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Improved observer design for heat equation with constant measurement delay via Legendre polynomials

In this paper, we present improved results on observer design for 1D heat equation. We first introduce an observer under delayed spatially point measurements that leads to an error heat equation with time-delay. Inspired by recent developments in the area of delayed ODEs, we propose novel Lyapunov functionals based on the Legendre polynomials. Then, new Bessel-Legendre (BL) inequalities are provided to derive sufficient stability conditions in the form of linear matrix inequalities (LMIs) that are parameterized by the degree of the polynomials. Finally, a numerical example illustrates the efficiency of the results that allow to enlarge the value of delay preserving the stability by more than 20%.

I. INTRODUCTION

Estimation of partial differential equations (PDEs) is becoming an active research topic [START_REF] Hidayat | Observers for linear distributed-parameter systems: A survey[END_REF]. It is of interest to design observers using delayed measurements. Constructive conditions in the form of LMIs for estimation of PDEs under delayed measurements that are applicable to the performance (e.g. exponential decay rate) analysis have been presented in [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF], [START_REF] Am | Network-based H ∞ filtering of parabolic systems[END_REF], [START_REF] Katz | Boundary delayed observercontroller design for reaction-diffusion systems[END_REF].

To enlarge the delay size, the concept of chain of subobservers was recently extended to heat equation in [START_REF] Ahmed-Ali | Observer design for a class of parabolic systems with large delays and sampled measurements[END_REF]. However, construction of these observers involves serious computational complexity when solving chain of subobservers in the form of PDEs. The objective of the current note is derivation of less conservative LMI conditions for the stability analysis of the delayed heat equation. Such conditions will allow to reduce the order of chain of subobservers.

In the case of ODEs with time-delay, Jensen inequality [START_REF] Gu | An integral inequality in the stability problem of time-delay systems[END_REF], [START_REF] Gu | Stability of time delay systems[END_REF] and Wirtinger-based integral inequality [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF] were usually employed. Several contributions to derive less conservative integral inequalities for time-delay systems were provided in [START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF], [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF]. Recently, a novel integral inequality so-called Bessel-Legendre (BL) inequality that encompasses Jensen inequality and Wirtinger-based integral inequality as particular cases was introduced in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF]. The latter paper presented a hierarchy of LMI conditions that are competitive with [START_REF] Gu | An integral inequality in the stability problem of time-delay systems[END_REF], [START_REF] Gu | Stability of time delay systems[END_REF], [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF] in terms of conservatism and of complexity. Stability analysis of a coupled ODE-heat PDE was presented in [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF] via a new BL inequality.

Following the idea of [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF], we provide new BL inequalities by using Legendre polynomials and their properties. Then, we propose novel Lyapunov functionals to derive sufficient stability conditions in the form of LMIs that are parameterized by the degree of the polynomials. Finally, a numerical example illustrates that our LMIs lead to an improvement over 20%. This implies that our results allow to reduce the order of chain of sub-observers considered in [START_REF] Ahmed-Ali | Observer design for a class of parabolic systems with large delays and sampled measurements[END_REF] by more than 20%.

Notation. Throughout the paper, the subindexes denote the corresponding partial derivatives, He(X) denotes the expression X + X T , L 2 (0, l) stands for the Hilbert space of square integrable scalar functions z(x) on (0, l) with the norm

∥z(x)∥ L 2 (0,l) = √ ∫ l 0 z 2 (x)dx, H 1 (0, l)
is the Sobolev space of absolutely continuous scalar functions z : [0, l] → R with dz dξ ∈ L 2 (0, l), and H 2 (0, l) is the Sobolev space of scalar functions z : [0, l] → R with absolutely continuous dz dξ and with d 2 z dξ 2 ∈ L 2 (0, l). We now present a useful inequality: Lemma 1: (Wirtinger Inequality [START_REF] Wang | Stability in abstract functional differential equations. part II. Applications[END_REF]) For given scalars a < b, consider a scalar function g ∈ H 1 (a, b) such that g(a) = g(b) = 0. Then the following inequality holds:

∫ b a g 2 (x)dx ≤ (b -a) 2 π 2 ∫ b a [ dg(x) dx ] 2 dx. (1) 

II. PROBLEM FORMULATION

A. System description

Consider a semilinear reaction-diffusion equation

z t (x,t) = ∂ ∂ x [a(x)z x (x,t)] + f (z(x,t), x,t), t ≥ 0, x ∈ [0, l], l > 0 (2)
under the Dirchlet boundary conditions

z(0,t) = z(l,t) = 0, (3) 
where z(x,t) ∈ R is the state with initial condition z(x, 0) = z 0 (x), a and f are functions of class C 1 . These functions satisfy the inequalities a > a 0 > 0 and

ϕ m ≤ f z (z, x,t) ≤ ϕ M , ∀(z, x,t) ∈ R × [0, l] × [0, ∞), (4) 
where a 0 , ϕ m and ϕ M are known bounds.

As in [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF], we assume that the points 0

= x 0 < x 1 < • • • < x N = l divide [0, l] into N sub-
intervals, whose widths of each interval are not necessarily equal but are upper bounded by some constant ∆ > 0:

0 < x j+1 -x j = ∆ j ≤ ∆. (5) 
It is assumed that N sensors are placed in the middle of each interval [x j , x j+1 ):

x j = x j+1 +x j 2 , j = 0, . . . , N -1, (6) 
and that the measurement is delayed by a constant delay h > 0. Then, delayed spatially point measurements of the state are provided by N sensors distributed over the whole domain [0, l]:

y j (t) = { 0, if t < h, z( x j ,t -h), if t ≥ h, j = 0, . . . , N -1.
(7) Our objective is to construct an observer for (2) under the Dirichlet boundary conditions (3) by employing delayed spatially point measurements [START_REF] Gu | Stability of time delay systems[END_REF], and to formulate improve stability conditions for the exponential convergence of the estimation error in terms of LMIs.

B. Observer design

We suggest a nonlinear observer of the form

ẑt (x,t) = ∂ ∂ x [a(x)ẑ x (x,t)] + f (ẑ(x,t), x,t)
+K(y j (t)ẑ( x j ,th)), t ≥ 0, x j ≤ x < x j+1 , j = 0, . . . , N -1 [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF] under the Dirchlet boundary conditions ẑ(0,t) = ẑ(l,t) = 0, [START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF] where ẑ(x,t) = 0, t ∈ [-h, 0] and K > 0 is the scalar observer gain.

For the estimation error e(x,t) = z(x,t)ẑ(x,t), via (2) and ( 8) we obtain the PDE

e t (x,t) = ∂ ∂ x [a(x)e x (x,t)] + ϕ • e(x,t) -Ke(x,t -h) +K ∫ x x j e ξ (ξ ,t -h)dξ , t ≥ 0, x j ≤ x < x j+1 , j = 0, . . . , N -1 (10) 
under the Dirichlet boundary conditions e(0,t) = e(l,t) = 0, [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF] and with initial condition e(x,t)

= z 0 (x), t ∈ [-h, 0]. Here ϕ •e(x,t) = f (z(x,t), x,t)-f (z(x,t)-e(x,t), x,t) with ϕ = ϕ (z, e, x,t) = ∫ 1 0 ∂ ∂ z f (z + (θ -1)e, x,t)dθ . ( 12 
)
From ( 4), it follows that

ϕ m ≤ ϕ ≤ ϕ M , ∀(z, e, x,t) ∈ R × R × [0, l] × [0, ∞). ( 13 
)
C. Well-posedness of [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF] Let H = L 2 (0, l) be the Hilbert space with the norm ∥ • ∥ L 2 (0,l) and with the scalar product ⟨•, •⟩. We define an unbounded linear operator A :

D(A) ⊂ H → H as follows:      A = ∂ [ a(x) ∂ ∂ x ] ∂ x , D(A) = H 2 (0, l) ∩ H 1 0 (0, l), ( 14 
)
where

H 1 0 (0, l) = {z ∈ H 1 (0, l) : z(0) = z(l) = 0}.
It is wellknown that A is a dissipative operator, and A generates an exponentially stable semigroup. The domain

H 1 = D(A) = A -1 H forms another Hilbert space with the graph inner product ⟨x, y⟩ 1 = ⟨Ax, Ay⟩, ∀x, y ∈ H 1 . The domain D(A) is dense in H. Operator -A is positive implying that its square root (-A) 1 2 with H1 2 = D((-A) 1 2 ) = H 1 0 (0, l) is well defined. The norm of H1
2 is endowed by the induced inner product:

⟨u, v⟩ 1 2 = ⟨(-A) 1 2 u, (-A) 1 2 v⟩, ∀u, v ∈ H1 2 , ∥ f ∥ H 1 2 = [ ∫ l 0 | f ′ (x)| 2 dx] 1 2 , ∀ f ∈ H1 2 . Note that H1 2 norm is equivalent to the inherent norm ∥ • ∥ H 1 of Sobolev space H 1 (0, l). Then, we have H 1 ⊂ H1 2 ⊂ H,
densely and with continuous embedding. All relevant materials on fractional operator degrees can be found in [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] (see pp. 81-83).

We will use the step method for solution of time-delay systems [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF], [START_REF] Bellman | Differential-difference equations[END_REF]. While being viewed over the time segment [0, h], system (10) can be rewritten as the differential equation given by

{ d dt e(•,t) = Ae(•,t) + F(e(•,t)), e(x, θ ) = z 0 (x), θ ∈ [-h, 0] (15) 
subject to

F(e(•,t)) = ϕ • e(x,t) + Kz 0 ( x j ), x ∈ [x j , x j+1 ). (16) 
Since ϕ ∈ C 1 and ϕ is bounded, it follows from ( 16) that F is nonlinear but is globally Lipschitz continuous. Thus, by Theorem 3.3.3 of [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF], we obtain that for any

z 0 ∈ H 1 0 (0, l), (15) has a unique strong solution e(•,t) ∈ H 1 0 (0, l) on the interval [0, h].
The same line of reasoning is applied step-by-step to the time segments [h, 2h], [2h, 3h], . . . (see, e.g. [START_REF] Bellman | Differential-difference equations[END_REF]). Following this procedure, we find that e(•,t) is continuous differentiable on the point h, 2h, . . . . Therefore, there exists a unique strong solution e(•,t) of ( 10) for all t ≥ 0 with the initial condition e(x, θ

) = z 0 (x) ∈ H 1 0 (0, l), θ ∈ [-h, 0].

III. MAIN RESULTS

In this section, we will derive improved stability conditions for the delayed heat equation [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF] via new BL inequalities. First, let us recall the definition of Legendre polynomials.

A. Legendre polynomials

As in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF], we consider here shifted Legendre polynomials over interval [-h, 0]

L k (s) = (-1) k ∑ k i=0 p k i ( s+h h ) i , ∀k ∈ N 0 (17) with p k i = (-1) i ( k i ) ( k+i i ) . The notation ( k i
) refers to the binomial coefficients given by k! (k-i)!i! . Note that the Legendre polynomials described by [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF] form an orthogonal sequence since the inner product satisfies

∫ 0 -h L k (s)L i (s)ds = h 2k + 1 δ ki , ∀k, i ∈ N 0 , ( 18 
)
where δ ki is the Kronecker delta (that equals to 1 if k = i and to 0 otherwise). The boundary values are as follows:

L k (0) = 1, L k (-h) = (-1) k , ∀k ∈ N 0 . ( 19 
)
Moreover, the following relation holds:

d ds L k (s) = { 0, if k = 0, ∑ k-1 i=0 2i+1 h (1 -(-1) k+i )L i (s), if k ≥ 1.
(20) Let us introduce the projection components of the error heat equation ( 10) onto Legendre polynomials. These components are given by

Ω k (x,t) = ∫ 0 -h L k (s)e(x,t + s)ds, k ∈ N 0 . ( 21 
)
Differentiating Ω k (x,t) with respect to t leads to

∂ ∂t Ω k (x,t) = ∫ 0 -h L k (s) ∂ ∂t e(x,t + s)ds, k ∈ N 0 . ( 22 
)
By using [START_REF] Seuret | Complete quadratic lyapunov functionals for distributed delay systems[END_REF] and [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF], and integrating by parts, we have

∂ ∂t Ω k (x,t) = L k (s)e(x,t + s)| 0 s=-h - ∫ 0 -h [ d ds L k (s) ] e(x,t + s)ds = e(x,t) + (-1) k+1 e(x,t -h) - ∫ 0 -h [ d ds L k (s) ] e(x,t + s)ds = Γ n (k)η n (x,t), k = 0, . . . , n, n ∈ N 0 , (23) 
where

Γ n (k) = { [ 1, 0, (-1) k+1 , 0 ] , if n = 0, [ 1, 0, (-1) k+1 , 0, γ 0 nk , . . . , γ n-1 nk ] , if n ≥ 1, γ i nk = { -2i+1 h (1 -(-1) k+i ), if i ≤ k, 0, if i > k, ( 24 
) and

η n (x,t) =              [ e(x,t
), e t (x,t), e(x,th),

∫ x x j e ξ (ξ ,t -h)dξ ] T , if n = 0, [ e(x,t
), e t (x,t), e(x,th),

∫ x x j e ξ (ξ ,t -h)dξ Ω 0 (x,t), • • • , Ω n-1 (x,t) ] T , if n ≥ 1.
(25) The relation given by ( 23) is very useful to derive BL inequality (see e.g. the proof of Lemma 3) and also for the later stability analysis.

B. Bessel-Legendre inequalities

Based on the Legendre polynomials and an application of Bessel's inequality [START_REF] Gautschi | Orthogonal polynomials: Computation and approximation[END_REF], we obtain the following lemma:

Lemma 2: Let e ∈ L 2 ([-h, 0]; L 2 (0, l)), h > 0 and l > 0. The integral inequality

∫ l 0 ∫ 0 -h e 2 (x,t + s)dsdx ≥ 1 h n ∑ k=0 (2k + 1) ∫ l 0 Ω 2 k (x,t)dx (26) 
holds for all n ∈ N 0 , where Ω k (x,t), k = 0, . . . , n are given by (21).

Proof: Consider a function e ∈ L 2 ([-h, 0]; L 2 (0, l)), and define the error vector ε n (x,t + s), n ∈ N 0 given by

ε n (x,t + s) = e(x,t + s) - 1 h n ∑ k=0 (2k + 1)L k (s)Ω k (x,t). (27) From its definition, ε n (x,t + s) is in L 2 ([-h, 0]; L 2 (0, l))
and the integral

∫ l 0 ∫ 0 -h ε 2
n (x,t + s)dsdx exists. From the orthogonal property of the Legendre polynomials, via (21) we easily get

∫ l 0 ∫ 0 -h ε 2 n (x,t + s)dsdx = ∫ l 0 { ∫ 0 -h e 2 (x,t + s)ds - 2 h n ∑ k=0 (2k + 1) [ ∫ 0 -h L k (s)e(x,t + s)ds ] Ω k (x,t) + 1 h 2 n ∑ k=0 (2k + 1) 2 ∫ 0 -h L 2 k (s)Ω 2 k (x,t)ds } dx = ∫ l 0 { ∫ 0 -h e 2 (x,t + s)ds - 1 h n ∑ k=0 (2k + 1)Ω 2 k (x,t) } dx.
(28) Noting that the left hand side of the latter equation is positive definite, we finally arrive at (26), which concludes the proof.

For the delay-dependent analysis of delayed heat equation [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF], we are interested to derive a lower bound of

∫ l 0 ∫ 0 -h e 2
s (x,t + s)dsdx. The next lemma addresses this particular problem:

Lemma 3: Let e s ∈ L 2 ([-h, 0]; L 2 (0, l)), h > 0 and l > 0. The integral inequality ∫ l 0 ∫ 0 -h e 2 s (x,t + s)dsdx ≥ 1 h n ∑ k=0 (2k + 1) ∫ l 0 [Γ n (k)η n (x,t)] 2 dx (29)
holds for all n ∈ N 0 , where Γ n (k), k = 0, . . . , n and η n (x,t) are given by ( 24) and (25). Proof: By using Lemma 2, we obtain

∫ l 0 ∫ 0 -h e 2 s (x,t + s)dsdx ≥ 1 h n ∑ k=0 (2k + 1) ∫ l 0 [ ∂ ∂t Ω k (x,t) ] 2
dx.

(30) Replacing ∂ ∂t Ω k (x,t) by its expression (23) using the vectors Γ n (k), k = 0, . . . , n and η n (x,t) yields (29). This completes the proof.

C. Stability analysis

Guided by these new BL inequalities, we consider an augmented Lyapunov functional as follows

V n (t) = V P n (t) +V p 2 (t) +V s 1 (t) +V s 2 (t) +V r (t), n ∈ N 0 ,
(31) where

V P n (t) = ∫ l 0 ζ T n (x,t)P n ζ n (x,t)dx, V p 2 (t) = p 2 ∫ l 0 a(x)e 2 x (x,t)dx, V s 1 (t) = s 1 ∫ l 0 ∫ t t-h e 2α(s-t) e 2 (x, s)dsdx, V s 2 (t) = s 2 ∫ l 0 ∫ t t-h e 2α(s-t) e 2 x (x, s)dsdx, V r (t) = hr ∫ l 0 ∫ t t-h e 2α(s-t) (s -t + h)e 2 s (x, s)dsdx with ζ n (x,t) = { e(x,t), if n = 0, [e(x,t), Ω 0 (x,t), • • • , Ω n-1 (x,t)] T , if n ≥ 1
and matrix P n ∈ R (n+1)×(n+1) , scalars p 2 > 0, s 1 > 0, s 2 > 0, r > 0 and decay rate α > 0. The terms V s 1 and V r are the extensions of the standard Lyapunov functionals [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF] for delay-dependent analysis, whereas the term V s 2 is introduced to compensate ∫ l 0 e x (x,th)dx. For n = 0, V n coincides with the Lyapunov functional introduced in [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF].

We now present the following stability results with an arbitrary n ∈ N 0 :

Theorem 1: Given scalars ϕ M ≥ ϕ m , a 0 > 0, h > 0, l > 0, ∆ > 0 and α > 0, let there exist P n ∈ R (n+1)×(n+1) and scalars p 1 > 0, p 2 > 0, s 1 > 0, s 2 > 0, r > 0 and µ > 0 satisfying the following LMIs

s 2 < 2a 0 (p 1 -α p 2 ), µ < e -2αh s 2 , ( 32 
)
and

Φ n (ϕ m ) +U n ≤ 0, Φ n (ϕ M ) +U n ≤ 0, Θ n > 0, ( 33 
)
where

Φ n (ϕ ) = He(G T n P n H n + D T n R n (ϕ )) + 2αG T n P n G n +W n -e -2αh r n ∑ k=0 (2k + 1)Γ T n (k)Γ n (k), U n = diag { - (2a 0 (p 1 -α p 2 ) -s 2 )π 2 l 2 , 0, - (e -2αh s 2 -µ)π 2 l 2 , 0 1×n } , Θ n = { P n , if n = 0, P n + 1 h e -2αh s 1 diag{0, 1, . . . , 2n -1}, if n ≥ 1 ( 34 
)
with

G n = [ 1 0 1×3 0 1×n 0 n×1 0 n×3 I n ] , H n = [ F T n Γ T n (0) . . . Γ T n (n -1) ] T , F n = [ 0 1 0 1×(n+2) ] , D n = [ p 1 p 2 0 1×(n+2) ] , R n (ϕ ) = [ ϕ -1 -K K 0 1,n ] , W n = diag { s 1 , h 2 r, -e -2αh s 1 , -µ π 2 ∆ 2 , 0 1×n } ,
and Γ n (k) (k = 0, . . . , n) given by (24). Then the delayed heat equation [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF] under the Dirichlet boundary conditions ( 11) is exponentially stable with a decay rate α > 0.

Proof: Choose the Lyapunov function V n (t) given by (31). Using Lemma 2 gives a lower bound of the term V s 1 as follows

V s 1 (t) ≥ e -2αh s 1 ∫ l 0 ∫ 0 -h e 2 (x,t + s)dsdx ≥ s 1 h e -2αh n-1 ∑ k=0 (2k + 1) ∫ l 0 Ω 2 k (x,t)dx. (35) 
Thus, the positive definiteness of V n results from the condition Θ n > 0 given by (33). Differentiating V P n (t) along [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[END_REF], via (23) we obtain

VP n (t) + 2αV P n (t) = 2 ∫ l 0 ζ T n (x,t)P n ζn (x,t)dx +2α ∫ l 0 ζ T n (x,t)P n ζ n (x,t)dx, (36) 
where

ζn (x,t) =      ė(x,t) Ω0 (x,t) . . . Ωn-1 (x,t)      =      F n η n (x,t) Γ n (0)η n (x,t) . . . Γ n (n -1)η n (x,t)      = H n η n (x,t).
For the term V p 2 , We have

Vp 2 (t) + 2αV p 2 (t) = 2p 2 ∫ l 0 a(x)e x (x,t)e xt (x,t)dx +2α p 2 ∫ l 0 a(x)e 2 x (x,t)dx. (37) 
For the first term of the right hand side of (37), we employ the descriptor method [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF], where the right-hand side of the following expression is added to Vn (t) + 2αV n (t):

0 = 2 ∫ l 0 [p 1 e(x,t) + p 2 e t (x,t)] { ∂ ∂ x [a(x)e x (x,t)] +ϕ e(x,t) -Ke(x,t -h) -e t (x,t) } dx +2K N-1 ∑ j=0 ∫ x j+1
x j

[p 1 e(x,t) + p 2 e t (x,t)]

× ∫ x x j e ξ (ξ ,t -h)dξ dx (38)
with some scalar p 1 > 0. This avoids substitution of e t (x,t) from ( 10) into the right-hand side of (36).

Integration by parts and substitution of the Dirichlet boundary conditions [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF] x j e ξ (ξ ,th)dξ , we here apply S-procedure. Namely, application of Wirtinger's inequality (1) yields

∫ x j+1 x j [ ∫ x x j e ξ (ξ ,t -h)dξ ] 2 dx = ∫ x j+1 x j [ ∫ x x j e ξ (ξ ,t -h)dξ ] 2 dx + ∫ x j x j [ ∫ x x j e ξ (ξ ,t -h)dξ ] 2 dx ≤ ∆ 2 π 2 ∫ x j+1
x j e 2 x (x,th)dx, j = 0, . . . , N -1.

Then the following inequality µ 

∫ l 0 e 2 x (x,t -h)dx -µ N-1 ∑ j=0 ∫ x j+1 x j π 2 ∆ 2 [ ∫ x x j e ξ (ξ ,t -h)dξ ] 2 dx ≥ 0 (40) 
∫ l 0 [Γ n (k)η n (x,t)] 2 dx. ( 43 
)
Combining (36), (37), ( 41)-(43) together, adding the right hand side of (38) to Vn (t) + 2αV n (t), and applying S-procedure with (40), we have

Vn (t) + 2αV n (t) ≤ N-1 ∑ j=0 ∫ x j+1 x j η T n (x,t)Φ n (ϕ )η n (x,t)dx +s 2 ∫ l 0 e 2 x (x,t)dx -2(p 1 -α p 2 ) ∫ l 0 a(x)e 2 x (x,t)dx -(e -2αh s 2 -µ) ∫ l 0 e 2 x (x,t -h)dx, ( 44 
) where Φ n (ϕ ) is given by (34).

Note that the first inequality of (32) implies p 1 -α p 2 > 0 since s 2 > 0 and a 0 > 0. Taking into account a > a 0 , we further arrive at

Vn (t) + 2αV n (t) ≤ N-1 ∑ j=0 ∫ x j+1 x j η T n (x,t)Φ n (ϕ )η n (x,t)dx -[2a 0 (p 1 -α p 2 ) -s 2 ] ∫ l 0 e 2 x (x,t)dx -(e -2αh s 2 -µ) ∫ l 0 e 2 x (x,t -h)dx ≤ N-1 ∑ j=0 ∫ x j+1 x j η T n (x,t)(Φ n (ϕ ) +U n )η n (x,t)dx.
(45) Here U n is given by (34). The latter follows from Wirtinger's inequality [START_REF] Hidayat | Observers for linear distributed-parameter systems: A survey[END_REF].

Since Φ n (ϕ ) given by ( 34) is affine in ϕ ∈ [ϕ m , ϕ M ], the feasibility of (33) implies the feasibility of Φ n (ϕ ) + U n < 0 for all ϕ ∈ [ϕ m , ϕ M ]. Thus, we have Vn (t) + 2αV n (t) ≤ 0 implying the exponential convergence of V n (t) with a decay rate α > 0.

Remark 1: By following arguments of [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF], [START_REF] Seuret | Complete quadratic lyapunov functionals for distributed delay systems[END_REF], we can easily show that the derived stability conditions can form a hierarchy of LMI conditions. This will be illustrated via the later example.

IV. NUMERICAL SIMULATIONS

Consider the following 1D heat equation:

z t (x,t) = z xx (x,t) + 1.02π 2 z(x,t), t ≥ 0, x ∈ [0, 1] (46) 
under the Dirichlet boundary conditions (3). Choose z(x, 0) = sin(πx) and x j+1 -x j ≡ ∆ with ∆ = 0.02 implying the number of sub-intervals N = 50. The heat equation above is unstable (see Fig. 1). We suggest the following observer: ẑt (x,t) = ẑxx (x,t) + 1.02π 2 ẑ(x,t) +(z( x j ,th)ẑ( x j ,th)), t ≥ 0, x j ≤ x < x j+1 , j = 0, . . . , 49 (47) under the Dirichlet boundary conditions [START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF]. Here x j ( j = 0, . . . , 49) are given by ( 6) and h > 0 is a constant delay.

LMIs of Theorem 1 with various values of n and α = 0 lead to the maximal allowable delay h max preserving the stability shown in Table I. As expected, better results are obtained as the degree of the polynomial n increases, but at the price of additional decision variables. Moreover, the maximal allowable delay h max remains as 0.6451 when n ≥ 8.

Clearly, an improvement over 20% is achieved by using our new BL inequalities. This implies that our result allows to reduce the order of chain of sub-observers considered in [START_REF] Ahmed-Ali | Observer design for a class of parabolic systems with large delays and sampled measurements[END_REF] by more than 20%.

The numerical simulations show that the error heat equation under the Dirichlet boundary conditions [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF] and with constant delay h = 0.6451 is stable (see Fig. 2).

V. CONCLUSIONS

In this paper, an observer was introduced for 1D heat equation under delayed spatially point measurements. The stability analysis of the resulting error heat equation with time-delay was performed via the newly proposed BL inequalities. A numerical example illustrated the efficiency of the results. One of the directions for the future research is extension of the obtained results to the KdVB equation with time-delay [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF].

Fig. 1 .

 1 Fig. 1. The state z(x,t).

TABLE I MAXIMAL

 I ALLOWABLE DELAY h max VIA THEOREM 1.

	Theorem 1	h max	Number of variables
	n = 0	0.5215 7
	n = 1	0.6226 9
	n = 2	0.6349 12
	n = 3	0.6389 16
	n = 4	0.6421 21
	n = 5	0.6440 27
	n = 6	0.6449 34
	n = 7	0.6450 42
	n ≥ 8	0.6451 0.5n

2 + 1.5n + 7
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