N
N

N

HAL

open science

Learning-based Incast Performance Inference in
Software-Defined Data Centers

Kokouvi Benoit Nougnanke, Yann Labit, Marc Bruyere, Simone Ferlin, Ulrich

Matchi Aivodji

» To cite this version:

Kokouvi Benoit Nougnanke, Yann Labit, Marc Bruyere, Simone Ferlin, Ulrich Matchi Aivodji.
Learning-based Incast Performance Inference in Software-Defined Data Centers.
on Innovation in Clouds, Internet and Networks, Mar 2021, Paris (Virtual Conference), France.

10.1109/ICIN51074.2021.9385546 . hal-03188914

HAL Id: hal-03188914
https://laas.hal.science/hal-03188914

Submitted on 2 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

24th Conference


https://laas.hal.science/hal-03188914
https://hal.archives-ouvertes.fr

Learning-based Incast Performance Inference in
Software-Defined Data Centers

Kokouvi Benoit Nougnanke*, Yann Labit*, Marc BruyereT, Simone Ferlin}, Ulrich A’1'V0dji§
* LAAS-CNRS, Université de Toulouse, CNRS, UPS, F-31400 Toulouse, France
Y 117 Innovation Institute, University of Tokyo, Tokyo, Japan
Y Ericsson Research
§ Université du Québéc a Montréal
nougnanke @laas.fr, ylabit@laas.fr, marc @iij.ad.jp, simone.ferlin@ericsson.com, aivodji.ulrich@ugam.ca

Abstract—Incast traffic is a many-to-one communication pat-
tern used in many applications, including distributed stor-
age, web-search with partition/aggregation design pattern, and
MapReduce, commonly in data centers. It is generally composed
of short-lived flows that may be queued behind large flows’
packets in congested switches where performance degradation
is observed. Smart buffering at the switch level is sensed to
mitigate this issue by automatically and dynamically adapting
to traffic conditions changes in the highly dynamic data center
environment. But for this dynamic and smart buffer management
to become effectively beneficial for all the traffic, and especially
for incast the most critical one, incast performance models that
provide insights on how various factors affect it are needed. The
literature lacks these types of models. The existing ones are ana-
lytical models, which are either tightly coupled with a particular
protocol version or specific to certain empirical data. Motivated
by this observation, we propose a machine-learning-based incast
performance inference. With this prediction capability, smart
buffering scheme or other QoS optimization algorithms could
anticipate and efficiently optimize system parameters adjustment
to achieve optimal performance. Since applying machine learning
to networks managed in a distributed fashion is hard, the
prediction mechanism will be deployed on an SDN control plane.
We could then take advantage of SDN’s centralized global view,
its telemetry capabilities, and its management flexibility.

Index Terms—TCP Incast, Datacenters, SDN, Machine Learn-
ing, Performance Prediction, QoS

I. INTRODUCTION

Datacenter workloads are composed essentially of long-
lived flows or elephant flows (e.g., backup, replication, data
mining) and short flows or mice flows (e.g., delivering search
results). Besides this classification, datacenter workloads often
require sending requests to large numbers of servers and then
handling their near-simultaneous responses, causing a problem
called incast [1]. This many-to-one communication and its
associated traffic pattern are also called incast.

This many-to-one pattern in data centers is used for appli-
cations such as distributed storage (e.g., BigTable, HDFS, and
GFS), web-search with partition/aggregation design pattern,
and cluster computing platforms (e.g., MapReduce, Spark) [2].
Depending on the size of the servers’ responses, we can
distinguish between long-lived incast and short-lived incast.
But it is worth mentioning that incast generally manifests in
the short-lived form [3].

Incast traffic could cause severe congestion in switches and
result in TCP throughput collapse, substantially degrading the
application performance. The catastrophic TCP throughput
collapse is explained by the fact that the bottleneck switch
buffer is overfilled quickly as the number of competing senders
increases. This leads to packet losses and subsequent re-
transmissions, after timeouts [3]—[5]. The TCP retransmission
timeout (RTO) is computed dynamically based on experienced
RTTs, but it is subject to a configuration minimum RTO,
RT O, of around hundred of milliseconds (e.g., 200ms).
This is orders of magnitude too large for data center environ-
ments where RTT is in the 10s or 100s of microseconds.

This challenging traffic pattern handling is critical for
Datacenters. Several solutions were proposed to mitigate the
TCP throughput collapse in the incast scenario. Most of them
concern RTO,,,;, tuning to adequate small values in the RTT
scale [4]-[6]. Another approach consists of using Explicit Con-
gestion Notification (ECN) marking at the bottleneck switch
level to ensure that senders are quickly notified of the queue
overshoot and then adjusting their sending rate accordingly [7].
This prevents buffer overflow and subsequent timeouts. The
work in [8] proposes an intelligent selective packet discarding
at the switch level. This intelligent discarding ensures that the
sender responds to packet loss, using fast retransmission/fast
recovery instead of RTO, and then avoiding RTO’s penalty.

Besides, the co-existence of incast traffic (especially short-
lived incast) with elephant flows brings other troubles and
challenges. Incast’s flows may get queued up behind packets
from large flows in presence of congestion if ever available
buffer space remains, experiencing performance degradation
(long queuing delay or tail drops) [9]. Switches must be able to
accommodate mixed intensive communication traffic with full
throughput and low latency while efficiently handling incast.
Smart buffering at the switch level is then needed. It requires
intelligent buffer management functions to serve mixed incast
traffic and elephant flows efficiently. Cisco Nexus 9000 Series
Switches propose such intelligent buffering for Data centers,
using a flow classifier (Elephant Trap - ETRAP), a scheduling
mechanism (Dynamic Packet Prioritization - DPP), and an
active queue management scheme (Approximate Fair Dop -
AFD) [10].

For this dynamic and smart buffer management to become



beneficial for incast, its performance model providing insights
on how various factors affect it is needed. The literature lacks
these types of models. The existing ones [5], [6], [11] are
either tightly coupled with a particular protocol version or
specific to certain empirical data. Motivated by this observa-
tion, we propose a machine-learning-based incast performance
modeling engine capable of learning from collected historical
data and predicting incast performance metrics. The learning
approach has the advantage of being independent of underlying
protocols and any restricted assumptions. The power of data
is leveraged to achieve this prowess.

However, applying machine learning to networks controlled
and managed with distributed algorithms is hard [12]. Fortu-
nately, software-defined networking (SDN) by separating the
control plane from the data plane eases control, introduces
flexibility in network management, and provides a good oppor-
tunity for machine learning. Indeed, the logically centralized
SDN control plane has a global network view and SDN’s
telemetry capabilities (INT, etc.), enabling the collection of
various network data, ease the application of Machine learning
approaches. We then propose the machine learning prediction
approach coupled with SDN-enabled data center management.

This capability of predicting incast performance in the
SDN-enabled environment may be useful for the following
management tasks: smart adaptive buffer management, online
global network optimization (e.g., maximization of network
utilization), QoS guarantee by ensuring that performance met-
ric and SLA are also met for performance diagnosis.

The main contributions of this paper are summarized below:

e We propose a machine learning framework build upon
SDN for incast performance prediction. This service will
be leveraged by smart buffering schemes and online
network optimization algorithms to provide efficient per-
formances in datacenters.

o We carry out intensive experiments with the NS-3 simu-
lator and construct the needed dataset. Using this dataset,
we designed machine learning incast completion time
prediction models using random forest regression.

« And finally, we present the performance evaluation results
of the machine learning models.

The rest of this paper is organized as follows. TCP incast
system setup and the motivations of our work are presented
in Section II. In Section III, we give a detailed presentation
of our proposed framework. Section IV presents the model
construction stage. An analytical model for incast performance
prediction is presented in Section V. Evaluation results and
analysis are provided in Section VI. We discuss related work
in Section VII. Finally, we conclude this work and provide
future research directions in Section VIII.

II. SETUP AND MOTIVATIONS

A. Incast System Setup and Notations

Fig. 1 shows a simplified topology of a typical incast
scenario without loss of generality. In this figure, N servers
send each other the quantity SRU (Server Request Unit)

simultaneously to the sink node. This corresponds to the
Fixed Fragment Workload (FFW) in contrast to the Fixed
Block Workload (FBW), where the total block size is fixed
and partitioned amongst an increasing number of servers. We
consider the setting parameters as in TABLE I. These notations
hold for the rest of the paper.

Sender 1
—
SRU1
Sender 2 Sink Node
Switch
Data J SRU2 e EEE——
Block
Sender N
SRUN
—

Fig. 1. Simplified topology for a typical incast scenario

TABLE I

PARAMETERS AND NOTATIONS
Parameters Description
N Number of competing senders
SRU Server Request Unit size, per sender. SRU = 256 KB
B Switch buffer size in packets. Eg. 64 pkts or 96 KB
C Bottleneck link capacity. C = 1 Gbps
RTTyoLoad RTT without queuing delay. RT Ty, 010ad = 200us
RTOmin Minimal TCP Retransmission timeout. E.g 10 ms
S TCP segment size, S=1446 bytes. Packet size = 1.5 KB
T Overall Incast Completion Time

B. Motivations

Adaptive buffer management and online network optimiza-
tion are needed to achieve efficient performance for data
center workloads, especially incast traffic [10], [13]. SDN,
fortunately, holds one of the building blocks. Indeed it brings
deep flexibility to network management, allowing the net-
work controller to configure the network behavior up to the
flow-level granularity. With its fine-grained telemetry capa-
bilities, many possibilities for online network optimization
are opened [14]. The remaining building block at this point
is network performance modeling. It will allow the SDN
controller to optimize Key Performance Indicators (KPIs),
guarantee QoS for incast flows, and investigate different what-
if scenarios and then anticipate adjustments in a proactive
control and management fashions.

The classical approach for network modeling is analytic
models. Analytical TCP incast performance modeling is very
challenging. Indeed, TCP’s stack is a complex system that
involves many heuristics to handle network conditions and ap-
plication behaviors [15]. Subtle changes in its parameters may



lead to completely different performance. As a consequence,
one of the difficulties of analytical modeling is isolating the
range of TCP variables and system variables of interest [5].
Some variables may be inter-dependent with others and more,
some of them may have no impact at all on incast performance.
The abundance of somewhat counter-intuitive findings from
incast analytical modeling works suggests not relying solely
on intuitive analysis.

The large majority, not to say all of the existing mod-
eling work on incast, was done with the aim of analyzing
the incast problem to solve it, but not with a performance
prediction purpose. For example, The work in [6] focuses
on how incast occurs and how various parameters affect
it but not on calculating the accurate performance metric
(throughput) for incast. Besides, the analytical models gen-
erally rely on observation data from simulations to support
the simplification assumptions. When context changes, or with
the algorithms designed to solve the incast problem, those
assumptions remain difficultly valid to estimate performance
metrics (throughput or completion time).

For performance prediction purposes, any proposed solu-
tions to incast need to be evaluated under a wide variety
of settings and to be modeled. This may be infeasible with
only analytical approaches. A degree of autonomy could be
brought using machine learning. And more there is no single
solution for all scenarios. With the existence of many solutions
either transport-based, application-based, or SDN-based ( [4],
[8], [16], [17]) to handle incast, relying only on analytical
performance modeling is not a practical long-term solution.
With its capability of not relying on any domain-specific
assumptions, machine learning can then be leveraged to con-
struct a generalized model via a uniform training method.

In this context, We propose a machine learning framework
build upon SDN for incast performance prediction. This
service will be leveraged by smart buffering schemes and
online network optimization algorithms to provide efficient
performances in data centers.

III. SDN-ENABLED MACHINE LEARNING INCAST
PERFORMANCE PREDICTION FRAMEWORK

By following the typical Machine learning workflow for
networking as specified in [18] and leveraging SDN [19],
[20], we come up with the SDN-enabled machine learning
incast prediction framework in Fig. 2. Indeed, SDN is already
deployed and used in data center environments [21]. The
machine learning workflow for networking is very similar to
the traditional machine learning one. It includes six stages as
follows: Problem formulation, Data Collection, Data Analysis,
Model Construction, Model Validation, and the last stage is
Deployment and Inference.

The framework is based on two main cornerstones: SDN
and the power of suitable machine learning algorithms of
being able to learn some properties of a historical dataset and
leverage the learned proprieties to provide good estimations
on new observations.

From Fig. 2 the workflow of the framework is as follows.
Firstly the prediction model is constructed offline by doing
training and parameter tuning on the historical data. The
historical dataset may be composed of a large number of
samples. Each sample represents a combination of features’
values and the associated target value since we are in a
supervised learning configuration. The features include the
congestion algorithm used (tcpCC), the queuing discipline at
the switch level (qdisc), the number of competing senders (N),
the bottleneck bandwidth (C), the round-trip-time (RTT), the
server request unit (SRU), the minimum retransmission time-
out (RT'O,,;n) and the target attribute is the incast completion
time (7). Prior knowledge or “domain-specific knowledge” and
insights may be leverage at this stage of model construction.

The constructed model is then deployed (1) as the Inference
Agent. Care should be taken for selecting the model con-
cerning some operational aspects such as prediction latency,
stability, and accuracy of the inference, etc. The model is
deployed to be used for incast performance inference. Here
real-time inference is desirable. Incast may generally consist
of short flows which last few microseconds. If inference on
real-time input could be done in real-time too, optimization or
adjustments could be done before the incast payload transfer
takes place. Otherwise proactive approaches could be used.

The online input (2), composed of (tcpCC, qdisc, C, SRU,
N, RTT, SRU, RTO,,;,), is got when an incast traffic is
initiated by the client leveraging SDN fine-grained telemetry,
In-band network telemetry (INT) and P4. Taking this input, an
inference of the incast traffic’s performance is done (3). This
information will then be used at the control plane by smart
buffering module or any traffic flow optimization algorithm
to achieve efficient performance for the incast traffic and the
co-existing ones. The optimization may concern, for example,
network utilization maximization, global low mean delay, etc.

Finally, when the incast traffic completes, its really ob-
served performance metric is also collected efficiently and the
historical dataset could be updated (4). Having the database
up-to-date is important, and will allow taking into account
new dynamics from the data center. When the database sig-
nificantly changed, the model needs to be re-constructed and
re-deployed.

The historical data gathering and online update of the
historical data with the newly collected data are crucial for
our framework. The historical data could also be enriched from
outside (other owned data centers, or just from the cloud). For
the data gathering concern, we will take advantage of the fact
that a data center operator (e.g. Amazon, Microsoft, Google,
Facebook) holds diverse data centers from which data could
be gathered and mutualized. Indeed, this data collection needs
to be done smartly in order to have very representative data
comprising the features of interest. When an incast request
is initiated the corresponding bottleneck switch knows the
number of servers (/N) involved in the incast traffic. The
available bandwidth C could be estimated with traditional
monitoring tools or lightweight bandwidth estimation through
low overhead byte counter collection [22]. And with INT/P4
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Fig. 2. SDN-enabled Learning-based Incast Performance Inference Framework

we could collect any other useful end-to-end information from
the data plane.

IV. LEARNING-BASED MODELING

Recalling the workflow from [18] we begin this section
with the problem formulation. For the incast performance
inference, the target metric (completion time) being a con-
tinuous variable, its prediction is a regression problem. It falls
under the class of supervised learning algorithms. The other
main classes being unsupervised learning and reinforcement
learning algorithms.

A. Dataset and Analysis

We conducted intensive NS-3 simulations using the scenario
topology in Fig. 1 and varying the parameters from TABLE I.
For every simulation, we compute the corresponding comple-
tion time. We finally come up with a dataset composed of
46581 observations, six parameters, and one target variable,
the completion time. The variables include two categorical
variables: the congestion control algorithm used (NewReno
or DCTCP) and the associated queuing discipline (FIFO or
FQ_CoDel for NewReno and RED-ECN for DCTCP). The
numerical variables are the bottleneck link bandwidth C, the
round trip time RT'T, the switch buffer size B, and the number
of simultaneous senders V. The server request unit SRU and
RT Oy, were respectively fixed to 256000 bytes, and 10ms
and are not part of the dataset.

For the dataset preparation for training, we consider two
possibilities: a single model taking six features (two cate-
gorical and four numerical variables) and the case where we
consider three different training sets for the different categories
(NewReno_FIFO, NewReno_FQ, and DCTCP_RED). For the
individual models’ case, we use then only the numerical vari-

ables as training features. TABLE II summarizes information
about the different datasets used.

We then consider these two cases in the data pre-processing
step. We scale our data by standardizing numerical features. It
consists of centering a feature’s observations to the mean and
scaled it to unit variance. For the singe model, we encode the
two categorical features as a one-hot numeric array. Indeed
five new numerical (binary) features are created to represent
the categorical features’ values (NewReno, DCTCP, FIFO,
FQ_CoDel, RED-ECN).

TABLE II

DATASETS
Models n_samples n_features
Single Model 46581 6
NewReno_FIFO 15492 4
NewReno_FQ 15502 4
DCTCP_RED 15587 4

B. Model Training

After data analysis, we first investigate classical machine
learning algorithms from less complex to more complex with-
out hyper-parameter tuning in order to pick the most promising
to work with. The models investigated are Linear Regression
(lasso and ridge), Support Vector Regressor (SVR) with three
kernels (linear, RBF, and polynomial), Decision tree, Random
Forest(RF), and Multi-layer Perceptron (MLP). Random Forest
only provides good results. Apart from decision trees, the
other investigated machine learning algorithms were unable
to capture the dataset dynamics, providing bad results. We
then focus on Random Forest for the rest of this work and
as a proof-of-concept implementation. The machine learning
algorithms are implemented using Scikit-learn 0.23.2 [23].



Random Forest falls under machine learning averaging
methods that combine the predictions of several base estima-
tors here decision trees. The combined estimator is usually
better since its variance is reduced. Decision trees are a
non-parametric machine learning algorithm that predicts by
learning simple decision rules inferred from the data features.

A random forest regressor has several hyper-parameters that
need to be tuned for performance optimization. Some of the
most important include the number of estimators (trees) used
to construct the forest (n_estimators), the maximum number
of features provided to each tree (max_features), max_depth
which depth we want every tree in the forest to grow, etc.
For example, after a certain number, increasing the number of
trees has almost no accuracy improvement but just increases
model complexity with high training time.

Scikit-learn provides two main tools for hyper-parameter
tuning GridSearchCV and RandomizedSearchCV. Grid-
SearchCV exhaustively considers all parameter combinations
from a parameter grid. On the other hand, Randomized-
SearchCV can sample a given number of candidates from a
parameter space with a specified distribution, which is more
convenient when we have a large search space. We use both
on a set of parameter ranges, but the Scikit-learn default
hyper-parameter values perform quite well. The random forest
regression algorithm with 100 estimators (trees) is used for
both the single model case and the individual ones.

V. ANALYTICAL MODELING

Before presenting the evaluation results of our machine-
learning performance prediction approach, we present here
an analytical model for predicting incast completing time
when TCP NewReno is used. Timeout is the main factor of
goodput degrading [11]. We use recommended small RT'O,,,;,,
in the milliseconds, which solves quite acceptably the goodput
collapse, making the timeout impact almost negligible. This
analytical model is compared to the machine-learning-based
in the next section.

A. Assumptions

Firstly we consider that the simultaneous incast senders are
fully synchronized. The overall congestion window evolution
follows an aggregate AIMD. This phenomenon is called TCP
Synchronization, where multiple TCP connections increase
and decreasing their congestion windows simultaneously. Then
all the senders will be considered as a single aggregate source
sending the total data to the client.

Secondly, we consider TCP congestion steady-state. Taking
a macroscopic view of the traffic sent by the aggregate source,
we can ignore the slow start phase. Indeed, the connection is
in the slow-start phase for a relatively short period because the
connection grows out of the phase exponentially fast. When
we ignore the slow-start phase, the congestion window grows
linearly, gets chopped in half when loss occurs, grows linearly,
gets chopped in half when loss occurs and so on.

It’s worth pointing out that one RTT is required to initiate
the TCP connection. After one RTT, the client sends a request

for the incast data. The first bytes of the data are piggybacked
onto the third segment in the three-way TCP handshake. After
a total of two RTTs, the client begins to receive data from the
aggregate source.

B. Modeling Completion Time of Incast

Considering the assumptions mentioned above and being
inspired by [24] we propose incast completion time analytical
model as follows.

Let X = W, the number of segments present in the
incast data. Using TCP and its AIMD congestion mechanism,
we have the evolution of the congestion window as follows.
The first window contains 1 segment, the second window
contains 2 segments, the third window contains 4 segments,
and so on. More generally, the k-th window contains 2¢~!
segments. Let K be the number of windows that cover incast
data to be transmitted. K can be expressed in terms of X as
follows:

K =min{k:2° +2' +22 4 .+ 2" > X}
K =min{k:2" - 1> X}

K =min{k : k > logy(X + 1)}

N« SRU

After transmitting a window’s worth of data, the server may
stall (i.e., stop transmitting) while it waits for an acknowledg-
ment. But not every time. Let us now calculate the amount of
stall time after transmitting the k-th window. The time from
when the server begins to transmit the k-th window until when
the server receives an acknowledgment for the first segment
in the window is % + RT'T. The transmission time of the k-th
window is 2 * 2871,

The stall time is the difference of these two quantities:

S
6)70}

The server can potentially stall after the transmission of
each of the first K-1 windows. (The server is done after the
transmission of the K-th window.) We can now calculate the
latency for transferring the overall incast data. The latency has
three components: 2RT"T" for setting up the TCP connection
and requesting incast data; N« SRU/C, the transmission time
of the overall data; and the sum of all the stalled times. Thus,
the incast completion time 7 is:

K =min{k : k > logy(

max{(g + RTT — 21 &

N%SRU = S py S
T = 2*RTT+T+kZ_1 maz{(5+RTT—2""1%5), 0}

We could obtain a more compact expression for the com-
pletion time with Equation 1 as follows:



N*C‘W]_Fé(g_FRTT_Qkﬂ*g) )
With P = min{Q, K — 1}

where K = min{k : k > log, (222 4 1)}

and Q = max{k : k <log,(1 + EFL) +1}

T=2+xRTT+

This model could be refined, approximating loss rate and
including the corresponding retransmission times. However,
these approximations are challenging. And with the machine
learning approach, there is no need to look for such approxi-
mations. They are automatically learned from the data.

VI. VALIDATION AND ANALYSIS

Evaluation experiments were carried out on an Intel Core
17-7500U CPU 2.70 GHz x 4 with 16 GB of RAM running
Ubuntu 16.04 LTS. We consider three evaluation metrics.
The first is the prediction score (See Eq. 2). It represents
which proportion of the variance in the dependent variable is
predictable from the independent variables. The most precise
regression model would be the one that has a relatively high R
squared, close to 1. We will represent the score in percentage.
Secondly we will use NMAE for Normalized Mean Absolute
Error (See Eq. 3). We want the NMAE to be as small as
possible. And finally, we will consider the prediction time.

n ~ n

R? Azlfw’ -th—:M 2
(y,9) Z?:1(yi —9) with - )
NMAB(y,§) = —-—— , with j = E:Ty 3)

A. Prediction Score and Normalized Mean Absolute Error

The first presented results concern prediction accuracy
represented by the prediction score and the NMAE, all in
percentage. Fig. 3 shows prediction score and NMAE for
different training size ratios for the single model and the
individual ones. The general tendency is that the precision
is quite stable with training ratios from 0.2 to 0.4, meaning
a training set of 80% to 60%, respectively. More tightly, we
can observe a slight decrease but not meaningful for the single
model from 90.75% to 89.15%. The NMAE involves inversely
with the general stability observed. The NMAE for the single
model is around 20%.

The other observation is that the individual models perform
better than the single model especially for NewReno_FIFO
(97.78% to 97.03%) and NewReno_FQ (96.23% to 95.73%).
The NMAE for NewReno_FIFO is around 7% and 8%
for NewReno_FQ. However, performances are less good for
DCTCP_RED where we observe scores from 83.16% to
86.21% with the NMAE around 27%. Dynamics with DCTCP
is then more complex to capture, needing the investigation
of other machine learning models or adding new features to
improve its performance.

== SingleModel  mEm NewReno_FQ
NewReno FIFO D

Random Forest Prediction Score P Random Forest NMAE

rediction Score (%)

Prediction NMAE (%)

dl
d

Test set ratio Test set ratio

Fig. 3. Score and NMAE vs. Test Size Ratio

B. Machine learning vs. Analytical Model Predictions

Fig. 4 presents some simulation data-points from the test
set, their corresponding prediction with the individual random
forest model, and the prediction with the analytical model
presented in Equation 1. We present the results for NewReno
with both FIFO and FQ_CoDel. The machine learning pre-
diction follows well the data-points. The analytical model
even in a simple form is able to capture the data-points
apart from the points where the completion time is quite
high. The normalized mean absolute errors for these shown
data points are presented in TABLE IIl (where CC stands
for the congestion algorithm used and QDISC, the associated
queueing discipline).

Analytical vs ML for NewReno_FIFO Analytical vs ML for NewReno_FQ
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Fig. 4. Learning vs. Analytical Modeling Predictions

TABLE III
NMAE ANALYTICAL VS. ML
CC & QDISC NewReno_FIFO| NewReno_FQ
NMAE ML 2.12 % 6.73%
NMAE Analytical | 28.40% 33.22%

It’s worth pointing out that the queuing discipline was not
taken into account during the model construction, at least not
explicitly. But supposing overall synchronization of congestion
windows assumes implicitly fair-queue share and then makes
the model suitable for fair queuing. Also, we note that fair
queuing does not improve consequently the overall completion
time. However, the bandwidth is fairly shared between senders,
which is not the case with FIFO. With FIFO, some senders
may finish transmitting their SRU very quickly and others too
late, presenting great unfairness between senders.



C. Prediction Time Distribution

Finally we present the atomic (one-by-one) prediction la-
tency in Fig. 5. The prediction time of the single model is
slightly higher than those of the individual models since it
is more complex and is constructed using all the individual
training sets. However, this difference needs to be balanced
with the fact that in the case of the individual models a prior
process time is needed, to match input to the corresponding
model.

Atomic prediction time
0.15

0.14 A

e

T T T
Single Model NewReno_FIFO NewReno_FQ DCTCP_RED

Prediction Time (s)

Fig. 5. Atomic Runtime Prediction Latency Distribution

The prediction time is unfortunately high, around 0.10
seconds. This high latency can be explained by the use of
Scikit-learn. Indeed, Scikit-learn is not necessarily suitable
for production model deployment but more suitable for pro-
totyping. Scikit-learn implements some methods in C for
performance improvements but additional overhead is present
due to Python function calls, feature extraction, to name a few.
Suitable input data format usage could improve performance
and also bulk prediction (many instances at the same time).
Indeed when predicting bulk test sets, we have quite the same
prediction latency as for atomic prediction and then the pre-
diction throughput increases. The performance gain with bulk
prediction can be explained with these factors: linear algebra
libraries optimizations, branching predictability, CPU cache,
etc. It’s also pointing out that existing optimization solutions
for machine learning pipelines are generally dedicated to the
training step.

In production, more optimized implementations and frame-
works coupled with specialized hardware (FPGA, GPU, TPU,
Xilinx, etc.) are needed [25]. These hardware accelerators
include FPGA (used, for example, by Microsoft and Xilinx
ML Suites), Nvidia’s GPU, AI ASICs (e.g. Google’s TPU),
etc. For our proposed inference system, we hope there will be
enough computation resources in data center management and
control planes, and the use of dedicated hardware will improve
its performance. This way advantages of this machine learning
inference could be effectively beneficial for overall flow QoS
optimization in data centers.

Moreover, the use of the proactive approach where the
control plane simulates what-if-scenarios by exploring some
incast setups and parameter adjustments taking the prediction
of the inference agent can help. Parameter adjustments needed
to achieve global performance can then be anticipated. In this
case, the prediction time penalty will be less severe.

VII. RELATED WORKS
A. TCP Incast Modeling

The authors in [5] analyze the dynamics of the incast
problem by exploring its sensitivity to various system pa-
rameters. The understanding of the dynamics of incast is
done with an analytical model based on empirical data. This
quantitative model is completed with a qualitative refinement
to capture most of the incast aspects, unfortunately, not all.
This work, however, explains the root cause of incast, the
RTO, and supports the TCP-level solution consisting mostly
of using small RT'O,,;, values in the data center RTT scales
to alleviate throughput collapse.

The work [11] provides an analytical goodput model of
incast where the goodput deterioration is explained by 2 types
of timeouts. The block-tail timeout is observed when the
number of simultaneous senders N is small, and the block-head
timeout when N is large. This work considers the sending of
consecutive data blocks. The analytical model characterizes
well the general tendency of the TCP incast problem. This
helps to understand the problem and helps understanding
possible solutions such as RT'O,,;, reduction. But for a new
solution to handle incast traffic, we may need to rebuild a new
model to express attended performances.

Finally, authors in [6] provide an in-depth understanding of
how TCP incast problem happens with an interpretive model.
This model explains qualitatively how systems parameters
(block size, link capacity, buffer size) and mechanism variables
(RTOy,) impact TCP incast.

B. Machine Learning for QoE / QoS inference in SDN

A comprehensive survey on machine learning algorithms’
application to SDN can be found in [12]. This application to
SDN is guided by diverse objectives that include traffic classi-
fication, security, resource management, routing optimization,
and finally Quality of service (QoS) / Quality of Experience
(QoE) prediction. For this latter let us focus on two works [26]
and [27].

An end-to-end application QoS prediction is proposed
in [26]. OpenFlow per port statistics are used to infer the
service-level QoS metrics such as frame rate or response
time for video-on-demand applications. Two machine learning
algorithms (decision tree and random forest) are used.

The authors in [27] propose a two-phase analysis approach
for QoS inference, able to predict traffic congestion. Firstly
it discovers which key performance indicators (KPIs) are
correlated with the QoS metric using a decision tree. Then it
mines each KPI’s quantitative impact using linear regression.

The work in [28] proposes RouteNet that leverages the abil-
ity of Graph Neural Networks (GNN) for network modeling
and optimization in SDN. Taking as input network topology
information, routing schemes, and traffic matrix RouteNet,
based on Generalized Linear Models, can provide accurate
source-destination KPIs such as delay distribution (mean delay
and jitter) and packet drop prediction. These KPI predictions
could be leveraged by a QoS-aware optimizer to improve
global performance.



VIII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this work, we propose an SDN-enabled machine learn-
ing incast performance prediction framework for data center
networks. This framework’s goal is to provide incast com-
pletion time inference at run-time. This information could
then be leveraged by any flow optimization algorithm or
adaptive smart buffering mechanism to dynamically adjust
system parameters to achieve efficient performance for both
incast traffic and the co-existing traffic (generally elephant
flows). We conduct intensive NS-3 simulations and construct
a representative dataset. After that, a random forest regression
model was implemented.

The evaluation results show that the proposed learning-
based incast performance inference can provide good predic-
tions either using a single model or individual models depend-
ing on the congestion control algorithm and queuing discipline
used. We achieve up to 90% of prediction performance score
for the single model case, 97% for TCP New Reno with FIFO,
97% for NewReno with FQ_CoDel, and 86% for DCTCP
with RED and ECN. We also compared our random forest
model to the analytical model approach. The machine learning
approach has the advantage of being easily generalizable for
diverse congestion control and queuing discipline schemes,
dynamic environment, and of not being tightly coupled with
any domain-specific assumptions and approximations.

As future works, we plan to implement a neural network
inference model and investigate prediction latency optimiza-
tion solutions. We will also extend the incast traffic dataset
with new congestion control and queuing discipline schemes
(e.g BBR) and by integrating new features in the dataset as
the SRU, RTO,,;n, €tc.
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