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The classical LMI framework for robust multi-objective analysis is extended from time-invariant to time-varying systems. Results concern both input-output performances and bounds on times responses such as the damping ratio. State-feedback is considered using the Svariable approach which allows, at the difference of the Lyapunov Shaping Paradigm, to search for several Lyapunov certificates simultaneously, one for each performance requirement of the multi-objective problem. Results are illustrated by local stabilization of a non-linear plant with several performance specifications.

INTRODUCTION

The study of dynamical system has been a long time research field. The Lyapunov theory (cf. [START_REF] Lyapunov | Problème général de la stabilité du mouvement[END_REF]) is one of the main initial study that formalized the mathematical principles of stability. These principles have been widely studied to lead to formulations involving statespace matrices constrained by Linear Matrix Inequalities (LMI), as developed in [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. These LMI formulations have enabled analysis and controller synthesis frameworks for uncertain Linear Time Invariant (LTI) systems as for example the µ-analysis framework [START_REF] Duc | Commande H ∞ et µ-analysis[END_REF]), the IQC framework [START_REF] Joostveenman | Robust stability and performance analysis based on integral quadratic constraints[END_REF]; [START_REF] Hu | Exponential decay rate conditions for uncertain linear systems using integral quadratic constraints[END_REF]), the S-Variable framework [START_REF] Ebihara | S-Variable Approach to LMI-Based Robust Control[END_REF]).

These LMI-based results are not restricted to linear systems and have many derivations for non-linear cases. For example [START_REF] Pettersson | An LMI approach for stability analysis of nonlinear systems[END_REF] builds an LMI approach to prove the asymptotic stability of some kind of decomposable non-linear systems into sum of affine timeinvariant systems. Hyoun-Chul [START_REF] Choi | An LMI approach to exponential stabilization of uncertain time-delay systems[END_REF] develops LMI results to demonstrate exponential stability of uncertain Time-Delay Systems. [START_REF] Sadeghi | LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems[END_REF] develops some LMI stability analysis result and robust controller design for some kind of switching systems. While [START_REF] Agulhari | A new methodology to compute stabilizing control laws for continuous-time LTV systems[END_REF] proposes an approach completely based on the transition matrix. The ultimate goal of the research for which the present paper contributes is to go for such results for non-linear systems, with an intermediate step dedicated to time-varying linear systems.

Quite naturally the LMI formalism extended from linear time-invariant to time-varying (LTV) systems leads to Differential Matrix Inequalities (DMIs). Many such results are for example cited in [START_REF] Gonçalves | Differential linear matrix inequalities optimization[END_REF], [START_REF] Seiler | Finite horizon robustness analysis of LTV systems using integral quadratic constraints[END_REF] provides appropriate tractable results for finite-horizon analysis of LTV systems. Such results include analysis of stability and input-output performances. As far as characterization of time-responses is concerned, exponential stability provides information on the decay-rate, see for example necessary and sufficient conditions on the properties of the time-varying state matrix to get the exponential stability in [START_REF] Zhou | On asymptotic stability of linear timevarying systems[END_REF]. This theorem is exploited in [START_REF] Sakai | An LMI-based stability analysis of periodic linear timevarying systems: For general cases involving higher harmonic frequencies[END_REF] to develop results for periodic Linear Time-Varying systems, looking directly for solutions of the DMIs taking as assumption that the state matrices is a sum of sine and cosine time functions.

However, these results do not address all performances that may be dealt with using LMIs in the LTI case. The novelty of this paper is the extension from LTI to LTV systems of classical pole location, not only the exponential stability, but also the damping ratio and the natural frequencies, plus, three useful input-output performances analysis results. We provide the DMI formulations for the analysis of these performances and then, for the special case of systems described as included in polytopes we provide LMI conditions for effective state-feedback design. These LMI results are greatly inspired from results in [START_REF] Ebihara | S-Variable Approach to LMI-Based Robust Control[END_REF] but are not strictly equivalent. We believe these new formulas fit better with the time-varying nature of the considered problem.

The paper is organized as follows. In section 2, we define the individual DMIs for each dynamic performance analysis. Then in section 3 we explain how we can manage these DMIs constraints as LMIs with a constant Lyapunov certificate. Results assume for simplicity that the timevarying nature of the system is embedded in a polytopic representation. We then derive in section 4 new LMI results for multi-performance state-feedback design, including S-Variable formulations. N stands for M -N is negative semi-definite. The set Co{A [v=1...v] } denotes the polytope defined as the convex hull of the v vertices A [v] , ie. the set of matrices v] where v v=1 ξ v = 1 and ξ v ≥ 0.

A(ξ) = v v=1 ξ v A [

DYNAMIC PERFORMANCE ANALYSIS

In this section we consider continuous-time linear timevarying systems of the type :

ẋ(t) = Â(t)x(t) + B w (t)w(t) + B u (t)u(t) z(t) = C(t)x(t) + D w (t)w(t) (1)
in closed-loop with a time-invariant state-feedback u(t) = Kx(t). Let A(t) = Â(t) + B u (t)K be the closed-loop state matrix.

This system is analyzed in the paper for all times t ∈ R + assuming that we have knowledge of the system for all t, but we may only know the behavior of the system for a finite time over an interval t ∈ [0; T ]; finite time analysis results are directly available restraining the time range to this interval for all the following constraints. 

Time-responses

Decay rate:

The following result provides upper and lower bounds, respectively denoted α 1 and α 2 , on the decay rate of time-responses. Theorem 1. Let α 1 < α 2 be two scalars and assume that there exists P 1 ∈ P, P 2 ∈ P, two positive scalars λ 1 > 0, λ 2 > 0, such that the following DMIs hold for all t ∈ R + :

P 1 (t) λ 1 I, 2α 1 P 1 (t) {P 1 (t)A(t)} H + Ṗ1 (t), λ 2 I P 2 (t), Ṗ2 (t) + {P 2 (t)A(t)} H 2α 2 P 2 (t) (2)
then the trajectories of ẋ(t) = A(t)x(t) are bounded by the following exponentials

β 1 (0)e α1t ≤ x(t) ≤ β 2 (0)e α2t (3) 
where β 2 k (0) = λ -1 k x(0) T P k (0)x(0), k = 1, 2. Proof: Let x(t) be the solution of the system for x(0) initial conditions. By congruence, the DMIs (2) imply along trajectories ẋ(t) = A(t)x(t) that (dependence in time t is dropped for readability of the formula):

2α 1 x T P 1 x ≤ {x T P 1 ẋ} H + x T Ṗ1 x, x T Ṗ2 x + {x T P 2 ẋ} H ≤ 2α 2 x T P 2 x. Let V 1 (t) = x T (t)P 1 (t)x(t) and V 2 (x) = x T (t)P 2 (t)x(t).
These scalar functions hence satisfy the following differential inequalities:

2α 1 V 1 (t) ≤ V1 (t) , V2 (t) ≤ 2α 2 V 2 (t)
. The comparison principle (see [START_REF] Khalil | Nonlinear Systems Third Edition[END_REF]) implies:

V 1 (0)e 2α1t ≤ V 1 (t) , V 2 (t) ≤ V 2 (0)e 2α2t . Since V 1 (t) ≤ λ 1 x(t) 2 and λ 2 x(t) 2 ≤ V 2 (t)
for all times t, the theorem is proved.

If α 2 < 0 the Theorem 1 proves exponential stability. The proof follows the classical lines for assessing exponential stability. The next results follows also the same lines but allows to conclude on the damping ratio, which is at our knowledge a new result in the time-varying case.

Damping ratio: The damping of system trajectories is characterized by the ratio between the decay rate and the frequency of oscillatory type responses. This damping ratio is upper bounded by tan(θ) in the following theorem. For θ = 0 there is no proved damping. For θ = π/2 the damping is infinite meaning that there are no oscillatory trajectories. Following the modulation/demodulation approach of [START_REF] Bazaei | Synthesis of modulated demodulated control systems[END_REF], we define complex oscillatory type responses at pulsation ω as x(t) = (x 1 (t) + jx 2 (t))e j (ωt+φ) with no other assumption on x 1 and x 2 than being differentiable and real. The real part of this signal x 1 (t) cos(ωt + φ) -x 2 (t) sin(ωt + φ), which is the part of the signal of interest for the system evolving in R n , will therefore has the same decay rate property. Theorem 2. Let θ ∈ [ 0 , π/2 ] and assume that there exists P 3 ∈ P and a scalar λ 3 > 0 such that the following DMIs holds for all t ∈ R + :

λ 3 I P 3 (t), {e -jθ P 3 (t)A(t)} H + cos(θ) Ṗ3 (t) 0 (4)
then any oscillatory type response at pulsation ω of ẋ(t) = A(t)x(t) decays exponentially as follows:

x(t) ≤ β 3 (0)e -ω tan(θ)t (5)
where 0). Hence after n periods of the oscillation the decay is such that x(2nπ/ω) ≤ β 3 (0)e -2nπ tan(θ) .

β 2 3 (0) = λ -1 3 x * (0) T P 3 (0)x(
Proof: By congruence of the DMIs (4) with the complex oscillatory type response, it implies along trajectories that (recall that e -j(ωt+φ) e j(ωt+φ) = 1):

{e -jθ (x 1 -jx 2 ) T P 3 ( ẋ1 + j ẋ2 + jω(x 1 + jx 2 ))} H + cos(θ)(x 1 -jx 2 ) T Ṗ3 (x 1 + jx 2 ) ≤ 0
After simple calculations this formula reads exactly as:

cos(θ) V3 (t) ≤ -2ω sin(θ)V 3 (t)
where V 3 (t) = x * (t)P 3 (t)x(t). A special important case is when θ = π/2. In that case one gets 0 ≤ -2ωV 3 (t) ≤ 0, the right hand side inequality coming from the fact that V 3 is positive definite. This signifies that the only oscillatory response of the system (ω = 0) is such that V 3 ≡ 0, ie. the trivial solution x ≡ 0. In all cases the comparison principle implies:

V 3 (t) ≤ V 3 (0)e -2ω tan(θ)t . Since λ 3 x(t) 2 ≤ V 3 (t)
for all t, the theorem is proved.

Natural frequencies:

The following theorem proves bounds on the frequencies of oscillatory responses as defined previously. Theorem 3. Assume that there exists ω > 0 and P 4 ∈ P such that the following DMI holds for all t ∈ R + :

{-jP 4 (t)A(t)} H 2ωP 4 (t) (6)
then oscillatory type responses of ẋ(t) = A(t)x(t) exist only for frequencies ω ≤ ω.

Proof: By congruence of the DMIs (6) with the complex oscillatory type response, it implies along trajectories that:

2ωV 4 (t) ≤ 2ωV 4 (t)
where V 4 (t) = x * (t)P 4 (t)x(t) ≥ 0. If ω > ω, the only solution is V 4 ≡ 0, ie. the trivial solution x ≡ 0.

Output performance analysis

Norm-to-Norm performance:

The induced Norm-to-Norm performance evaluates the worst induced L 2 norm γ∞ between the perturbation input w and the output z of (1), starting from the initial conditions x(0) = 0:

sup w∈L2,w =0 ||z|| 2 ||w|| 2 = γ∞ (7)
Theorem 4. Let γ ∞ > 0 and assume that there exists P 5 ∈ P such that the following DMIs holds for all t ∈ R + : Ṗ5 (t) P 5 (t) P 5 (t) 0

I nx 0 A(t) B w (t) + I nz 0 0 -γ 2 ∞ I nw C(t) D w (t) 0 I nw 0 (8)
then the trajectories of the system (1) are such that:

sup w∈L2,w =0 ||z|| 2 ||w|| 2 = γ∞ ≤ γ ∞ (9)
The induced Norm-to-Norm performance of the system (1) is bounded by γ ∞ .

Comment : the formula is similar to the result obtain in the LTI case when applying the KYP Lemma for H ∞ performance (cf. [START_REF] Rantzer | On the Kalman-Yakubovitch-Popov lemma[END_REF]). Besides, this result coupled with the theorem 1 is directly equivalent to the one presented in [START_REF] Hu | Exponential decay rate conditions for uncertain linear systems using integral quadratic constraints[END_REF] with the IQC approach.

Proof : By congruence of the DMIs ( 8) with (x w ) , we get along trajectories of ( 1)

V5 (t) + ||z(t)|| 2 ≤ γ 2 ∞ ||w(t)
|| 2 where V 5 (t) = x T (t)P 5 (t)x(t). Integrating this inequality from 0 to t, reminding that x(0) = 0 we get:

V 5 (t) + t 0 ||z(t)|| 2 dt ≤ γ 2 ∞ t 0 ||w(t)|| 2 dt As V 5 (t) ≥ 0, with t → ∞ we get ||z|| 2 ≤ γ ∞ ||w|| 2 .
Impulse-to-Norm performance: The induced Impulse-to-Norm performance evaluates the worst L 2 norm γ2 of the output z of (1) for a given set of initial conditions x(0) = B w (0)α, α ∈ R nw , ||α|| ≤ 1, (or equivalently for zero initial conditions and impulse perturbations w = αδ where δ is the Dirac impulse at time t = 0), with no perturbation w ≡ 0: sup

||α||≤1 ||z|| 2 = γ2 (10)
Theorem 5. Let γ 2 > 0, P 6 ∈ P such that the following DMIs holds for all t ∈ R + :

{P 6 (t)A(t)} H + Ṗ6 (t) + C(t) T C(t) 0, B T w (0)P 6 (0)B w (0) γ 2 2 I nw (11)
then whatever initial conditions such that x(0) = B w (0)α with ||α|| ≤ 1 the trajectories of the system (1) are such that ||z|| 2 ≤ γ 2 , ie. the induced Impulse-to-Norm performance of the system (1) is bounded by γ 2 .

Proof : By congruence of the first DMI of (11) with x, and the second DMI with α of norm 1, we get along the trajectories of ( 1)

V6 (t) + ||z(t)|| 2 ≤ 0 , V 6 (0) ≤ γ 2 2
where V 6 (t) = x T (t)P 6 (t)x(t). Integrating the first inequality from 0 to t and combining with the second inequality we get:

V 6 (t) + t 0 ||z(t)|| 2 dt ≤ V 6 (0) ≤ γ 2 2 As V 6 (t) ≥ 0, with t → ∞ we get that ||z|| 2 ≤ γ 2 .
Impulse-to-Peak performance: The induced Impulse-to-Peak performance evaluates the worst instantaneous output range γIP of the output z of (1) for a given set of initial conditions x(0) = B w (0)α, α ∈ R mw , ||α|| ≤ 1, with no perturbation w ≡ 0: sup

t≥0,||α||=1 ||z(t)|| = γIP ( 12 
)
Theorem 6. Let γ IP > 0 and assume that there exists P 7 ∈ P such that the following DMIs holds for all t ∈ R + :

     {P 7 (t)A(t)} H + Ṗ7 (t) 0 B w (0) T P 7 (0)B w (0) γ 2 IP I nw C(t) T C(t) P 7 (t) (13)
then the trajectories of the system (1) are such that: sup

t≥0,α∈R nα ,||α||=1 ||z(t)|| = γIP ≤ γ IP (14) 
The induced Impulse-to-Peak performance of the system (1) is bounded by γ IP .

Proof : By congruence of the first and third DMIs of ( 13) with x, and the second DMI with α of norm 1, we get along the trajectories of (1):

V7 (t) ≤ 0 , V 7 (0) ≤ γ 2 IP , ||z(t)|| 2 -V 7 (t)
≤ 0 where V 7 (t) = x T (t)P 7 (t)x(t). Integrating the first inequality from 0 to t and combining these three inequalities:

||z(t)|| 2 ≤ V 7 (t) ≤ V 7 (0) ≤ γ 2 IP .
The inequality holds for all t, hence it holds for the peak value.

Dual formulations

It is well established that state-feedback design has convex solutions when the upper given formulas, which involve products of the type P (t)A(t) = P (t) Â(t) + P (t)B u (t)K, are converted to a dual formulation that involve products of the type A(t)X(t) = Â(t)X(t) + B u (t)Y (t), where X(t) = P -1 (t) and Y (t) = KX(t) -1 . The latter formulas are easily obtained by congruence. Reminding that Ṗ = -X -1 ẊX -1 the dual DMIs are as follows:

• Dual of decay rate (2):

λ -1 1 I X 1 (t), 2α 1 X 1 (t) {A(t)X 1 (t)} H -Ẋ1 (t), X 2 (t) λ -1 2 I, -Ẋ2 (t) + {A(t)X 2 (t)} H 2α 2 X 2 (t). ( 15 
)
• Dual of damping ratio (4):

X 3 (t) λ -1 3 I, {e -jθ A(t)X 3 (t)} H -cos(θ) Ẋ3 (t) 0. ( 16 
)
• Dual of frequencies (6):

{-jA(t)X 4 (t)} H 2ωX 4 (t). ( 17 
)
• Dual of Norm-to-Norm (8):

I nx A(t) 0 C(t) -Ẋ5 (t) X 5 (t) X 5 (t) 0 + B w (t) 0 D w (t) I nz γ -2 ∞ I nw 0 0 -I nz 0.
(18)

• Dual of Impulse-to-Norm (11):

   {A(t)X 6 (t)} H -Ẋ6 (t) X 6 (t)C(t) T C(t)X 6 (t) -I nz 0, γ -2 2 B w (0)B T w (0) X 6 (0) (19) 
• Dual of Imulse-to-Peak (13):

     {A(t)X 7 (t)} H -Ẋ7 (t) 0, γ -2 IP B w (0)B T w (0) X 7 (0), C(t)X 7 (t)C T (t) I nz .
(20)

POLYTOPIC CASE

The DMI formulas from the previous section are not tractable as long as the time-dependence of the data (matrices A, B w etc.) are not specified and as long as a choice of function is not made for the unknowns P . In case the data and the unknowns are polynomial functions, many techniques can be used as described in [START_REF] Scherer | LMI relaxations in robust control[END_REF]. These could be sum-of-squares techniques [START_REF] Scherer | Matrix sum-of-squares relaxations for robust semi-definite programs[END_REF] which can be coded using YALMIP by [START_REF] Löfberg | Pre-and post-processing sum-ofsquares programs in practice[END_REF], or Polya based results that may be coded using ROLMIP by [START_REF] Agulhari | Algorithm 998: The Robust LMI Parser -A toolbox to construct LMI conditions for uncertain systems[END_REF]. Trigonometric functions of time may as well be considered with similar approaches, see [START_REF] Megretski | Positivity of trigonometric polynomials[END_REF].

For the following, for simplicity of exposure, we consider a simpler case when the data (matrices A, B w etc.) is assumed to lie in polytopic sets and the derivatives are possibly unbounded:

Â(t) Bu(t) Bw(t) C(t) 0 Dw(t) , t ∈ R + ∈ Co  Bu Bw C 0 Dw [v=1...v] (21) 
Without more knowledge on the system, the straightest forward choice is to search for constant Lyapunov certificates P i ( Ṗi = 0), or constant X i ( Ẋi = 0) in the dual formulas. Under these assumptions, it is easy to notice that the DMIs are LMIs, and these hold for all t if they hold for the whole polytope. Moreover, by convexity arguments one can prove that the LMIs hold for the whole polytope if and only if they hold for the finite number of vertices v = 1 . . . v. That fact is trivial for all constraints which are affine in the state-space matrices. For other constraints involving products of state-space matrices convexity is still preserved. Take for example the last inequality of (20) C(t)X 7 C T (t) I nz , it is equivalent with a Schur complement to (using X -1 7 X 7 = I): X 7 X 7 C(t) T C(t)X 7 I nz 0 which is linear in C(t). The same procedure can be applied to all the LMIs (primal or dual) containing products of state matrices, demonstrating their convexity.

The results are valid for any behavior of the state matrices inside the polytope. Therefore, they can directly be extended to non-linear systems where the state-space matrices are functions of the states, as long as the trajectories maintain the system matrices inside the polytope. An alternative, is to prove that for given bounded initial conditions the trajectories shall remain bounded. This statement can be formalized as a robust impulse-to-peak problem: prove that for all time t the state is bounded and the system matrices are accordingly in a polytope, proving that the worst case (peak) value still satisfies the constraints (see also [START_REF] Peaucelle | Evaluating regions of attraction of LTI systems with saturation in IQS framework[END_REF]).

To illustrate the finite number of LMIs on the vertices for the case of constant dual Lyapunov certificate ( Ẋi = 0), here are the formulas for the time-response performances:

2α 1 X 1 {A [v] X 1 } H , {A [v] X 2 } H 2α 2 X 2 (22) {e -jθ A [v] X 3 } H 0 , {jA [v] X 4 } H 2ωX 4 .
(23) All these conditions have the following structure:

r i1 X i + {r i2 A [v] X i } H = I A [v] R i ⊗ X i I A [v]T 0 ( 24 
)
with matrices R i = r i1 r * i2 r i2 0 respectively chosen as:

• r 11 = 2α 1 , r 12 = -1 for proving that exponential decay rate is greater than α 1 ; • r 21 = -2α 2 , r 22 = 1 for proving that exponential decay rate is smaller than α 2 ; • r 31 = 0, r 32 = e jθ for proving that damping ratio is greater than tan(θ); • r 41 = -2ω, r 42 = -j for proving that frequencies are bounded by ω.

For simplicity, we shall say that an LTV system ẋ(t) = A(t)x(t) is R i -stable if the LMIs built based on the matrix R i are satisfied. This definition matches with the definition of pole location for uncertain LTI systems exploited in [START_REF] Ebihara | S-Variable Approach to LMI-Based Robust Control[END_REF].

MULTI-PERFORMANCE STATE-FEEDBACK

Problem 1. Find a state-feedback gain K such that the following i = 1 . . . ī closed-loop configurations of a same system:

Σ i : ẋi (t) = ( Âi (t) + B ui (t)K)x i (t) + B wi (t)w(t) z i (t) = C i (t)x i (t) + D wi (t)w(t) (25) 
associated to one given specification Π i chosen among:

• Σ i is R i -stable, • The Norm-to-Norm of Σ i is bounded by γ ∞i , • The Impulse-to-Norm of Σ i is bounded by γ 2i ,
• The Impulse-to-Peak of Σ i is bounded by γ IPi are simultaneously satisfied.

Notice that the specifications are defined for different systems of the same order. Of course a special case is when the matrices are the same for all i = 1 . . . ī. But we may also assume that each performance specification Π i is defined for a variant of a same plant corresponding to different configurations, each configuration evolving in a different polytope with vi vertices as defined by ( 21).

For solving this problem, a direct extension of the Lyapunov Shaping Paradigm from [START_REF] Chilali | Robust pole placement in LMI regions[END_REF], consists in searching for a common Lyapunov certificate X i = X for all performance specifications and piling up all the matrix inequalities. Doing so, the dual formulations happen to be linear when applying the invertible change of variable KX = Y . Indeed one gets in the formulas

A [vi] X = ( Â[vi] + B [vi] u K)X = Â[vi] X + B [vi] u Y . Let L Πi,Σ [vi]
i (X, Y ) 0 denote the LMIs in X and Y obtained when choosing among (15), ( 16), ( 17), ( 19), ( 18), ( 20) the formula that corresponds to the performance Π i , replacing the state-space matrices by their value at vertex v i and taking X i = X, Ẋ = 0 and KX = Y . Theorem 7. If there exist two matrices X 0 and Y simultaneously solution of all LMIs L Πi,Σ

[vi] i (X, Y ) 0 i = 1 . . . ī, then K = Y X -1 is a solution to Problem 1.
The advantage of this result is that it involves few decision variables. The main drawback is the conservatism due to searching for a common Lyapunov certificate for all performances. An alternative is the S-variable Shaping Paradigm from [START_REF] Ebihara | S-Variable Approach to LMI-Based Robust Control[END_REF] which allows to search for different Lyapunov certificates, one for each performance specification, but assuming a common Svariable for all constraints. Note that, at the difference of results in [START_REF] Ebihara | S-Variable Approach to LMI-Based Robust Control[END_REF], the result of Theorem 8 concerns time-varying systems: a common matrix X i is required for all vertices of the polytope (and hence for all t ∈ R + ). Without any prior knowledge on the time derivatives or switches of the time-varying state-space matrices, it is not possible to search for more advanced time-dependent certificates X i . The S-Variable LMIs are as follows with

M [vi] i (S, T ) = Â[vi] i S + B [vi]
ui T (modified versions of formulas in [START_REF] Ebihara | S-Variable Approach to LMI-Based Robust Control[END_REF] that do not apply to the time-varying case):

• R i -stability: R i ⊗ X i M [vi] i (S, T ) -S A oi -I * H (26) 
• Norm-to-Norm performance bounded by γ ∞i :

  0 X i X i C [v i ]T i X i 0 0 C [v i ] i X i 0 0   +   0 0 B [v i ] wi 0 D [v i ] i I   γ -2 ∞ i I 0 0 -I M [v i ] i (S, T ) -S 0 Ao i -I 0 * H (27) • Impulse-to-Norm performance bounded by γ 2i :   0 X i X i C [v i ]T i X i 0 0 C [v i ] i X i 0 -I   M [v i ] i (S, T ) -S 0 Ao i -I 0 * H (28) γ -2 2i B [vi]
wi B

[vi]T wi X i

• Impulse-to-Peak performance bounded by γ IPi :

0 X i X i 0 M [vi] i (S, T ) -S A oi -I * H γ -2 IPi B [vi] wi B [vi]T wi X i C [vi] i X i C [vi]T i I (29) Let S Πi,Σ [vi]
i (X i , S, T, A oi ) 0 denote the matrix inequalities for the performance Π i and the system vertex Σ

[vi] i whith previous S-variable formulations. Theorem 8. If there exist two matrices S, T and ī matrices X i 0, A oi simultaneously solution of all constraints S Πi,Σ [vi] i (X i , S, T, A oi ) 0 i = 1 . . . ī, then K = T S -1 is a solution to Problem 1.

Proof: The demonstration is given only for the first inequality, the other follow readily. Thanks to the invertible change of variable T = KS, the constraint (26) reads with the closed-loop state matrix A

[vi] i = Â[vi] i + B [vi]
ui K as:

R i ⊗ X i A [vi] i -I S A * oi -I H .
By congruence it implies:

I A [vi] i R i ⊗ X i I A [vi]T i 0 which is the LMI (24).
The open issue with this last theorem is that the constrains are not linear due to the A oi matrices. A strategy is then to choose a priori the A oi matrices. The following results provide clues for appropriate choices. Proposition 1. If the system

Σ oi : ẋi (t) = A oi x i (t) + B wi (t)w(t) z i (t) = C i (t)x i (t) + D wi (t)w(t)
does not pass the analysis test

L Πi,Σ [vi] oi (X i , 0) 0, then S Πi,Σ [vi] i (X i , S, T, A oi ) 0 is infeasible.
Proof : Again the demonstration is given only for the first inequality, the other follow readily. Consider the R istability condition (26). By congruence it implies:

(I A oi ) R i ⊗ X i I A * oi 0
which is the (dual) analysis condition for proving R istability of ẋi (t) = A oi x i (t).

This first proposition allows to eliminate general A oi candidates. In the following we give clues for choosing candidates of the form A oi = -k i r * i2 I, where r i2 = 1 if the performance Π i is an input-output performance. Proposition 2. If there exists X and Y solutions of

L Πi,Σ [vi] oi (X, Y ) 0, then for a large enough scalar k i > 0 S Πi,Σ [vi] i (X, X, Y, -k i r * i2 I) 0 is feasible.
The proof follows from Theorem 2.9 in [START_REF] Ebihara | S-Variable Approach to LMI-Based Robust Control[END_REF] and is not reproduced here; it is also added along this theorem 2.9 that choosing very large values of k i shall lead all matrices X i to be equal (S = X = X i ). The S-variable Theorem 8 has then no advantage compared to Theorem 7. Meanwhile, from Proposition 1, we get for

A io = -k i r * i2 I that (1 -k i r * i2 ) R i 1 -k i r i2 = r i1 -2k i |r i2 | 2 .
The parameter should satisfy k i > r i1 /(2|r 2 i2 |). A reasonable one dimensional line search is hence to solve the design problem choosing

k i = k i + κ with k i = r i1 /(2|r 2 i2 |),
for κ > 0. Following the same reasoning for the other performances we get the following heuristic strategy.

Heuristic line-search Solve the LMIs of Theorem 8 with fixed values A oi = -(k i + κ)r * i2 I (r * i2 = 1 for input/output performances) where

• for the R i stability: k i = ri1 2|r 2 i2 | ,
• for the Norm-to-Norm bounded by γ ∞i :

k i = max vi=1...vi λ max ((C [vi] B [vi] ) C [vi] B [vi] ) γ ∞i -λ max (D [vi]
wi )

• for the Impulse-to-Norm bounded by γ 2i :

k i = max vi=1...vi λ max ((C [vi] B [vi] ) C [vi] B [vi] ) 2γ 2 2i
• for the Impulse-to-Peak bounded by γ IPi : k i = 0.

and search for the best solution increasing κ > 0.

ILLUSTRATIVE EXAMPLE

Application case and tools

We consider the synthesis of a state-feedback for the following nonlinear system, extension with 2 integrators of the reduced attitude deviation tracking model given in the Lemma 1 of Conord and Peaucelle (2021a):

H : ẋ = Â(x)x + B w w + B u u z q = C q x z ω = C ω x (30) 
with the state x = (η V2 η V1 q V ω b ) ∈ R 4 , the control input u ∈ R, the perturbation input w ∈ R, and the state space matrices:

Â(x) =      0 q 2 o 0 0 0 0 2q o 0 0 0 0 1 2 q o 0 0 0 0      B u = B w =    0 0 0 1    , C q = (0 0 1 0) , C ω = (0 0 0 1)
and the non-linear time-varying parameter q o solution of dqo dt = -1 2 q V ω b , which also respects the unit norm constraint: q 2 o + q 2 V = 1. Specifications: We consider the problem 1 for H with:

• Π 1 : the decay rate greater than α 1 = -20rad/s, • Π 2 : the decay rate lower than α 2 = -2rad/s, • Π 3 : the overall damping ratio greater than √ 2/2 (tan(θ) ≥ 1),

• Π 4 : the Norm-to-Norm performance between the perturbation input w and the output z ω is minimized: |z q (t)| < δq

M in sup
Polytope: The sizing Impulse-to-Peak specification Π 5 is the requirement of the operational domain evolution of the system. It leads to the bounds of evolution of q o ∈ [q * o ; 1] with q * o = 1 -δq 2 , which gives the possible non-linear values of the state matrix A(x). This set of values can be embedded in a polytope defined by the three following vertices: Â

[1] = Â(q o = 1), Â[2] = Â(q o = q * o ), and 
Â[3] =    0 q * o 0 0 0 0 2q * o2 0 0 0 0 1/2q * o2 0 0 0 0    with q * o2 = 1/2(1 + q * o ).
The Romuloc toolbox of [START_REF] Peaucelle | Romuloc : Randomized and robust multi-objective control toolbox[END_REF] for Matlab, proposing precoded command to perform multi objective controller synthesis for polytopic systems, can be used to solve directly the LMIs of theorem 7. The LMIs of theorem 8 involving S-Variables are coded manually using the Yalmip toolbox and the solver SDPT3 with Matlab.

Results

The results are computed for δq = 0.4 which gives q * o = 0.9165 and q * o2 = 1/2(q * o +1) = 0.9583, and the controllers: Fig. 1. Non linear closed-loop system z q = q V free response from x(0) = (0 0 0 100δq) T with the different controllers.

CONCLUSION

The LMI approach presented in this paper enables to make the synthesis of time-invariant state-feedback controllers for time-varying systems that lie in polytopic sets, with their derivatives possibly unbounded. Feasible solutions depend on the polytopic set embedding the original timevarying system: obviously if the polytopic set is too wide, there may not exist a feasible time-invariant state-feedback solution for any specification. Besides, even if a statefeedback satisfying all the performances exists, the LMIs may not provide any solution due to conservatism. The Svariable result being potentially less conservative can give solutions when the more conservative Lyapunov Shaping Paradigm formulas fail. The drawback of the S-variable result lies in the need of choosing a priori some design parameters. To cope with this issue, clear guidelines are proposed for a comprehensive choice of these parameters.

The strategy deserves to be validated on advanced examples which is already started in the following paper version [START_REF] Conord | Hal -multiperformance state-feedback for time-varying linear systems[END_REF]. Further, even less conservative solutions may be derived by more advanced treatment of the original DMIs.

  Notation. For M ∈ C n×n , {M } H is the Hermitian matrix {M } H = M +M * whit M * the transposed conjugate of M . M N stands for the Hermitian matrix M N = N * M N and N M = N M N * . For two Hermitian matrices M and N , M

  w∈L2,w =0 ||z ω || 2 ||w|| 2 • Π 5 : the induced Impulse-to-Peak performance |z q | = |q V | < δq for the set of sizing worst case initial conditions x(0) = B w5 α, B w5 = 10δqB w , α ∈ R, |α| = 1: sup t≥0,αq∈R,|αq|=1

  • for the linearized LTI system A 1 , the reference manually computed state-feedback for a single decay rate fixed at α o = -|α 1 |.|α 2 | = -6.3rad/s and a damping ratio equal to 1: K o = [-1600 -1012 -480 -25.3] Norm-to-Norm performance: γ ∞o = 3.1 .10 -3 • for the theorem 7: K X = [-1954 -1388 -768.5 -31.1] Norm-to-Norm performance: γ ∞ X = 1.7 .10 -3 • for the theorem 8 with an the Heuristic line search for A o4 performed with an initial gess k 4 = -1/(γ ∞ X ): K S = [-196.6 -429.9 -1008.4 -59] Norm-to-Norm performance: γ ∞ S = 1.1 .10 -3