimization will be critically important, both technically
and economically. In order to maximize the usefulness of the data
received in the Cloud, an adequate data prioritization scheme is
essential to decide which data should be transmitted, and when.

Optimizing V2C transfers requires taking into account spatio-
temporal constraints, due to the dynamics of connected vehicular
systems. For example, if a vehicle is aware of a free parking spot
in a highly prized parking lot, this information will rapidly lose
its utility with aging, as the free parking space may be taken by
anyone at any moment. On the contrary, information related to a
speed limit traffic sign will likely be valid for days.

Using soft real-time systems concepts, here we propose an ex-
perimental evaluation of several scheduling algorithms, at the end
of solving the V2C data flow optimization problem.

Contributions. To begin, we show how this problem can be trans-
lated into a value-based scheduling problem in the soft real-time
theory. Then, we compare performances of existing on-line soft
real-time scheduling algorithms, using an experimental approach.
For this purpose, we extend an existing method for experimen-
tal evaluation of scheduling algorithms, in order to improve the
coverage of its analysis. Experiments are evaluated against two
instances of an optimal clairvoyant scheduling algorithm that
provide bounds for evaluation and a fair baseline for compari-
son [5, 7, 18]. The obtained results indicate that the Dynamic
Timeliness Deadline algorithm (DTD1) is the most efficient one
in terms of utility performance, and is a promising candidate to
handle the V2C data transfer optimization problem.
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2 CONTEXT AND PROBLEM STATEMENT
Connected vehicles generate events from the raw information
captured by sensors in a highly dynamic environment. For example,
a connected vehicle may generate an event to signal the presence
(or absence) of a traffic sign, or an event to signal an instance of
emergency braking. Due to the highly dynamic nature of vehicles
and the environment, future events are hardly predictable.

At the logical level, events are contained in messages; a message
may be composed of multiple events.

At the network level, messages are split into fixed size packets.
We assume that sending a packet is an atomic action that cannot
be preempted. However, it is possible to suspend (resp. resume)
the transmission of a message by halting (resp. starting) the trans-
mission of the remaining packets. We assume that preempting the
transmission of a message is instantaneous.

Messages are transmitted to the Cloud individually by each ve-
hicle via a unique communication channel in a sequential manner,
i.e. one message at a time. The available communication bandwidth
is known and constant during the simulation length. Despite these
are very strong assumptions in our context, where real-life net-
work’s available bandwidth may vary and be hard to predict, the
relevance of our experimental results is justified by the choice of
evaluated algorithms. Evaluated algorithms take decisions very
frequently. In fact, no more than one packet is send after each
decision taken by an algorithm. Therefore, the algorithms have the
capability to rapidly adjust to unexpected changes, e.g. an abrupt
lowering of the available bandwidth or the failure in transmission
of a message. Furthermore, an algorithm schedules only one mes-
sage to send at a time. Because the decisions are very short sighted
in the time horizon, unexpected changes should have minor impact
on the algorithms’ performances.

When received by the Cloud, amessage generates some utility to
the global system. An exact definition of utility is out of the scope
of this paper; but roughly speaking, it represents the contribution
of every message to the quality of service provided to end users.
The generated utility value is clearly related to the content of
the message, and also to temporal properties associated to each
of the events it contains. Let us consider an event containing
information related to themobility of a vehicle. After a few seconds,
the vehicle may have moved several hundreds of meters or may
have changed its direction, making the event irrelevant for safety-
critical purposes such as collision avoidance. On the contrary, an
event indicating the presence of a traffic sign may still be useful
for the global system hours or days after its generation.

Traffic quality of service (QoS) in wireless communication net-
works has been subject to considerable research efforts in recent
years. Meeting QoS requirements in a resource-constrained en-
vironment, such as a sensor network, is exceptionally challeng-
ing [1, 15, 32]. In a highly mobile sensor network such as vehicular
ones, QoS challenges are even higher. It is also impractical to bound
the load of V2C data flows, because network dynamics may cause
havoc in an emergency data transfer [3]. Accounting for such con-
siderations, we assume that not being able to send an event on
time does not have catastrophic consequences on the system.

It is expected that a huge amount of data will be generated by
millions of vehicles. Sending all the events generated by each vehi-
cle is not an option, since mobile access infrastructure is already at

its capacity limit today. Anyway, in the eventuality that such solu-
tion would be technically feasible, the amount of data aggregated
in the Cloud would incur unsustainable storage and processing
costs. Hence, it must be decided which message must be sent (first)
and when, considering temporal constraints, in order to maximize
the utility acquired by the global system under limited resources.

We assume isolation between vehicles, meaning that vehicles do
not cooperate with each other. Hence, the problem of maximizing
the utility acquired by the global system is reduced to the problem
of maximizing the utility for each vehicle considered individually.
This assumption allows us to considerably reduce the complexity
of the problem for better scalability.

In this paper, we do not consider how messages are generated
from events, and assume that arrival dates of future messages can-
not be known in advance. Consequently, we focus on dynamic
(on-line, on-the-fly) scheduling algorithms for unknown and over-
loaded situations.

The problem we tackled through our work here is finding an
efficient dynamic scheduling for sending a set of messages (that
have utility and temporal properties), in a way that the resulting
utility is maximized for each vehicle considered individually. In
the next Section, we show that this problem can be mapped as a
soft real-time scheduling problem.

3 MODELING
3.1 Soft real-time scheduling problem
Let us consider a real-time scheduling problem where a set of N
independent jobs have to be run on a single processor. Each job has
an arrival date and cannot be processed before its arrival. A job
requires a fixed amount of execution units to be processed. Each unit
of time, the processor can be either idle, or processing. Processor
speed refers to the number of execution units that can be processed
each unit of time (when not idle). At time k , if s [k] denotes the
processor speed and c j [k] denotes the remaining execution units
of the job being processed,min

(
c j [k] , s [k]

)
execution units are

processed during that unit of time.
In our problem, the messages to be transmitted by the mobile

network are similar to the jobs to be processed by the processor.
Hence, the number of units of execution to process a job is directly
related to the number of packets to transmit a message. The anal-
ogy between our scheduling problem and the real-time scheduling
problem is synthesized in Table 1.

Table 1: Analogy of our problem and real-time scheduling

Our scheduling problem A real-time scheduling problem
A message A real-time job

Packets of a message Execution units of a job
Communication interface Processor

Available bandwidth Processor’s speed
Sending of a packet Processing of a unit of execution

Transmission of a message Processing of a job
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Following the usual terminology [13], a real-time job is:
• soft, if producing the results after its deadline has still some
utility for the system, although causing a performance degra-
dation,
• firm, if producing the results after its deadline is useless for
the system, but does not cause any damage,
• hard, if producing the results after its deadline may imply
catastrophic consequences for the system under control.

If the usefulness of producing the results of a job is independent
of its completion date, the job is said to be non real-time.

As we already discussed in Section 2, the transmission of a
message is not safety-critical. Therefore, the sending of a message
is either a non, a soft, or a firm real-time job. In line with the model
introduced in [12], we characterize a real-time job Ji by a 5-tuple
< ai , ci ,vi ,di ,δi >, where:
• ai ∈ N is the arrival date of the job. A job is not instan-
tiated and cannot be processed before its arrival date. A
non-clairvoyant algorithm is not aware of a job before its
arrival date.
• ci ∈ N, ci > 0 is the number of execution units required to
be processed for the job to complete. It is an integer value,
corresponding to the transmission of packet on the network,
which we assumed is atomic.
• vi ∈ R

+ is the base value of the job.
• di ∈ N is the (relative) firm deadline of the job.
• δi ∈ N is the lateness limit of the job.

Following the concept introduced by Douglas Jensen in [21],
a function ϕi (k ), referred to as the value function of job i , is as-
sociated to each job. This value function expresses the value that
would be granted to the system upon completion of its associated
job, as a function of the completion date. ϕi (k ) is illustrated in
Figure 1 and is defined by the following constraints:




ϕi (k ) = vi if k ∈ [ai ;ai + di ]
ϕi (k ) = (k − di − ai ) δi if k ∈ ]ai + di ;ai + di + δi ]
ϕi (k ) = 0 otherwise.

Figure 1: Utility function of a soft real-time job

Notice that, because ci > 0, the value of a job at its activation
date ϕi (ai ) is equal to its base value vi . Notice also that restricting
(ai , ci ) to N2, combined with our fixed processor execution speed
assumption, allows us to run discrete-time simulations with a fixed
time-step. Hence, it greatly simplifies the implementation of the
simulator, which in turn reduces the risk of implementation errors.
The assumption that (di ,δi ) ∈ N2 simplifies reasoning without

sacrificing expressivity, as real numbers would not increase the
power of the model.

From this formal definition of a soft real-time job and utility
function, let us derive the following observations:
• ai + di is the (absolute) firm deadline of job i .
• ai + di + δi is the (absolute) soft deadline of job i .
• The difference between a firm real-time job and a soft real-
time job is the lateness limit parameter δi : δi > 0 for a soft
real-time job, and δi = 0 for a firm real-time job.
• By convention, we choose that di = δi = +∞ for a non
real-time job.

Because this model of a soft real-time job requires only five
parameters, it is memory efficient and hence appropriate to be
used in embedded systems.

Definition 1. A job is said to be completed if and only if all of its
required execution units have been processed. We denote by fi
the completion date of job i .

Definition 2. The lateness of a job i is defined asmax (0, fi − di )
if the job is completed, undefined otherwise.

A completed job is said to be late if and only if its lateness
value is (strictly) greater than 0. A real-time system is said to be
overloaded when not all jobs can be completed on time.

In our context, events are generated aperiodically in an un-
controllable and unpredictable way. Furthermore, the available
bandwidth can be as low as zero. In such conditions, system over-
load is very likely to occur and will be a nominal case.

3.2 Evaluation methodology
A way to evaluate a performance guarantee of an on-line sched-
uler is to compare it with a clairvoyant [26] scheduler, i.e. one
that knows a priori all the parameters of all the jobs of the sched-
uling problem. Analytical approaches to evaluate the efficiency
of an online scheduling algorithm generally involve the so-called
competitive ratio metric, introduced by Sleator and Tarjan in [30].

Definition 3. The competitive ratio is defined as

min

({
ΓA (P )

ΓOPT (P )
|P ∈ Ω

})
where
• ΓA (P ) is the cumulative value obtained by an algorithm A
on the scheduling problem P ,
• ΓOPT (P ) is the cumulative value obtained by a clairvoyant
optimal algorithm on the scheduling problem P ,
• Ω is the set of all existing scheduling problems [11].

Baruah et al. have proved in [7] that the competitive ratio of an
on-line scheduling algorithm is upper bounded by 1/4. However,
this result is only representative of a made up worst case scenario.
In this scenario, the overload has an arbitrary (but finite) duration,
all jobs have zero laxity, the same value density (i.e. their value
is equal to their computation time), and their execution time can
be arbitrarily small [12]. Since in most real world applications
job characteristics are much less restrictive, the 1/4 bound has
only a theoretical validity [12, 31]. Hence, because the competitive
ratio provides a performance guarantee that is not required in our
context, an experimental approach seems more appropriate to fit
more tightly real world conditions.
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(a) Pessimistic problem (b) Original problem (c) Optimistic problem

Figure 2: Original soft real-time problem bounded by a pessimistic problem and an optimistic one.

Our goal is to schedule a set of jobs in order to maximize the
overall value of the system, a scheduling paradigm known as value-
based scheduling [10]. In this context, the most relevant metric is
probably the ratio ΓA/ΓOPT between the cumulative value ΓA ob-
tained by an algorithm A and the cumulative value ΓOPT obtained
by an optimal clairvoyant algorithm OPT . However, the problem
of finding an optimal scheduling is generally intractable from a
computational perspective. Finding an optimal value-based sched-
uling for a given set of firm real-time jobs in a uniprocessor system
is similar to finding a schedulable subset of jobs so that the aggre-
gated value of completed jobs is maximal. A set of firm real-time
jobs is said to be schedulable if and only if there exists a schedule
such that all jobs complete by their deadline. This problem can be
shown to be reducible from the knapsack problem [19], and hence
is NP-Hard [8].

Definition 4. The Hit Value Ratio (HVR) is defined as the ratio
ΓA/Γ between the cumulative value ΓA ≜

∑
i ϕi ( fi ) obtained by an

algorithm A and the total value Γ ≜ ∑
i vi of the job set [11].

The HVR can be viewed as a heuristic metric of ΓA/ΓOPT , avoid-
ing the calculation of an optimal schedule but still allowing a
comparative evaluation of different algorithms in a meaningful
dimension.

Other metrics such as job preemption, job lateness, job success
ratio, etc., are not expected to have an important impact on our
context, and therefore have been omitted.

In order to provide a better insight of the efficiency of evaluated
algorithms, we propose to go deeper and estimate the performance
of an optimal clairvoyant scheduler. When considering soft real-
time jobs, the utility acquired by the system is the value returned
by the non-linear utility function of the completed job. It follows
that the cumulative value acquired by the system is also non-linear
and the completion date of each job must be known. Hence, the
problem of finding an optimal value-based scheduling for a set of
soft real-time jobs is even tougher than the one for a set of firm
real-time jobs, which is already NP-hard.

To alleviate this issue, we derive two simpler problems: a pes-
simistic problem and an optimistic problem, where the soft real-
time jobs are transformed into firm real-time jobs. As shown in
Figure 2, in the pessimistic problem, the soft deadline value of a
job is replaced by its firm deadline value, that is a job grant no
value if its firm deadline is not met. In the optimistic problem, the
firm deadline value of a job is replaced by its soft deadline value,
that is a job grant all of its value if its soft deadline is met, no value
otherwise.

As stated before, despite being much easier than the original
problem, these problems are nevertheless NP-Hard. These two
bounding problems are formulated into MILP (Mixed Integer Lin-
ear Problem) in order to make use of powerful solvers that are
nowadays available. For our experimentations, we use the open
source available GLPK (Gnu Linear Programming Kit) solver.

Because all jobs are firm real-time ones, either a job j is com-
pleted without exceeding its deadline and the job grants a utilityvj
to the overall system, either the job grants no value to the overall
system because it does not complete at all or it completes too late.
The problem of finding a schedule that maximizes the total cumu-
lative value is equivalent to the problem of finding a schedulable
subset of jobs that maximizes the total cumulative value. Also,
it is well known that for any schedulable set of firm jobs, EDF
algorithm is optimal.

Therefore, and since we previously assumed a constant exe-
cution speed of one, a set of jobs is schedulable if and only if it
satisfies the following EDF exact schedulability test [16]:

Theorem 1. A set of aperiodic jobs is schedulable (by EDF) if and
only if

∀ (i,k ) ,ai < dk ,
∑

j :ai ≤aj and dj ≤dk
c j ≤ dk − ai

From this, a MILP formulation was directly derived:
maximize ∑

i
yivi

subject to

∀ (i,k ) ,ai < dk ,
∑

j :ai ≤aj and dj ≤dk

(
yjc j ≤ dk − ai

)
where yi is a boolean decision variable, indicating whether the job
i belongs to the schedulable subset or not, and where ai ,di , ci ,vi
are the parameters of the job as defined in 3.1.

When a solution to this problem is found, that means we found
a schedulable subset of jobs that maximizes the hit value ratio.
Therefore, a valid scheduling can be obtained by applying an EDF
algorithm that ignores all jobs that do not belong to the schedula-
ble subset of jobs. This is a convenient way to use the simulator
to generate results from this scheduling. Results obtained by sim-
ulation can then be advantageously used in order to check for
implementation errors. For example, one can check that the total
cumulative value obtained by simulation is equal to the aggregated
value of all the jobs that belong to the schedulable subset of jobs,
or check that all jobs that belong to this subset are completed with
no lateness, i.e. without exceeding their firm deadline.
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In spite of these simplifications, the problem is still too complex
in some cases. Finding an optimal solution in a reasonable amount
of time is not always possible. The solver was then used with the
following parameters:

(1) “−−pcost”: branch using hybrid pseudocost heuristic,
(2) “−−mipgap 0.02”: set relative gap tolerance to 2%, that is

we stop when a pseudo-optimal solution is found which is
less than 2% distant from the optimal solution.

Using these parameters, a solution was found in a few seconds
most of the time, and it took up to 15 minutes for the hardest
instances1.

3.3 Scenarios generation
We want to generate a set of scenarios in order to produce exper-
imental results which will allow some statistical analysis. It was
chosen to generate a set of scenarios with random jobs charac-
teristics by using the method proposed in [2], slightly adapted
for the purpose of increasing the evaluation coverage. In [2], the
characteristics of jobs are pseudo-randomly generated following
some arbitrary distribution laws. As a result, generated scenarios
may not be representative of real use cases. Therefore, we propose
to generate jobs’ characteristics pseudo-randomly according to a
set of arbitrary distribution laws, that are themselves chosen ran-
domly. This concept, illustrated in Figure 3, increases the diversity
of generated scenarios, and hence the evaluation coverage.

Figure 3:Ω represents the set of all possible scenarios. Disks
represent classes of scenario. Black color is state-of-the-
art [2], blue is contribution. Black triangles are a possible
execution of the state-of-the-art algorithm. Blue crosses
represent a possible execution of our proposed algorithm.

A scenario is a set of jobs that needs to be processed. For each
scenario, jobs characteristics are pseudo-randomly generated ac-
cording to Algorithm 1.

The algorithm contains two main parts:
(1) lines 4 to 7 (scenario class): a class of scenario is randomly

chosen, by picking the functions that determine how the
jobs characteristics will be generated. This block constitutes
the main introduced modifications, compared to the method
used in [2].

1Using GLPK solver v4.65 on a computer equipped with a processor Intel Core i5-
6440HQ and 2x4 Go of SDRAM DDR4-2133 running Lubuntu 64 bits.

input :
• N ∈ N∗: the number of jobs,
• σ : the nominal load rate.

output :
• J : a set of N soft real-time jobs.

1 J ← ∅

2 fa ← Xa ∼ EXP
(

σ
E (Xc )

)
3 Choose a class of scenario
4 fc ← Xc ∼ U (1, 100) or Xc ∼ LU (1, 100)
5 fv ← Id ( fc ) or Inv ( fc ) or Xv ∼ U (1, 100) or
Xv ∼ LU (1, 100)

6 fd ← Xd ∼ U (1, 10) or Xd ∼ U (1, 200) or
Xd ∼ U (100, 200) or Xd ∼ LU (1, 10) or Xd ∼ LU (1, 200)
or Xd ∼ LU (100, 200)

7 fδ ← Xδ ∼ U (1, 10) or Xδ ∼ U (1, 200) or
Xδ ∼ U (100, 200) or Xδ ∼ LU (1, 10) or Xδ ∼ LU (1, 200)
or Xδ ∼ LU (100, 200)

8 Generate N jobs in the class
9 a0 ← 0

10 for i ← 1 to N do
11 ai ← Round

(∑j=i
j=1 fa (j )

)
12 ci ← Round ( fc (i ))

13 vi ← fv (i )

14 di ← Round (ci + fd (i ))

15 δi ← Round ( fδ (i ))

16 Ji ←< ai , ci ,vi ,di ,δi >

17 J ← J ∪ Ji
18 end
Algorithm 1: Generation of a scenario with N soft real-
time jobs and a targeted nominal load rate λ.

(2) lines 9 to 17 (job generation): a set of N jobs is generated, ac-
cording to the chosen class of scenarios, that will constitute
a sampling for evaluation.

Algorithm 1 uses the following classical conventions:

• Id (): the identity function,
• Inv (): the inverse function,
• E (X ): the mean or expected value of a random variable X ,
• CDF (X ): the cumulative distribution function of a random
variable X ,
• X ∼ U (min,max ): a uniform random variable X , i.e. a ran-
dom variable X such that

CDF (X ) =




0 if X < min
X−min

max−min ifmin ≤ X ≤ max

1 if X > max

• X ∼ LU (min,max ): a log-uniform random variable X , i.e. a
random variable X such that

CDF (X ) =
ln(X ) − ln(min)

ln(max ) − ln(min)
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• X ∼ EXP (λ): an exponential random variable X , i.e. a ran-
dom variable X such that

CDF (X ) = 1 − e−λX

The inverse transform sampling is used to generate uniform,
log-uniform, and exponential random variables:
• U (min,max ) ∼ (max −min) ×U (0, 1) +min,
• LU (min,max ) ∼ eU (ln (min),ln (max )) ,
• EXP (λ) ∼ −ln (U (0, 1)) /λ.

Following classical hypotheses [2], inter-arrival dates of a given
sequence of jobs are generated according to a random variable
Xa that follows an exponential distribution EXP (λ), λ ≜ σ

E (Xc )
, σ

being the desired load (line 2 in Algorithm 1). Activation date ai is
computed as the rounded value of aggregated inter-arrival dates
of previous jobs, including the current one (line 11).

Notice that the variance of an exponential random variable
is E2 (X ), while the variance of a uniform variable is (b−a)2

12 =

(2(E (X )−a))2
12 . In our case, a > 0, hence the variance of a uniform

variable is strictly less then 1
3E

2 (X ), i.e. strictly less than 1/3 the
variance of an exponential random variable. Therefore, sampling
inter-arrival dates using a random exponential variable is more
likely to cause bursty arrivals, i.e. that a large amount of jobs arrive
within a small period of time, providing a more representative
behavior of our ITS use case.

3.4 Simulation model
The simulator used in this work has been developed in Python.
The simulation consists in executing the following steps in a loop
until an arbitrary ending date is reached:

(1) Activate all jobs at current cycle k .
(2) Abort jobs that do not have a strictly positive utility value

at current time.
(3) Get a scheduling decision and process it: if the scheduled

job is not the current running job, then halt the current job
(if any), and start or resume the scheduled job.

(4) Wait until next cycle k+1 and update all jobs characteristics
accordingly (remaining units of execution, completed jobs,
etc.).

4 RESULTS AND ANALYSIS
Simulations have been run with 1000 runs for each load rate in
the set {25%, 100%, 400%, 1600%}. Each run consists of 100 jobs
generated with Algorithm 1, that uses the following parameters:
• fc (), associated to the jobs execution units, is chosen with
equal probability to be either a uniform random variable in
[1; 100] or a log-uniform random variable in [1; 100].
• fv (), associated to the jobs value, is chosen with equal prob-
ability to be:
– Id ( fc ), i.e. the job value is equal to its number of execution
units. In this particular case, the best case value-density
vi/ci = 1 of jobs is the same.

– Inv ( fc ), i.e. the value of a job is equal to the inverse of
its number of execution units. Contrarily to the previous
case, where best case value-density was the same for all
jobs, here the best case value-densityvi/ci = 1/c2i of jobs
will be exponentially distributed.

– A uniform random variable in the range [1; 100].
– A log-uniform random variable in the range [1; 100].
• fd (), associated to the jobs best case laxity di −ci , is chosen
with equal probability to be a uniform or a log-uniform
random variable. Independently, the boundings are chosen
with equal probability to be either [1; 10] for tight only
deadlines, [100; 200] for loose only deadlines, or [1; 200] for
tight to loose deadlines.
• fδ (), associated to the jobs lateness limit, is chosen in the
same manner as fd (), but independently.

The set of evaluated algorithms is composed of i ) Static Value
Density (SVD), ii ) Semi Dynamic Value Density (SDVD), iii ) Dy-
namic Value Density (DVD1), iv ) Dynamic Value Density Squared
(DVD2), v ) Dynamic Timeliness Deadline (DTD1), and vi ) Dy-
namic Timeliness Deadline Squared (DTD2). All are greedy al-
gorithms, and work as follow: at every time step, the algorithm
calculates the heuristic score for all active jobs. Then, if the current
job has the best heuristic score, its processing continue for the next
time step. However, if another job has a strictly better heuristic
score than the one of the current job, it preempts the current job.
Each algorithm is based on its own heuristic and are described in
Table 2. Notice that real-life network speeds will vary and hence
be hardly predictable. Greedy algorithms have the advantage of
being very “short-sighted” —their scheduling decisions involve
only one job in the time horizon—, hence they should be less sen-
sitive to external perturbations such as execution speed variations
or jobs arrivals. In [11], SDVD is said to exhibit a very graceful
degradation during overloads to enjoy a low sensitivity to jobs set
parameters. SVD, DVD1 and DTD1 have been considered because
of their resemblance to SDVD. Additionally, algorithms DVD2
and DTD2 have been chosen because, in [2], DVD2 was shown to
outperform DVD1 while DTD2 was envisioned to perform better
than DTD1.

Particular attention has been placed on deciding how to end a
scenario simulation. While tedious and not our main contribution,
correctly fixing the ending date of the simulation in order to maxi-
mize the representativeness of the generated results is mandatory
and not trivial. One solution may be to run the simulation until
the latest soft deadline. In this case, the obtained load rate may
sensibly differs from the targeted load rate. For example, let’s con-
sider a scenario with n = 100 jobs, a targeted load rate σ = 1600%,
and all jobs having the same characteristics except for the activa-
tion date. Any job requires the processing of 10 execution units
for completion and have a relative (relative to the job activation
date) soft deadline of 90. Therefore, the activation date of jobs
is given by an exponential random variable Xa with a fire rate
λ = σ

E (Xc )
= 16/10 = 1.6. The latest job activation is expected to

be nλ = 160 and, because the relative soft deadline is 90 for any job,
the simulation is expected to run for 250 units of time. However,
the total number of execution units to be processed is equal to
10n = 1000, resulting in an effective load rate of 1000/250 = 400%
which clearly doesn’t match with 1600%, the targeted load rate.
Another solution may be to run the simulation until the final date
F = nλ. In this case, the average load rate obtained would be ex-
actly the targeted load rate, as in average the last activation date
would be nλ. However, some jobs might be infeasible, because their
activation date would simply exceed the ending date, or because
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Table 2: On-line scheduling algorithms evaluated in this paper. Color code: static parameter, dynamic parameter, dynamic
parameter with foreseeing future.

Algorithm Heuristic (job priority ∝ heuristic value)
SVD (Static Value Density) vi / ci

SDVD (Semi Dynamic Value Density) ϕi (t ) / ci
DVD1 (Dynamic Value Density) ϕi (t ) / ci (t )

DVD2 (Dynamic Value Density Squared) ϕi (t ) / c2i (t )
DTD1 (Dynamic Timeliness Deadline) ϕi (t + ci (t )) / ci (t )

DTD2 (Dynamic Timeliness Deadline Squared) ϕi (t + ci (t )) / c2i (t )

Load rate 400%

Load rate 1600%

Load rate 100%

Load rate 25%

0% 25% 50% 75% 100%

SVD
SDVD
DVD2
DVD1
DTD2
DTD1

OPTI_LOWER
OPTI_UPPER

SVD
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Figure 4: Hit Value Ratio measured on clairvoyant and online algorithms using 1000 scenarios for each load rate. OPTI_-
LOWER (resp. OPTI_UPPER) corresponds to the optimal clairvoyant algorithm, estimated with an at most 2% relative error,
obtained from the firm real-time scheduling problem where jobs’ deadlines equal the firm deadline (resp. soft deadline) of
the original problem. The mean value is indicated by a cross. The lower and upper hinges (resp. the left bar and the right
bar of a box) correspond to the first and third quartiles, i.e., 25th and 75th percentiles. The upper whisker extends from the
hinge to the largest value no further than 1.5 × IQR from the hinge —the Inter-Quartile Range (IQR) is the distance between
the first and third quartiles—. The lower whisker extends from the hinge to the smallest value at most 1.5× IQR of the hinge.
Outliers are plotted individually, as black disks.
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they may be activated too late to be able to be completed before
the simulation ending. To fix this issue, we propose to remove all
infeasible jobs, i.e. jobs such that the sum of their activation date
and their required units of execution exceed nλ. The consequence
of this is that the obtained load rate will be lowered, as in the
previous case, however with a minor effect: the ending date would
be equal to 100 × 1.6 = 160, and infeasible jobs would be jobs
activated after date 160−10 = 150, i.e. approximately 10×1.6 = 16
jobs in average. The effective average load rate would then be
lowered by 16% of the initally targeted load rate. Another issue
raised by this simulation ending is that scheduling algorithms are
not aware of the simulation interruption, and may take wrong
decisions because of this. Some scheduling algorithms may be less
affected then others, such that algorithms who prioritize the exe-
cution of smaller jobs. To deal with this, all deadlines exceeding
the simulation ending date F are set to F . By doing so, we ensure
that all algorithms are aware of the right amount of available time
before the jobs lose all of their value, avoiding the introduction of
a bias in the obtained results.

Figure 4 plots the Hit Value Ratio (HVR) performance of the cho-
sen algorithms for each load rate in the set {25%, 100%, 400%, 1600%}.

Load rate 400% Load rate 1600%

Load rate 25% Load rate 100%

SDVD SVD DVD1 DTD1 SDVD SVD DVD1 DTD1

SDVD SVD DVD1 DTD1 SDVD SVD DVD1 DTD1
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Figure 5: Mean Hit Value Ratio performed by different on-
line algorithms over 1000 scenarios for each load rate.

The mean HVR for each algorithms under each load rate is
plotted in Figure 5, and shows how algorithms can be sorted by
efficiency, with respect to the mean HVR as a performance criteria,
as SVD < DVD1 < DTD1. Furthermore, this ordering holds no
matter the load rate. SDVD, despite the fact that its heuristic uses
dynamic information (the current value of a job), is less efficient
under all load rates than algorithm SVD which uses only static
information. We explain this result by the fact that when a job is
becoming more and more tardy, its value also decrease more and
more and so does the SDVD heuristic score, improving the risk
that the job become preempted by another one, no matter if its
current value density is very high or not.

DVD1 and DTD1 heuristics, respectively ϕi (t ) /ci and
ϕi (t + ci ) /ci , where ci represents the remaining number of exe-
cution units ci − ci (t ) at current time, only differ in the way the

value of a job is calculated. In the case where all jobs are non
real-time, i.e. ∀i,di = +∞, ϕi () is a constant function and the two
heuristics are equivalent. As a consequence, the two algorithms
are equivalent and must perform equally. In another case where
jobs must meet some deadlines, the tightest the time constraints,
the highest may be the score difference between the two heuristics.
One may then expect that the performance difference between the
two algorithms increase with the tightness of jobs time constraints.
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Figure 6: DTD1 HVR minus DVD1 HVR, smoothed using
LOESS method, as a function of jobs mean lateness limit.
200 scenarios are generated for each lateness limit value in
the set {0, 10, 20, 40, 80, 160, 320, 640, 1280, 2560}, with a load
rate of 400% and according to algorithm 1. In each scenario,
jobs parameters are modified such that for all i, di = ci and
δi equals the chosen lateness limit value. Eventually, the
solution discussed in Section 4 is applied to determine the
ending date of the scenarios, to remove unfeasible jobs, and
to adjust (if necessary) jobs parameters such that absolute
firm and soft deadlines does not exceed the simulation du-
ration.

In Figure 6, we evaluated the algorithms DVD1 and DTD1 by
making vary the lateness limit. In each scenario, 100 of firm real-
time jobs are generated and they all have the same lateness limit
value. A set of 200 scenarios was generated and simulated for each
possible lateness limit value in {0, 10, 20, 40, 80, 160, 320, 640, 1280,
2560}. As expected, results show that the lower is the lateness limit
value of the jobs, the higher is the performance difference between
the two algorithms. As in previous results, DTD1 performs better
then DVD1, and our results indicate that this is true whatever the
lateness limit value.

According to [2], DVD2 is expected to perform better then
DVD1. However, the results shown in Figure 4 indicate an oppo-
site trend: in average, DVD2 is less effective than DVD1, at all load
rates. Besides, the statistical significance of the observed perfor-
mance difference have been validated in Appendix A. The same
observation can be done when comparing DTD2 to DTD1. Our
explanation for this trend is that DVD2 and DTD2 may suffer from
the sunk cost effect, which corresponds to a higher tendency to
continue an endeavor once an investment in money, effort, or time
has been made [4]. Let’s consider a firm real-time job that has
already been partly processed, and the scheduling algorithm can
choose between the following two end results if it realizes that
a job with a higher value-density vj/c j > vi/ci (t ) and the same
remaining number of execution units c j = ci (t ) arrived:
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(1) Having paid the price of the processed execution units of
job i and having suffered from continuing processing job i ,
or;

(2) Having paid the price of the processed execution units of
job i and having used the remaining time to process job j
since its arrival.

When job j arrives, the cost associated to the partial processing
of job i is a sunk cost because it has already been incurred and it
cannot be recovered. As a consequence, this cost is not relevant
to decisions about the future. Also, because c j = ci (t ), the same
amount of resources is required to complete either job i or job
j. However, completion of job j produces a greater utility value
vj > vi to the system, so clearly here the rational choice is the
second one. Heuristics of algorithms DVD2 and DTD2 tend to
give higher priority to jobs about to complete, a consequence
of the squaring of ci (t ). This is supposed to potentially avoid
preemption of partially executed jobs, hence avoiding the wastage
of unrecoverable resources spent earlier. As a result, they suffer
from the sunk cost effect and make sometimes irrational choices,
which results in a loss of effectiveness that is visible in our results.
To give a better insight of how much harm the squaring of ci (t )
can produce, let’s think of the following case. Let be two kind of
jobs: short jobs and long jobs. Suppose that a small job has the
following characteristics at its date of arrival: < vs , cs >, and a
long job has the following characteristics: < QKvs ,Kcs >, where
(Q,K ) ∈ N2,Q > 1,K >> 1. That is to say, a long job is K times
longer to process than a small job, but the value density at arrival
date of a long job is Q times higher than that of a small job. There
is one small job arrival for each date in the set {n × cs |n ∈ N },
and one long job arrival for each date in the set {

n × cl |n ∈ N
}.

Let’s denote by hs (resp. hl ) the heuristic score evaluated at date
of arrival of a small job (resp. long job) for algorithm DVD2 (or
DTD2). Clearly, processing K small jobs requires the same amount
of time than processing one long job, because cl = K×cs . However,
processing a long job produces a Q times higher outcome than
processing K small jobs, because vl = Q × K ×vs . We have hs =
vs/c

2
s ,hl = (Q/K )× (vs/c

2
s ). In this particular case, whenQ/K < 1,

i.e. when K is big enough compared to Q , the algorithm DVD2 (or
DTD2) always process small jobs instead of long jobs. For example,
if long jobs have a value density 10 times higher, it is enough to
have long jobs more than 10 times longer than small jobs to get the
wrong decision with DVD2 (or DTD2), that is to always process
the small jobs, resulting in this example in a loss of efficiency of
factor 10.

5 RELATEDWORK
Douglas Jensen proposed to associate to each job a value expressed
as a function of time [21], resulting in time/utility functions to
precisely define the semantics of soft real-time systems. The utility
functions used in this work are similar to other proposals [13] and
focus on simplicity for performance reasons.

In this paper, we compared the performances of on-line sched-
uling algorithms, using optimal clairvoyant algorithm as base-
line. This methodology has been used in several previous research
works. [7] proves that no on-line scheduling algorithm can have
a competitive ratio greater than 1/4 when the loading factor is
not bounded. The authors proved that 1/2 is a tight upper bound

for jobs with zero laxity in 2-processors systems. [24] describes
Dover , an on-line scheduling algorithm for overloaded unipro-
cessor systems. Dover provides the best achievable competitive
ratio for non-clairvoyant algorithms. For proving upper and lower
bounds on competitive ratios achievable by on-line algorithms,
several techniques are discussed in [23]. Additionally, [23] proves
that using competitive ratio as a performance measure is roughly
equivalent to assume an omniscient adversary that has perfect
knowledge of the algorithm and unlimited computing resources.

In order to identify on-line algorithms that have good real-life
performance, a weakening of this adversary and/or a strength-
ening of the evaluated non clairvoyant algorithm is suggested. It
was realized in [9, 17, 29] that randomization could (relatively)
lower the power of the adversary since the decisions of the on-
line algorithm are no longer certain. According to this hypothesis,
randomized on-line algorithms can arguably be considered more
efficient than deterministic ones, against different types of adver-
saries. In [22], it is shown that moderately increasing the speed
of the processor used by a non-clairvoyant algorithm scheduler
effectively gives this scheduler the power of clairvoyance. More
interestingly, it is shown that there exist online scheduling algo-
rithms with bounded competitive ratios on all inputs, and which
are not closely correlated with processor speed. In [25], a strength-
ening of the on-line algorithm is considered. An on-line scheduling
algorithm is said to be speed-s optimal if the algorithm can match
the performance of an optimal clairvoyant algorithmwith the same
number of processors but having s times higher execution speed.
Through the use of an analytic approach, it is demonstrated that
EDF-ac2 achieves speed-2 (resp. speed-3) optimality in overloaded
uniprocessor (resp. multiprocessor) systems. In [6], the same speed
factor metric is used. The scheduling algorithm Earliest Deadline
First with Virtual Deadlines (EDF-VD) is proved to be optimal with
respect to this metric. Compared to our study, their results are
based on a Mixed-Criticality implicit-deadline sporadic tasks, i.e.
firm real-time jobs that have specific inter-arrival date constraints
and specific deadline values. A comparative study among algo-
rithms that use different priority assignments is presented in [11].
The analysis is based on jobs values and jobs deadlines, but also
different guarantee mechanisms, to improve the performance of a
real-time system during overload conditions. The algorithms have
been compared using the HVR metric, in two different jobs set
where jobs characteristics were different in order to see how sen-
sitive an algorithm is with respect to the jobs parameters. Authors
observed that Highest Density First (HDF) algorithm, based on
value density and corresponding to DVD1 algorithm in our pa-
per, is the most effective in overloaded conditions, exhibits a very
graceful degradation during overloads, and is not much sensitive
to jobs set parameters. In [2], another comparative evaluation be-
tween on-line scheduling algorithms under overloaded conditions
is done. In this study, jobs are soft real-time and a unique jobs
set with arbitrary jobs characteristics was used for performance
evaluation. It is concluded that DVD2 performs better and, on this
basis, that DTD2 is an effective scheme and it is more suitable to
operate under all operating loads than SDVD and/or EDF.

2EDF algorithm supplemented with a simple form of admission control.
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CONCLUSION AND PERSPECTIVES
Intelligent Transportation Systems (ITS) require a careful optimiza-
tion of the V2C data flow, taking into account temporal and value
constraints. We have shown that this optimization obstacle is simi-
lar to a soft real-time scheduling problem. For a given ITS scenario,
one has to decide on a particular scheduling algorithm, among the
many existing scheduling algorithms, calling for a comparative
evaluation that is representative of real-use cases. Unfortunately,
real-use cases do not exist for now.

We proposed a methodology to generate workloads with in-
creased diversity, which implies a better scope of evaluation. Our
extensive evaluation experiments cover overloaded conditions
with very high load rates (up to 1600%) that are expected to be
encountered in realistic cases. We show that, among the set of
evaluated algorithms, algorithm DTD1 is both robust and very
efficient, outperforming other (non-clairvoyant) algorithms for
every load rate. In addition, the performance bounds of an optimal
clairvoyant algorithm have been estimated with a 2% relative error,
providing some insights on the relevance of trying to overcome
the performance achieved by DTD1.

The current outcome of this work is to provide a suitable mech-
anism to dynamically determine message values and time con-
straints. The keying of messages values will allow adaptation of
data flow and must satisfy different, independent, and dynamic
needs of services running in the Cloud. Some proposals, e.g., de-
scribed in [10] and [27], are particularly interesting and require
more thorough investigation. On the experimental side, our results
will be validated on real-life platforms and simulators that are
being developed in the automotive industry.
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A VALIDATION OF OBSERVED
PERFORMANCE DIFFERENCE BETWEEN
DVD1 AND DVD2 USING BOOTSTRAP
METHOD

We want to assert that the observed performance difference be-
tween algorithms DVD1 and DVD2 is statistically significant. As
shown in Figure 7, clearly none of HVR values obtained by all
algorithms follows the distribution of a normal law. Consequently,
ANOVA or t-student methods are not directly applicable.
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Figure 7: Distribution of HVR values of all algorithms for
all (3000) simulated scenarios.

As an alternative, one may calculate the performance difference
between algorithms two-by-two, and make an analysis of this
difference. Unfortunately, the HVR difference between algorithms
DVD1 and DVD2, plotted in Figure 8, doesn’t follow a normal law
distribution too.
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Figure 8: Distribution of paired difference HVR DVD1 -
HVR DVD2 for all (3000) simulated scenarios.

Eventually, we decided to apply a bootstrapmethod. Let’s denote
by X ,Y two column vectors such that Xi ,Yi is the HVR obtained
respectively by the algorithm DVD1 and the algorithm DVD2
under the same scenario i . Because DVD1 algorithm outperforms
DVD2 algorithm invariably of the load rate, we consider the results
obtained over all (3000) generated scenarios. We calculate the
performance difference of algorithm DVD1 vs algorithm DVD2
D = X − Y .

Now let’s consider the following hypothesis H0: the algorithms
DVD1 and DVD2 have no statistically significant performance
difference. If H0 holds, we should not be able to distinguish the
results obtained from one or another algorithm.

We calculate the average difference obtained when randomly
exchanging the algorithms’ HVR values: σi = D ◦ R, where R
is a random vector who’s coefficients are randomly sampled in
{−1, 1} and (◦) is the Hadamard product operator (coefficient-wise
product, also known as Schur product or entrywise product). This
process is repeated for i ∈ 1, 2, ..,N ,N = 100000.

The resulting distribution of obtained values {σ1,σ2, ...,σN },
shown in Figure 9, follows a normal distribution. It is a very good
approximation of the distribution that one could expect when try-
ing to reproduce the obtained results if hypothesis H0 holds: the
95% confidence interval is in
I =

[
−2.57 × 10−6; 1.60 × 10−6

]
. In our results, the mean perfor-

mance difference ismean(X1 − X2) = 5.0 × 10−3 and this value
doesn’t belong to I , hence the hypothesis H0 does not hold and we
can conclude that our results are statistically significants.
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Figure 9: Distribution of the sampled values {α1,α2, ...,αN }

with N = 100000.
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