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ENSEMBLE APPROXIMATIONS FOR CONSTRAINED

DYNAMICAL SYSTEMS USING LIOUVILLE EQUATION

MARIANNE SOUAIBY, ANEEL TANWANI, AND DIDIER HENRION

Abstract. For a class of state-constrained dynamical systems described by

evolution variational inequalities, we study the time evolution of a probability
measure which describes the distribution of the state over a set. In contrast

to smooth ordinary differential equations, where the evolution of this proba-

bility measure is described by the Liouville equations, the flow map associated
with the nonsmooth differential inclusion is not necessarily invertible and one

cannot directly derive a continuity equation to describe the evolution of the

distribution of states. Instead, we consider Lipschitz approximation of our orig-
inal nonsmooth system and construct a sequence of measures obtained from

Liouville equations corresponding to these approximations. This sequence of
measures converges in weak-star topology to the measure describing the evo-

lution of the distribution of states for the original nonsmooth system. This

allows us to approximate numerically the evolution of moments (up to some
finite order) for our original nonsmooth system, using a solver that uses fi-

nite order moment approximations of the Liouville equation. Our approach is

illustrated with the help of an academic example.

1. Introduction

In the theory of dynamical systems, studying the evolution of state trajecto-
ries, both qualitatively and quantitatively, is a common occurrence. For ordinary
differential equations, with a fixed initial condition described by a point in the
finite-dimensional vector space, the tools for analyzing the behavior of trajectories
are widely available. However, for many applications, it is of interest to consider
the evolution of dynamical systems when the initial condition is described by a dis-
tribution over some set in the state space. This article explores this latter direction
for a particular class of nonsmooth dynamical systems.

If we consider a probability measure to describe the distribution of the initial
conditions of a dynamical system, then the time evolution of this initial probability
measure with respect to underlying dynamics is the object of our interest. For
an autonomous dynamical system described by an ordinary differential equation
(ODE) with Lipschitz continuous vector field, the time evolution of this measure
is described by a linear partial differential equation (PDE) called the Liouville
equation or the continuity equation, see e.g. [33, Section 5.4]. The solution to
the Liouville equation, that is the probability measure describing the distribution
at time t, is the pushforward or image measure of the initial probability measure
through the flow map at time t. Lipschitz continuity of the vector field ensures that
the flow map of the ODE is invertible, which in turn ensures that the pushforward
measure is the unique solution to the Liouville equation. This approach of associ-
ating the continuity equation with finite dimensional ODEs has found relevance in
numerical optimal control [24, 19] as well as in several control-theoretic problems
[4, 8, 9].

This work was supported by the ANR project ConVan with grant number ANR-17-CE40-
0019-01.
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When the vector field is not Lipschitz continuous, then the study of the evolu-
tion of the initial distribution is more involved. The first occurrence of continuity
equations corresponding to nonsmooth ODEs occurs in [15]. Continuity equations
corresponding to one-sided Lipschitz vector fields have been studied in [6, 7]. In
[2], the authors consider less regular ODEs and study uniqueness of solutions for
(Lebesgue) almost-all initial conditions by using the Liouville equation.

The dynamical systems for which we want to study the evolution of probability
measures (describing the distribution of states) are the so-called constrained systems
described by differential inclusions. In particular, given a closed convex set S ⊂ Rn,
and a continuously differentiable function f : Rn → Rn, we describe the evolution
of constrained systems via the differential inclusion

(1) ẋ ∈ f(x)−NS(x)

where NS(x) ∈ Rn denotes the outward normal cone to the set S at the point
x ∈ Rn. Since the normal cone takes a zero value in the interior of S, it is clear
that the right-hand side of (1) is potentially discontinuous at the boundary of the
set S. One can also think of (1) as an evolution variational inequality, described as

〈ẋ(t)− f(x(t)), y − x(t)〉 > 0, for all y ∈ S, x(t) ∈ S, t > 0.

Such dynamical systems have been a matter of extensive study in past decades due
to their relevance in engineering and physical systems. A recent survey article [10],
and a research monograph [1], provide an overview of different research oriented
directions in the literature pertaining to system (1) and its connections to different
classes of nonsmooth mathematical models. Analysis of such systems requires tools
from variational analysis, nonsmooth analysis, set-valued analysis [3, 27, 30]. Re-
sults based on stability analysis with computational aspects have been addressed
recently by the authors in [31].

For a fixed initial condition, x(0) ∈ S, the question of existence and uniqueness
of solution to system (1) has already been well-established in the literature, and the
origins of such works can be found in [28], see [16] for a recent exposition. However,
if we consider the initial conditions described by a probability measure, then the
evolution of this measure under the dynamics of (1) has not received any attention
in the literature. Since the right-hand side of (1) is a discontinuous mapping with
respect to the state, one cannot write down the corresponding Liouville equation
directly. In fact, it can be shown that the solutions of system (1) are forward
unique, but not backward unique, and hence the flow map of (1) is not invertible
in general. One possible approach to describe the evolution of probability measure
could be to formulate a set-valued version of the continuity equation and study the
solutions of such equations under appropriate hypothesis. This approach has been
adopted in [5] but it is not clear to us how to derive the corresponding set-valued
partial differential equation for system (1) and whether the resulting inclusion would
satisfy the sort of hypothesis required in [5]. We therefore study different techniques,
partly with the motivation of numerical simulation, which allow us to approximate
the distribution of states as a function of time.

Inspired by the concepts presented in [2], our basic idea is to consider Lipschitz
approximations of system (1). The particular approximations that we work with
are the ones obtained by Yosida-Moreau regularization and are parameterized by
a positive scalar converging to zero, see [10]. We can then associate a Liouville
equation to each of these approximants, and establish convergence of the resulting
sequence of measures. Furthermore, we also show that the support of the sequence
of measures converges (with respect to the Hausdorff distance) to the support of
the pushforward measure for the nonsmooth system. These analytical results allow
us to get an approximation of the actual solution.
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Since the pushforward measure, at each time instant, is an infinite-dimensional
object, it can be challenging to approximate it numerically. A possibility – that we
do not explore here – could to use Monte-Carlo probabilistic algorithms. Instead,
we would like to investigate a purely deterministic approach: in order to get a
quantitative measure of the distribution of state at any time instant, we apply
the moment-SOS hierarchy [20] which allows us to approximate numerically the
moments (up to some finite order) associated with the pushforward measure. Also,
using the recent developments on approximating the support of a measure with the
Christoffel-Darboux kernel [23], we can approximate the support of the pushforward
measure, and hence the trajectories corresponding to a certain initial distribution.

The remainder of the article is organized as follows: In Section 2, we formalize the
problem and introduce the basic mathematical elements necessary for doing so. In
Section 3, we construct Lipschitz approximations of our initial dynamical system. In
Sections 4 and 5, we study certain properties of the sequence of measures associated
with approximations constructed in Section 3. Numerical aspects for approximating
the moments, and support, of the probability measure describing the evolution of
system dynamics are also discussed in Sections 4 and 5. We illustrate our results
with the help of an academic example in Section 6. Some concluding remarks
with possible future directions appear in Section 7, followed by an Appendix which
collects some additional tools used in the development of our results.

2. Preliminaries and Problem formulation

2.1. Evolution of ensembles. Let us consider the time-varying ODE

(2) ż(t) = g(t, z(t)), z(0) = z0,

over a given time interval [0, T ], where g : [0, T ] × Rn → Rn is a given vector
field and z(t) ∈ Rn is the state. For each t ∈ [0, T ], let us consider the flow map
Gt : Rn → Rn, so that the mapping z0 7→ Gt(z0) provides the value of state
trajectory of (2) at time t, and moreover it satisfies

(3) ∂tGt(z0) = g(t, Gt(z0)), G0(z0) = z0, (t, z0) ∈ [0, T ]× Rn.

In this article, we consider the evolution of dynamical systems when the initial
condition is defined probabilistically. In particular, we use the notation z(0) ∼ ξ0
to mean that z(0) is a random variable whose law is a given probability measure, or
density function ξ0 ∈ P(Rn), where P(S) denotes the set of probability measures
supported on S.

This model allows to capture an initial spatial distribution of particles. To
define the corresponding density function at time t > 0, denoted by ξt ∈ P(Rn),
we consider the pushforward or image measure of ξ0 through the flow map Gt(·).
That is, let

ξt := Gt]ξ0,(4)

so that, for every Borel subset B ⊂ Rn, it holds that

ξt(B) = ξ0(G−1t (B)) = ξ0({z ∈ Rn : Gt(z) ∈ B}).

The evolution of ξt is described by the following PDE, called the continuity or
Liouville equation:

(5) ∂tξt + div(ξtg) = 0,

with the initial condition:

(6) ξ|t=0 = ξ0.
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Figure 1. Evolution of probability measure ξt w.r.t. time and space.

The Liouville equation (5) should be understood in the sense of distributions, i.e.∫
Rn

(∂tv(t, z) + ∂zv(t, z) · g(t, z)) dξt(z) = 0

for all continuously differentiable functions v from R+ ×Rn to R. The equivalence
between the solutions of ODE (2) and PDE (5), is established in the following
result, see e.g. [33, Theorem 5.34]:

Theorem 1. For each t ∈ [0, T ], let Gt : Rn → Rn be a diffeomorphism so that
(3) holds. Given ξ0 ∈ P(Rn), let ξt be defined as in (4). Then, ξt is the unique
solution of the Liouville equation (5)-(6) over the time interval [0, T ].

The importance of the Liouville PDE relies on its linearity in the probability
measure ξt, whereas the Cauchy ODE is nonlinear in the state trajectory z(t).
This PDE governs the time evolution of a measure transported by the flow of a
nonlinear dynamical system. The nonlinear dynamics is then replaced by a linear
equation on measures. It is important to note that, in Theorem 1, the equivalence
is established under the assumption that Gt is a diffeomorphism for each t ∈ [0, T ],
which in particular requires that the flow map Gt is invertible. ODEs with Lipschitz
vector fields have this property, but when the vector field is not Lipschitz continuous
in state variable, the backward invertibility assumption may not hold, or the flow
map Gt may itself not be uniquely defined.

2.2. Ensembles of constrained system. In this paper, we are interested in
studying a class of dynamical systems described by the variational inequalities

(7) ż(t) ∈ f(t, z(t))−NS(t)(z(t)), z(0) ∼ ξ0,

over an interval [0, T ] for some given T > 0, where f : [0, T ]× Rn → Rn is a given
vector field, S : [0, T ] ⇒ Rn a compact and convex-valued mapping, and we recall
that the normal cone to S at z is defined by

(8) NS(z) := {λ ∈ Rn | 〈λ, z′ − z〉 6 0,∀z′ ∈ S} .

If z ∈ int(S), the interior of S, thenNS(z) = 0 and by convention, we letNS(z) := ∅
for all z 6∈ S. The formalism of system (7) with inclusion naturally allows us to
describe dynamics constrained to evolve in set S. Using the depiction in Figure 2,
it is seen that, during the evolution of a trajectory, if z(t) is in interior of S, then
NS(z(t)) = 0 and the motion of the trajectory continues according to the differential
equation ż(t) = f(t, z(t)). Whenever z(t) is on the boundary, we add a vector from
the set −NS(z(t)), which restricts the motion of the state trajectory in tangential
direction on the boundary of the constraint set S.
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Figure 2. State trajectories in constrained system with S = Rn+.

We emphasize that, in (7), ξ0 ∈ P(S(0)) is a probability measure that specifies
the distribution of the initial state. For each t ∈ [0, T ], let us denote the flow map
by Ft : S(t)→ S(t), so that z0 7→ Ft(z0) is the value at time t of the state trajectory
of (7) with z(0) = z0. Given this random initial condition, the state at each time
t can also be interpreted as a random variable in S(t), i.e. z(t) ∼ ξt ∈ P(S(t))
defined by ξt := Ft]ξ0. However, unlike Lipschitz continuous ODEs, the mapping
Ft is not invertible in general. An example illustrating this fact is given next.

Example 1 (Flow map not invertible). Let f(z) = Az with A =
[

0 1
−1 0

]
and

S = R2
+ and let z0 be a given initial condition, with angle θ0. For t 6 θ0, we have

z(t) = Ft(z0) = eAtz0 =
[

cos(t) sin(t)
− sin(t) cos(t)

]
z0. And for t > θ0, we have z(t) = [|z0| 0]>.

For example if z0 = [1 1]>, it holds θ0 = π
4 and then for t > θ0, we have z(t) =[ √

2
2

√
2

2

−
√

2
2

√
2

2

] [
1
1

]
= [
√

2 0]>. The flow map reads

z(t) = Ft(z0) =

{
eAtz0 if t 6 θ0
[|z0| 0]> if t > θ0.

Indeed, as we can observe, the flow map is not invertible since given a state z(t)
for a given time t > θ0, it is not possible to retrieve the initial condition z0.

As a consequence of Example 1, it is seen that the flow map associated with
dynamical system (7) is not necessarily invertible, and hence the conditions of
Theorem 1 are not satisfied in general for such systems. Therefore, to study the
propagation of the probability measure ξ0, it is not possible to write down the
Liouville equation directly to obtain ξt := Ft]ξ0. In this article, our goal is to
find alternate methods to approximate the measure ξt and propose computational
algorithms to calculate such approximations numerically.

2.3. Problem Formulation. We consider the dynamical system (7) with flow map
Ft : Rn → Rn. For a given ξ0 ∈ P(S(0)), since there is no direct derivation of the
PDE for characterizing the evolution of ξt := Ft]ξ0, we compute an approximation
of ξt as follows:
• Construct a sequence of ODEs with Lipschitz continuous right-hand sides which

approximate the solution of ODE (7) for a fixed initial condition. This construc-
tion is based on a regularization of (7), and results in a sequence parameterized
by a scalar λ > 0.

• Exploit the regularity of the approximating ODE to construct a sequence of
measures ξλt := Fλt ]ξ0.
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• When λ tends to 0, prove that ξλt converges to ξt := Ft]ξ0 in the weak-star
topology. In particular, all finite order moments of ξλt converge to the moments
of ξt.

• When λ tends to 0, prove the convergence of the support of ξλt to the support of
ξt in the Hausdorff metric.

From a computational viewpoint, the by-product of the above results is that, for
a fixed λ > 0, one can invoke efficient numerical methods for computing moments
associated with the probability measure ξλt and the support of ξλt . This allows us
to compute an approximation of the moments and support of ξt associated with
nonsmooth system (7).

3. Lipschitz Approximation

The first step in our analysis is to compute an approximation of the solutions
of (7) by using Moreau-Yosida regularization. The development carried out here is
inspired by [10]. We introduce a sequence of approximate solutions, the so-called
Moreau-Yosida approximants {zλ}λ>0, which are obtained by solving the following
ODE parameterized by λ > 0:

(9) żλ(t) = f(t, zλ(t))− 1

λ
(zλ(t)− proj(zλ(t), S(t))), zλ(0) = z0 ∈ S(0)

over the interval [0, T ], where proj(z, S) is the (unique) Euclidean projection of
vector z onto convex set S. It is observed that, for each λ > 0, the right-hand side
of (9) is (globally) Lipschitz continuous, and therefore, there exists a continuously
differentiable trajectory zλ : [0, T ] → Rn such that (9) holds for every t ∈ [0, T ].
The relation between the solution of the inclusion (7) and the approximants {zλ}λ>0

holds under the following assumptions:

Assumption 1. There exists a constant Lf > 0 such that, for each t ∈ [0, T ],

|f(t, z)| 6 Lf (1 + |z|), ∀z ∈ Rn

|f(t, z1)− f(t, z2)| 6 Lf |z1 − z2|, ∀z1, z2 ∈ Rn.

Assumption 2. The mapping S : [0, T ]⇒ Rn is closed and convex-valued for each
t ∈ [0, T ], and S(·) varies in a Lipschitz continuous manner with time, that is, there
exists a constant LS > 0, such that

dH(S(t1), S(t2)) 6 LS |t1 − t2|, ∀t1, t2 ∈ [0, T ].

The notation dH(A,B) means the Hausdorff distance between sets A and B,
that is,

(10) dH(A,B) := max

{
sup
y∈A

d(y,B), sup
x∈B

d(x,A)

}
where d(x,A) denotes the Euclidean distance between vector x and set A.

Theorem 2. Under Assumptions 1–2, consider the sequence of solutions {zλ}λ>0

to parameterized ODE (9) on an interval [0, T ]. Then, as λ → 0, the sequence
converges uniformly to a Lipschitz continuous function z : [0, T ]→ Rn, the unique
solution to the differential inclusion (7).

The proof of this theorem is described in the remainder of this section. Cer-
tain calculations, leading to the intermediate lemmas used in the proof, have been
included in the appendix.

Proof. The basic idea of the proof is to show that the sequence {zλ}λ>0 satisfies
bounds ensuring uniform convergence to a function z(·) solving (7). This develop-
ment is carried out in four steps.
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Step 1: Estimates on the sequence {zλ}λ>0. As a first step, to obtain bounds on
the norm of zλ(.), let us begin by computing bounds on the norm of żλ(·) as stated
in the following lemma, whose proof is relegated to Appendix A.

Lemma 3. For each λ > 0, it holds

(11) |żλ(t)| 6 2Lf + Lf |zλ(t)|+ Lf max
06s6t

|zλ(s)|+ LS ,

where Lf , LS were introduced in Assumptions 1 and 2 respectively.

Based on Lemma 3, let us now calculate d
dt |zλ(t)|2 for getting an estimate on

|zλ(·)|. First, we observe that

(12)
d

dt
|zλ(t)|2 = 2〈zλ(t), żλ(t)〉 6 2|zλ(t)||żλ(t)|.

Substituting (11) in (12) yields

d

dt
|zλ(t)|2 6 2Lf |zλ(t)|2 + 2Lf |zλ(t)|. max

06s6t
|zλ(s)|+ (4Lf + 2LS)|zλ(t)|.

Let yλ(t) = |zλ(t)|2, so

d

dt
yλ(t) 6 2Lfyλ(t) + 2Lf

√
yλ(t). max

06s6t

√
yλ(s) + (4Lf + 2LS)

√
yλ(t).

Since the right-hand side of this differential inequality results in a nonnegative and
nondecreasing function, it follows that yλ(t) 6 ŷλ(t), for all t ∈ [0, T ], where ŷλ
satisfies

d

dt
ŷλ(t) = 2Lf ŷλ(t) + 2Lf

√
ŷλ(t).

√
ŷλ(t) + (4Lf + 2LS)

√
ŷλ(t)

= 4Lf ŷλ(t) + (4Lf + 2LS)
√
ŷλ(t).(13)

By using the substitution v(t) = (ŷλ(t))
1
2 in (13), it yields

v̇(t) = 2Lfv(t) + 2Lf + LS .

The solution of this differential equation is v(t) = e2Lf tv(0) + (e2Lf t − 1)
(2Lf+LS)

2Lf
.

Consequently, |zλ(t)|2 = yλ(t) 6 ŷλ(t) = v(t)2, and we obtain

(14) |zλ(t)| 6 e2LfT |zλ(0)|+ (e2LfT − 1)
(2Lf + LS)

2Lf
,

so that |zλ(t)| is bounded on the interval [0, T ], independently of λ.
Step 2: Extracting a converging subsequence. Based on the estimates in Step 1,

there exists a subsequence of zλ(·) which converges to z(·). More formally, the
following statement is obtained.

Lemma 4. There exists a subsequence {zλi}i∈N which converges uniformly to a
Lipschitz continuous function z(·) on [0, T ].

The proof of Lemma 4 is a consequence of the Arzelà-Ascoli theorem since the
sequence {zλi}i∈N is continuously differentiable and {żλi}i∈N is uniformly bounded.
The limit function z(·) is also Lipschitz continuous in this case.

Step 3: Limit is a solution. To finish the proof of Theorem 2, we just need to
show that the limit z(·) satisfies the differential inclusion (7). This particular step
requires a variational inequality, which is stated in the following lemma, and its
proof is given in Appendix A.
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Lemma 5. If ϕ : [0, T ] → Rn is a continuous function that satisfies ϕ(s) +∫ s
t1
f(r, zλ(r)) dr ∈ S(s) for each s ∈ [t1, t2], for t1, t2 ∈ [0, T ], then

(15)∫ t2

t1

〈
ϕ(s), ż(s)− f(s, z(s))

〉
ds >

1

2

(∥∥∥∥z(t2)−
∫ t2

t1

f(r, z(r)) dr

∥∥∥∥2 − ‖z(t1)‖2
)
.

We now complete the proof of Theorem 2 by showing that the limit of the
converging subsequence z(·) satisfies ż(t) ∈ f(t, z(t)) − NS(t)(z(t)) that is, 〈ξ −
z(t), ż(t) − f(t, z(t))〉 > 0, for any ξ ∈ S(t) and for almost every t > 0. This
is indeed the case, since for every ξ ∈ S(t), we can take a Lipschitz continuous
function ϕ : [t, T ]→ Rn such that, due to Lemma 5, we get∫
[t,t+ε[

〈ϕ(s), ż(s)−f(s, z(s))〉 ds > 1

2

(
‖z(t+ ε)−

∫ t+ε

t

f(r, z(r)) dr‖2 − ‖z(t)‖2
)
,

and by letting ϕ(s) = ξ − (ξ − ϕ(s)), we obtain∫
[t,t+ε[

〈ξ, ż(s)− f(s, z(s))〉 ds−
∫
[t,t+ε[

〈ξ − ϕ(s), ż(s)− f(s, z(s))〉 ds

>
1

2

〈
z(t+ ε)−

∫ t+ε

t

f(r, z(r)) dr + z(t), z(t+ ε)−
∫ t+ε

t

f(r, z(r)) dr − z(t)
〉
,

which implies〈
ξ, z(t+ ε)− z(t)−

∫ t+ε

t

f(s, z(s)) ds
〉
−
∫ t+ε

t

〈ξ − ϕ(s), ż(s)− f(s, z(s))〉 ds

>
1

2

〈
z(t+ ε)−

∫ t+ε

t

f(r, z(r)) dr + z(t), z(t+ ε)−
∫ t+ε

t

f(r, z(r)) dr − z(t)
〉
.

From this, we get〈
ξ − 1

2

(
z(t+ ε)−

∫ t+ε

t

f(r, z(r)) dr + z(t)

)
, z(t+ ε)− z(t)−

∫ t+ε

t

f(s, z(s)) ds
〉

>
∫ t+ε

t

〈ξ − ϕ(s), ż(s)− f(s, z(s))〉 ds

> −ε max
s∈[t,t+ε[

|ξ − ϕ(s)||ż(s)− f(s, z(s))|

> −ε max
s∈[t,t+ε[

|ξ − ϕ(s)||ż(s)| − ε Lf max
s∈[t,t+ε[

|ξ − ϕ(s)|(1 + |z(s)|).

Since z(·) is Lipschitz continuous, z(·) is bounded on [0, T ] and differentiable almost
everywhere on [0, T ]. Hence, for almost every t ∈ [0, T ], where z(·) is differentiable,
dividing the last inequality by ε, we get〈
ξ − 1

2

(
z(t+ ε)−

∫ t+ε

t

f(r, z(r)) dr + z(t)

)
,
z(t+ ε)− z(t)

ε
−
∫ t+ε
t

f(s, z(s)) ds

ε

〉
> −M max

s∈[t,t+ε[
|ξ − ϕ(s)| − MLf max

s∈[t,t+ε[
|ξ − ϕ(s)|,

for some constant M > 0. Letting ε tend to zero, we get

〈ξ − z(t), ż(t)− f(t, z(t))〉 > 0, for each ξ ∈ S(t),

and hence, z(·) satisfies the differential inclusion (7). �

Remark 6. In the literature, we can find several proofs of convergence of solutions
obtained from Moreau-Yosida regularization to the solution of systems closely re-
lated to (7), see for example [10, 22, 29]. The proof technique adopted here closely
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follows the outline given in [10], but the difference here is that we add the Lip-
schitz perturbation f(t, z) on the right-hand side of (7), which modifies certain
calculations.

4. Convergence of Measures

Using the results from the previous section on the convergence of solutions for
fixed initial condition, we now study the evolution of probability measures for sys-
tem (7). As before, let us assume that z(0) is a random variable whose law is a
given probability measure ξ0 ∈ P(S(0)). We recall that the flow map for system (7)
is denoted by Ft, so that t 7→ z(t) := Ft(z0) is the unique solution to (7).

For the Lipschitz approximation given in (9), consider the map Fλt : Rn → Rn,
so that t 7→ zλ(t) := Fλt (z0) defines the unique solution to (9). Since the right-hand
side of (9) is Lipschitz continuous for each λ > 0, we can consider a sequence of
probability measures ξλt ∈ P(S(t)) defined as

ξλt := Fλt ]ξ0

for each t ∈ [0, T ] and λ > 0. From Theorem 1, it follows that ξλt satisfies the
partial differential equation:

(16) ∂tξ
λ
t + div(ξλt f

λ
t ) = 0

in the sense of distributions, with the initial condition ξ
∣∣
t=0

= ξ0, and

(17) fλt (z) := f(t, z)− 1

λ

(
z − proj(z, S(t))

)
.

On the other hand, we do not know how to derive a meaningful PDE for ξt. How-
ever, in the sequel, we show that the probability measure ξt can be approximated
by ξλt as λ→ 0. This way, a good numerical approximation of ξλt would also provide
an approximation of ξt.

4.1. Weak-star convergence. We first show convergence in the weak-star topol-
ogy. This allows us to approximate the evolution of the moments of the measure
ξt using the moments of ξλt . Given a measure ξ, we denote its support by supp(ξ),
defined as the smallest closed set whose complement has zero measure with re-
spect to ξ. Equivalently, it is the smallest closed set for which every point has a
neighborhood of positive measure with respect to ξ.

Proposition 7. Let v : Rn → R be a continuous function, and assume that ξ0 has
bounded support. Then,

(18) lim
λ→0

∫
Rn
v(z) dξλt (z) =

∫
Rn
v(z) dξt(z).

Proof. By definition of the pushforward measure ξλt , it holds

(19)

∫
Rn
v(z) dξλt (z) =

∫
Rn
v(Fλt (y)) dξ0(y)

for all continuous functions v. From Theorem 2, for each t ∈ [0, T ], we have
limλ→0 zλ(t) = z(t), which is equivalent to

lim
λ→0

Fλt (y) = Ft(y), ∀y ∈ S(0).

Since v is any continuous function, this implies

lim
λ→0

v(Fλt (y)) = v(Ft(y)).
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By assumption, v ◦ Fλt is bounded on the bounded set supp(ξ0). This allows us to
invoke Lebesgue’s dominated convergence theorem to get

(20) lim
λ→0

∫
Rn
v(Fλt (y)) dξ0(y) =

∫
Rn
v(Ft(y))dξ0(y).

Hence, (19) and (20) yield

lim
λ→0

∫
Rn
v(z) dξλt (z) =

∫
Rn
v(Ft(y))dξ0(y).

Using again the change of variables formula, we obtain

lim
λ→0

∫
Rn
v(z) dξλt (z) =

∫
Rn
v(z) dξt(z)

for all continuous functions v on Rn. Therefore, the equality in (18) is proved. �

Remark 8. In the proof of Proposition 7, the boundedness of supp(ξ0) was used
to invoke dominated convergence theorem. The result of Proposition 7 extends in
some cases where supp(ξ0) is unbounded. In particular, if it can be shown that
there exists a function g : [0, T ]× Rn → R>0 such that, for each λ > 0,∣∣Fλt (y)

∣∣ 6 g(t, y), t ∈ [0, T ]

then the convergence in (18) holds for all continuous functions v which satisfy∫
Rn
v(g(t, y))dξ0(y) <∞, t ∈ [0, T ].

4.2. Relations Describing Moments. An immediate consequence of Proposi-
tion 7 is that we can get a desired approximation of the moments of ξt by choosing
appropriate test functions v. This amounts to computing the moments of ξλt . We
will now explore numerical techniques which allow us to compute the solution of
(16) by computing the desired moments.

Toward this end, we first observe that the Liouville equation (16) can be equiv-
alently written as a linear PDE satisfied by the occupation measures dµλ :=
dt dξλt , µ

λ
0 := δ0ξ0, µ

λ
T := δT ξT , which is

(21) ∂tµ
λ + div(µλfλ) + µλT = µλ0

which again should be understood in the sense of distributions, i.e.∫
R+

∫
Rn (∂tv(t, z) + ∂zv(t, z) · fλ(t, z)) dµλ(t, z)

=
∫
R+

∫
Rn v(t, z)(dµλT (t, z)− dµλ0 (t, z))

for all continuously differentiable functions v.
We compute approximate moments of µλ by applying the moment-SOS hierarchy

[20]. This method consists of minimizing a functional subject to the following
constraints:

(1) The Liouville equation (21) expressed in the sense of distributions, as a
linear constraints on the moments of µλ and µλT .

(2) Necessary linear matrix inequality (LMI) constraints based on the dual of
Putinar’s Positivstellensatz.

We will see in the following how to formulate the Liouville equation (21) as a
linear moment constraint.

Let g be a polynomial vector field defined as

g : (z1, z2, . . . , zn)︸ ︷︷ ︸
z

∈ Rn 7→ (g1, g2, . . . , gn) ∈ Rn,

and v be a monomial test function, with a maximum degree d ∈ N, defined as

v : (t, z) 7→ tazb := tazb11 z
b2
2 · · · zbnn ,
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for all (a, b) ∈ Nn+1, with a+ b1 + b2 + · · ·+ bn 6 d. The maximal degree d is called
the relaxation degree.

Besides, let us denote

(22) ya−1,b :=

∫ T

0

∫
Rn
ta−1zbdµλ(t, z)

and

(23) yTa,b :=

∫ T

0

∫
Rn
tazbdµλT (t, z),

(24) y0a,b :=

∫ T

0

∫
Rn
tazb dµλ0 (t, z).

Let ei denote the vector whose only non-zero entry is equal to one at position i.

Proposition 9. The Liouville equation (21) is equivalently expressed as:

(25) yTa,b − y0a,b = aya−1,b +

n∑
i=1

∫ T

0

∫
Rn
bit

azb−eigi(z) dµ
λ(t, z)

which are linear constraints that link the moments of the initial measure, terminal
measure and occupation measure.

Proof. Choosing v(t, z) = tazb as a monomial test function, the Liouville equation
(21) is then written as

〈∂tµλ, v〉+ 〈div(µλg), v〉+ 〈µλT , v〉 = 〈µλ0 , v〉,
which implies
(26)∫ T

0

∫
Rn

(∂tv(t, z)+∂zv(t, z) ·g(z)) dµλ(t, z) =

∫ T

0

∫
Rn
v(t, z) (dµλT (t, z)−dµλ0 (t, z)).

We have
∂tv(t, z) = ata−1zb,

and

∂zv(t, z) = (b1t
azb1−11 zb22 · · · zbnn , b2taz

b1
1 z

b2−1
2 · · · zbnn , . . . , bntaz

b1
1 z

b2
2 · · · zbn−1n ).

Replacing ∂tv(t, z) and ∂zv(t, z) by their expressions in (26) yields∫ T

0

∫
Rn

(ata−1zb +

n∑
i=1

bit
azb−eigi(z)) dµ

λ(t, z)

=

∫ T

0

∫
Rn
tazb dµλT (t, z)−

∫ T

0

∫
Rn
tazb dµλ0 (t, z)

which is the expected statement by using the notations (22), (23) and (24). �

4.3. Numerical computation. Let Npd := {a ∈ Np; a1+ · · ·+ap 6 d} and let y =
(ya)a∈Np be a given sequence. The moment matrix of degree d, denoted by Md(y)
is a matrix whose rows and columns are indexed by monomials of degree at most d.
For a, b ∈ Npd, the corresponding entry in Md(y) is defined by (Md(y))a,b := ya+b.

Let bd(z) := (za)a∈Npd ∈ R[z]
s(d)
d denote the vector of monomials of degree less

or equal to d, where s(d) :=
(
p+d
d

)
is the number of monomials of degree at most

d. If the sequence y has a representing measure ξ, i.e. ya =
∫
Rp z

adξ(z) for all

a ∈ Np, we can use the equivalent definition Md(y) :=
∫
Rp bd(z)bd(z)

> dξ(z),
where the integral is understood entrywise. And we can also define the localiz-
ing matrix of degree d with respect to a given q(z) ∈ R[z] by Md−ddeg(q)/2e(qy) :=∫
Rp q(z)bd(z)bd(z)

> dξ(z) where dxe denotes the smallest integer greater than x.
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Assume that X ⊂ Rn is a compact basic semialgebraic set i.e.

X := {z ∈ Rn : pk(z) > 0, k = 0, . . . , nX}

for given pk ∈ R[z], k = 0, . . . , nX . Let p0(z) = 1 and let one of the inequalities
pk(z) > 0 be of the form R −

∑n
i=1 z

2
i > 0 where R is a sufficiently large positive

constant.

Proposition 10. (Putinar’s Theorem) The sequence of moments y has a repre-
senting measure supported on X if and only if Md−ddegpk/2e(pky), k = 0, . . . , nX
are positive semidefinite for all d ∈ N.

The following corollary shows that for fixed d ∈ N, we have an LMI necessary
condition for a truncated sequence y to have a representing measure supported on
X.

Corollary 11. Given d ∈ N, if the sequence of moments y has a representing mea-
sure supported on X, then Md−ddeg(pk)/2e(pky), k = 0, . . . , nX are positive semidef-
inite.

Numerically, for applying the moment-SOS hierarchy, we need first to define the
initial, terminal and occupation measures associated to each time and state. Since
the initial measure is given, the moments of the initial measure are given. The
moments of the occupation measure as well as those of the terminal measure are
the unknowns, which appear linearly in the relaxation (25).

In addition to those linear constraints that link the moments, there are also
necessary LMI constraints based on Corollary 11. Solving the LMI problem gives
us an approximation of the moments of the occupation measure and the terminal
measure. The LMI constraints are automatically constructed by the msdp command
in Gloptipoly for Matlab [21]. For more details about the LMI constraints, refer to
[18, Section 3.3] or [20].

5. Convergence of Support of Measures

For several applications, it is important to approximate the support of the mea-
sure ξt, since it provides a probabilistic estimate of the state trajectories at time
t ∈ [0, T ]. Once again, our goal is to approximate the support of ξt by the support
of ξλt where ξλt satisfies (16).

5.1. Hausdorff convergence of support. We first show that supp(ξλt ) converges
in the Hausdorff distance to supp(ξt).

Proposition 12. For each t ∈ [0, T ], it holds

(27) lim
λ→0

dH(supp(ξλt ), supp(ξt)) = 0.

Proof. First, letAλt := supp(ξλt ) andAt := supp(ξt). For proving that limλ→0 dH(Aλt , At) =
0, we need to prove the following two limits:

(28) lim
λ→0

sup
yλ∈Aλt

d(yλ, At) = 0,

and

(29) lim
λ→0

sup
x∈At

d(x,Aλt ) = 0.

For proving (28), we first observe that

sup
yλ∈Aλt

d(yλ, At) = sup
yλ∈Aλt

inf
x∈At

|yλ − x|,
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and hence it needs to be shown that for every yλ ∈ Aλt , there exists x ∈ At such
that |x− yλ| converges to zero as λ converges to zero. Since yλ ∈ Aλt , there exists
z0 ∈ supp(ξ0) such that yλ = Fλt (z0). By choosing x = Ft(z0) ∈ At, it follows from
Theorem 2 that limλ→0 F

λ
t (z0) = Ft(z0), or equivalently, |x− yλ| converges to 0 as

λ→ 0.
For proving (29), we similarly observe that

sup
x∈At

d(x,Aλt ) = sup
x∈At

inf
yλ∈Aλt

|x− yλ|.

Following the same idea as before, let us take x ∈ At, then there exists z0 ∈ supp(ξ0)
such that x = Ft(z0). By choosing yλ = Fλt (z0) ∈ Aλt , it again follows from
Theorem 2 that |x− yλ| converges to 0 as λ→ 0, and (29) is obtained. �

5.2. Approximation of support. Just like the approximation of moments, we
can provide some numerical methods to approximate the support of the sequence
of measures ξλt . By Proposition 12, by computing such an approximation for λ > 0
sufficiently small, we get an approximation of the support of the probability measure
ξt for the original system.

Let Mλ
d (y) denote the moment matrix of degree d of the sequence of moments

y of the measure ξλt . Let ξλt be absolutely continuous with respect to the Lebesgue
measure and let us suppose that supp(ξλt ) is compact. The following statement
shows the existence of a sublevel set that approximates the support of the sequence
of measures ξλt when λ is fixed. This result and its proof are established in [23,
Theorem 3.9].

Proposition 13. For every ε > 0 (small enough), there exists d ∈ N (large enough)
and γd > 0, such that for λ > 0 fixed, the sublevel set

(30) Sλd := {z ∈ Rp | bd(z)>Mλ
d (y)−1bd(z) < γd}

satisfies

(31) dH(Sλd , supp(ξλt )) 6 ε,

as d→ +∞.

6. Illustrative example

In this section, we give an example that illustrates the computation of the mo-
ments associated with ξλt of the regularized system (9) in the case where f : R2 →
R2, by applying the moment-SOS hierarchy [20].

Consider the constrained system (7) of Example 1 where f(z) = Az with A =[
0 1
−1 0

]
and S = R2

+. Let us write the regularized system (9) in polar coordinates
(r, θ) as follows: {

ṙ(t) = 0,

θ̇λ(t) = −1− 1
λ (θλ(t)− proj(θλ(t), S(t))).

or equivalently:

(32)

{
ṙ(t) = 0,

θ̇λ(t) = −1− 1
λ (θλ(t)−max(θλ(t), 0)).

Let d = 4 be the degree of relaxation, and let us choose different values of the
regularization parameter λ ∈ {0.05, 0.1, 0.5}. We introduce the initial measure as
a Dirac measure with respect to time product a uniform measure in [0, 1] × [0, 12 ]
with respect to the state.

We calculate the moment of the initial measure to replace it directly in Liouville
constraint (25), where the variables z1 and z2 in (25) are respectively r and θ. For
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all (a, b1, b2) ∈ N3, with a+ b1 + b2 6 d, the moment of the initial measure is then
given as∫ T

0

∫
Rn
tazb11 z

b2
2 dµ0(t, z) =

∫ T

0

∫
Rn
tazb11 z

b2
2 δ0(dt)λ[0,1](dz1)λ[0, 12 ](dz2)

= 0a
∫ 1

0

zb11 dz1

∫ 1
2

0

2zb22 dz2

= 0a
1

b1 + 1

(
1b1+1 − 0b1+1

) 2

b2 + 1

((
1

2

)b2+1

− 0b2+1

)
.

Then we apply the moment-SOS hierarchy [20] which allows us to approximate nu-
merically the moments of the unknown occupation measure and terminal measure.
For different values of the terminal time T ∈ {0, 0.1, 0.2, . . . , 1}, this gives us:

• The evolution of the moment
∫
r(t)2 dµλT as a function of time, which we

observe numerically is a constant for different values of the regularization
parameter λ.
• The evolution of the moment

∫
θ(t)2 dµλT as a function of time for different

values of the regularization parameter λ, which is illustrated on Figure 3.

7. Conclusions

In this article, we studied the time evolution of nonsmooth constrained dynami-
cal systems when the initial condition is described by a probability measure. Unlike
conventional ODEs we do not know how to describe the time evolution of the image
measure by the flow as a Liouville PDE. To circumvent this issue, we propose an
approximation technique based on constructing Lipschitz approximations for the
original nonsmooth system, and then using the Liouville equation for the approxi-
mate Lipschitz dynamics. Numerical methods for computing the approximation of
solutions of Liouville equation then allow us to compute the moments and support
of the probability measures associated to the original system.

Figure 3. First order moment of the second state (vertical axis)
of the occupation measure of the regularized system, as a function
of time (horizontal axis), for different values of the regularization
parameter (top curve λ = 0.5, middle curve λ = 0.1, bottom curve
λ = 0.05)
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To seek improvements in the approach adopted in this paper, it is observed that
the proposed Lipschitz approximations are difficult to simulate numerically. In
particular, for the illustrated example, we implemented the projection map onto
a cone by splitting the Liouville equation in different parts, where each of them
corresponds to the region where the approximating ODE is continuous. One could
use some recent work on approximating ODEs with twice differentiable right-hand
side [14] to see if the resulting implementation is easier to simulate for a broader
class of constraint sets.

Another potential direction of research that comes out from this work is the
possibility of using the proposed tools for optimal control problems. As was done
for ODEs [24, 19], it is possible to use the formalism of Liouville equation for
optimal control problems. The optimal control for the class of nonsmooth systems
studied in this paper is a challenging problem, and it has been addressed recently
in [11, 13, 32]. It would be interesting to see if the methods proposed in this paper
provide a numerically constructive solution to such challenging problems.

Appendix A. Proofs of Lemmas in Theorem 2

A.1. Proof of Lemma 3. For each λ > 0, the dynamics for zλ in (9) yield

|żλ(t)| = |f(t, zλ(t))− 1

λ
(zλ(t)− proj(zλ(t), S(t)))|

6 |f(t, zλ(t))|+ 1

λ
|zλ(t)− proj(zλ(t), S(t))|.(33)

For the first term in the right-hand side of (33), we have that

(34) |f(t, zλ(t))| 6 Lf (1 + |zλ(t)|).

For the second term in the right-hand side of (33), we introduce the function
dλ(t) = infy∈S(t) |y − zλ(t)|, so that dλ(t) = dS(t)(zλ(t)). It is seen that dλ(t) =

|zλ(t)− proj(zλ(t), S(t))|. So 1
λ |zλ(t)− proj(zλ(t), S(t))| = 1

λdλ(t).

To obtain a bound on dλ(t), we compute the derivative of d2λ(t):

d

dt
d2λ(t) =

d

dt
d2S(t)(zλ(t))

= lim
ε→0

d2S(t+ε)(zλ(t+ ε))− d2S(t)(zλ(t))

ε

= lim
ε→0

d2S(t+ε)(zλ(t+ ε))− d2S(t)(zλ(t+ ε))

ε
+
d2S(t)(zλ(t+ ε))− d2S(t)(zλ(t))

ε
.(35)

For the first term in the limit, we use that

d2S(t+ε)(zλ(t+ ε))− d2S(t)(zλ(t+ ε))

6 dH(S(t+ ε), S(t))
(
dS(t+ε)(zλ(t+ ε)) + dS(t)(zλ(t+ ε))

)
6 |ε|LS

(
dS(t+ε)(zλ(t+ ε)) + dS(t)(zλ(t+ ε))

)
.(36)

For the second term in the limit, we first notice that

d2S(t)(zλ(t+ ε))− d2S(t)(zλ(t)) = d2S(t)(zλ(t) + εżλ(t))− d2S(t)(zλ(t))

+
(
dS(t)(zλ(t+ ε))− dS(t)(zλ(t) + εżλ(t))

)(
dS(t)(zλ(t+ ε)) + dS(t)(zλ(t) + εżλ(t))

)
.

Since zλ(.) is differentiable, zλ(t+ ε) = zλ(t) + εżλ(t) +O(ε) and hence dS(t)(zλ(t+
ε))− dS(t)(zλ(t) + εżλ(t)) = O(ε). This implies that

d2S(t)(zλ(t+ ε))− d2S(t)(zλ(t)) = d2S(t)(zλ(t) + εżλ(t))− d2S(t)(zλ(t)).
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And,

lim
ε→0

1

ε

[
d2S(t)(zλ(t+ ε))− d2S(t)(zλ(t))

]
= 〈∇d2S(t)(zλ(t)), żλ(t)〉

= 2〈zλ(t)− proj(zλ(t), S(t)), żλ(t)〉.(37)

By substitution of (36) and (37) in equation (35), we obtain

d

dt
d2λ(t) = 2dλ(t)ḋλ(t) 6 2dλ(t)żλ(t) + 2LSdλ(t)

6 2dλ(t)

(
f(t, zλ(t))− 1

λ
dλ(t)

)
+ 2LSdλ(t)

6 − 2

λ
d2λ(t) + 2dλ(t)f(t, zλ(t)) + 2LSdλ(t).

Dividing by 2dλ(t), we get

d

dt
dλ(t) 6 − 1

λ
dλ(t) + f(t, zλ(t)) + LS ,

which implies that,

dλ(t) 6 e−t/λdλ(0) +

∫ t

0

e−(t−s)/λ(f(s, zλ(s)) + LS) ds.

Or, dλ(0) = |z0 − proj(z0, S(0))| = 0 since z0 ∈ S(0) and we have that f satisfies
(34), then it follows

(38)
1

λ
dλ(t) 6

1

λ

∫ t

0

e−(t−s)/λ(Lf + Lf |zλ(s)|+ LS) ds.

And therefore, substituting (34) and (38) in (33), we get

|żλ(t)| 6 Lf + Lf |zλ(t)|+ 1

λ

∫ t

0

e−(t−s)/λ(Lf + Lf |zλ(s)|+ LS) ds

6 Lf + Lf |zλ(t)|+ Lf
λ

∫ t

0

e−(t−s)/λ ds+
Lf
λ

∫ t

0

e−(t−s)/λ|zλ(s)| ds

+
LS
λ

∫ t

0

e−(t−s)/λ ds.

We have

Lf
λ

∫ t

0

e−(t−s)/λ ds =
Lf
λ
e−t/λ

[
λes/λ

]t
0

=
Lf
λ
e−t/λ

(
λet/λ − λ

)
= Lf

(
1− e−t/λ

)
6 Lf .

Similarly,

LS
λ

∫ t

0

e−(t−s)/λ ds 6 LS .

Besides, we have

Lf
λ

∫ t

0

e−(t−s)/λ|zλ(s)| ds 6 Lf
λ

∫ t

0

e−(t−s)/λ ds︸ ︷︷ ︸
6Lf

. max
06s6t

|zλ(s)|

6 Lf max
06s6t

|zλ(s)|.

The bound of |żλ(t)| is then expressed as

|żλ(t)| 6 2Lf + Lf |zλ(t)|+ Lf max
06s6t

|zλ(s)|+ LS .
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A.2. Proof of Lemma 5. Let z̄λ(s) := proj(zλ(s), S(s)); then s 7→ z̄λ(s) is a
continuous mapping. Since ϕ(s) +

∫ s
t1
f(r, zλ(r)) dr ∈ S(s) and λ is positive, it

follows from the definition of the projections that〈
ϕ(s) +

∫ s

t1

f(r, zλ(r)) dr − z̄λ(s), żλ(s)− f(s, zλ(s))
〉

=
1

λ

〈
ϕ(s) +

∫ s

t1

f(r, zλ(r)) dr − z̄λ(s), z̄λ(s)− zλ(s)
〉
> 0.

Then〈
ϕ(s), żλ(s)− f(s, zλ(s))

〉
>
〈
z̄λ(s)−

∫ s

t1

f(r, zλ(r)) dr, żλ(s)− f(s, zλ(s))
〉
,

which implies that,∫ t2

t1

〈
ϕ(s), żλ(s)−f(s, zλ(s))

〉
ds >

∫ t2

t1

〈
z̄λ(s)−

∫ s

t1

f(r, zλ(r)) dr, żλ(s)−f(s, zλ(s))
〉
ds.

Since at the points where zλ(.) is differentiable, we have

〈z̄λ(s), żλ(s)− f(s, zλ(s))〉 = 〈z̄λ(s)− zλ(s), żλ(s)− f(s, zλ(s))〉
+ 〈zλ(s), żλ(s)− f(s, zλ(s))〉

=
1

λ
|z̄λ(s)− zλ(s)|2︸ ︷︷ ︸

>0

+〈zλ(s), żλ(s)− f(s, zλ(s))〉,

it follows that,

〈z̄λ(s), żλ(s)− f(s, zλ(s))〉 > 〈zλ(s), żλ(s)− f(s, zλ(s))〉,

and,∫ t2

t1

〈
ϕ(s), żλ(s)−f(s, zλ(s))

〉
ds >

∫ t2

t1

〈
zλ(s)−

∫ s

t1

f(r, zλ(r)) dr, żλ(s)−f(s, zλ(s))
〉
ds.

We have ∫ t2

t1

〈
zλ(s)−

∫ s

t1

f(r, zλ(r)) dr, żλ(s)− f(s, zλ(s))
〉
ds

=
1

2

[
‖zλ(s)−

∫ s

t1

f(r, zλ(r)) dr‖2
]t2
t1

=
1

2

(
‖zλ(t2)−

∫ t2

t1

f(r, zλ(r)) dr‖2 − ‖zλ(t1)‖2
)
,

hence, we obtain that∫ t2

t1

〈
ϕ(s), żλ(s)−f(s, zλ(s))

〉
ds >

1

2

(
‖zλ(t2)−

∫ t2

t1

f(r, zλ(r)) dr‖2 − ‖zλ(t1)‖2
)
.

We take limits with respect to λ → 0. Since zλ(.) converges pointwise to z(.), we
have

〈
ϕ(s), żλ(s)−f(s, zλ(s))

〉
−→

〈
ϕ(s), ż(s)−f(s, z(s))

〉
for each s ∈ [t1, t2], and

‖zλ(t2) −
∫ t2
t1
f(r, zλ(r)) dr‖2 −→ ‖z(t2) −

∫ t2
t1
f(r, z(r)) dr‖2, and ‖zλ(t1)‖2 −→

‖z(t1)‖2.
Therefore, this yields to∫ t2

t1

〈
ϕ(s), ż(s)− f(s, z(s))

〉
ds >

1

2

(
‖z(t2)−

∫ t2

t1

f(r, z(r)) dr‖2 − ‖z(t1)‖2
)
,

and Lemma 5 is then proved.
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measures and LMI relaxations. SIAM Journal on Control and Optimization, 47(4):1643-1666,

2008.

[25] D.G. Luenberger. Optimization by vector space methods. John Wiley & Sons, 1969.
[26] M.-D.-P. Monteiro-Marques. Differential Inclusions in Nonsmooth Mechanical Problems.

Shocks and Dry Friction, vol. 9, Birkhäuser, Basel, 1993.
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