N

N

InjectaBLE: Injecting malicious traffic into established
Bluetooth Low Energy connections
Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent Nicomette,

Mohamed Kaaniche, Géraldine Marconato

» To cite this version:

Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent Nicomette, Mohamed Kaéniche, et al.. In-
jectaBLE: Injecting malicious traffic into established Bluetooth Low Energy connections. IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2021), Jun 2021, Taipei (vir-
tual), Taiwan. 10.1109/DSN48987.2021.00050 . hal-03193297v2

HAL Id: hal-03193297
https://laas.hal.science/hal-03193297v2

Submitted on 12 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://laas.hal.science/hal-03193297v2
https://hal.archives-ouvertes.fr

InjectaBLE: Injecting malicious traffic into
established Bluetooth Low Energy connections

Romain Cayre*i, Florent Galtier*, Guillaume Auriol*T, Vincent Nicomette*t, Mohamed Kaaniche*, Géraldine Marconato*

*CNRS, LAAS, 7 avenue du colonel Roche, F-31400
TUniv de Toulouse, INSA, LAAS, F-31400
TAPSYS.Lab, APSYS
Email: *firstname.lastname @laas.fr *firstname.lastname @airbus.com

Abstract—Bluetooth Low Energy (BLE) is nowadays one of
the most popular wireless communication protocols for Internet
of Things (IoT) devices. As a result, several attacks have targeted
this protocol or its implementations in recent years, illustrating
the growing interest for this technology. However, some major
challenges remain from an offensive perspective, such as injecting
arbitrary frames, hijacking the Slave role or performing a Man-
in-The-Middle in an already established connection. In this paper,
we describe a novel attack called InjectaBLE, allowing to inject
malicious traffic into an existing connection. This attack is highly
critical as the vulnerability exploited is inherent to the BLE
specification itself, which means that any BLE connection can
be possibly vulnerable, regardless of the BLE devices involved
in the connection. We describe the theoretical foundations of the
attack, how to implement it in practice, and we explore four
critical attack scenarios allowing to maliciously trigger a specific
feature of the target device, hijack the Slave and Master role or
to perform a Man-in-the-Middle attack. Finally, we discuss the
impact of this attack and outline some mitigation measures.

Index Terms—injection, IoT, Bluetooth Low Energy, hijacking,
Man-in-the-Middle

I. INTRODUCTION

Nowadays, Internet of Things (IoT) devices are everywhere:
many objects of our daily lives, from fridges to watches, now
incorporate micro-controllers and modems, allowing them to
communicate with their environment and to offer new services.
Several wireless communication protocols have been devel-
oped in recent years to implement these services, among them
the Bluetooth Low Energy (BLE) protocol. BLE provides a
lightweight protocol stack and allows devices to communicate
easily and reliably with a minimal energy consumption, which
fits perfectly the constraints of connected objects. It is also
widely deployed in smartphones, computers and tablets, en-
abling direct communications without the need for additional
gateways in the network. As a result, many IoT devices already
rely on BLE to communicate with their environment.

The growing interest for this technology also raises le-
gitimate concerns about the security of BLE. In the recent
years, the security of this protocol has been actively studied
both from an offensive and a defensive perspective, high-
lighting serious flaws in its specification [5] and in various
implementations. Some papers focused on eavesdropping a
BLE connection, which is not straightforward because of
the use of a channel hopping algorithm, while other papers

described active attacks such as jamming, hijacking or Man-
in-the-Middle attacks. However, to our knowledge, all state
of the art offensive techniques described so far require the
attack to be carried out before the targeted BLE connection is
established, or are based on highly invasive techniques such
as jamming. Even if some papers mentioned a theoretical non
invasive injection-based attack in an established connection
[19] or consider it difficult to achieve [21], it has never been
implemented in practice and the new offensive capabilities
provided by this strategy have not been studied.

In this paper, we demonstrate the practical feasibility of
such attacks, which increases significantly the attack surface
of the BLE protocol. We present a novel approach named In-
JjectaBLE allowing to perform an arbitrary frame injection into
an already established BLE connection. We first explain its
theoretical foundations, and then present various experiments
illustrating its feasibility.

Four critical offensive scenarios that take advantage of this
injection attack are investigated: we show that an attacker
could use our approach to stealthily trigger a specific feature of
a device, hijack any role involved in the targeted connection or
perform a Man-in-the-Middle attack during the connection. We
demonstrate that most of these scenarios, that were considered
unrealistic until now, are in fact quite easy to perform and
could have serious consequences on the security of any BLE
device compliant to Bluetooth Core Specification irrespective
of how it is implemented. We finally discuss the impact of
this attack and potential mitigation measures.

In summary, the major contributions of the paper are:

« the presentation of a novel injection-based attack into an
already established BLE connection, from its theoretical
foundations to its practical implementation, the objective
being to increase awareness of the vulnerability of this
widely used wireless protocol and the potential threats if
appropriate security measures are not applied.

¢ a sensitivity analysis, allowing to understand the impact
of three key parameters on the injection success.

o four critical attack scenarios based on the injection at-
tack, allowing to maliciously trigger a specific feature
of a device, hijack the role of any device involved in
the connection and perform a Man-in-the-Middle attack
during an established connection.

« the proposal of counter-measures to mitigate this attack.

The paper is organised as follows. Section II presents the
state of the art of offensive security targeting the BLE protocol
and clearly outlines the innovative contribution of this work.
Section III presents an overview of the BLE protocol with
a specific focus on the Link Layer, introducing some key
concepts that are necessary to understand the attack strategy.
Section IV presents an overview of the attack and introduces
the main challenges that must be addressed for this attack to
be successful. Then, Section V describes the theoretical foun-
dations of our attack and its practical implementation. Section
VI shows how this attack can be used in four critical attack
scenarios, while section VII presents a set of experiments
carried out to analyse the impact of three main parameters
regarding the attack success. Section VIII proposes multiple
counter-measures that could be used to mitigate the impact of
our attack or detect it and Section IX concludes the paper.

II. RELATED WORK

In the past few years, multiple attack strategies and tools
targeting the BLE protocol have been released.

Sniffing a Bluetooth Low Energy connection is a non-
trivial task, because of the channel hopping algorithm used
by the devices when they are in connected mode. In [19], M.
Ryan demonstrated that a specific connection can be easily
sniffed if the sniffer successfully receives the packet initiating
the connection which includes the initial channel hopping
parameters. He also showed that an attacker may be able to
retrieve the parameters of an already established connection by
monitoring specific events. This approach was then improved
by D. Cauquil in [8] to infer the channels to listen to. In
[10], he also adapted the sniffing strategy to deal with a new
algorithm based on a pseudo-random generator that has been
introduced in the BLE 5.0 specification [5], called channel
selection algorithm #2. Finally, a new tool named Sniffle
has also been released [17] by S. Qasim Khan. It provides
interesting features such as support for the new physical layers
introduced in the BLE 5.0 specification or a mode allowing
to follow the target device hopping along the advertising
channels. Since these channels are used to broadcast data and
indicate the presence of a specific device, the probability of a
successful sniffing is increased.

Multiple active attacks have also been presented in recent
years. First, jamming-based attacks have been explored by
Brauer et al. in [6], they demonstrated an attack allowing to
selectively jam advertisements. D. Cauquil also presented a
new offensive tool named BTLEJack [9] allowing to disrupt
an existing connection by jamming packets transmitted by one
of the devices involved in a connection, called Slave. The
direct consequence of this jamming strategy is a disconnection
of the other device, named Master, allowing the attacker to
synchronise with the Slave instead of the legitimate device,
resulting in hijacking the Master role during an established
connection. However, this strategy cannot be used to hijack
the Slave role, which could also be relevant from an offensive

perspective, and, being based on a jamming technique, is
highly invasive and visible.

Second, two major tools, GATTacker [15] by S. Jasek and
BTLEJuice [7] by D. Cauquil, can be used to perform a Man-
in-the-Middle attack. GATTacker clones the advertisements
transmitted by the target device (called Peripheral) to indicate
its presence and tries to advertise them faster, forcing the
device initiating the connection (also known as Central) to
connect on a cloned Peripheral controlled by the attacker.
The approach adopted by BTLEJuice directly establishes a
connection with the target Peripheral, forcing it to stop ad-
vertising, then it exposes a cloned Peripheral to the Central.
Both of these strategies are based on advertisements spoofing:
as a consequence, they can only perform a Man-in-the-Middle
attack if the connection is not already established.

Multiple studies have also addressed the security of authen-
tication and encryption mechanisms in BLE connections. In
2013, M. Ryan presented CRACKLE [20], a tool exploiting a
weakness in the first version of the BLE pairing process to
quickly bruteforce the keys involved in the BLE connected
mode security. In [1], Antonioli et al. introduced an attack
named KNOB (Key Negotiation of Bluetooth), to downgrade
the key entropy from 16 to 7 bytes, which drastically reduces
the attacker’s effort to bruteforce the key. In [2], they also
analysed the Cross-Transport Key Derivation, a mechanism
allowing to share keys between Bluetooth Classic and BLE,
and demonstrated four attacks named BLUR attacks abusing
this feature, allowing to impersonate a device, manipulate
traffic or establish a malicious session. Similarly, Wu et al.
demonstrated BLESA [23], an active attack abusing the recon-
nection process of an already paired Central to impersonate
the corresponding Peripheral and transmit some unencrypted
spoofed data. Von Tschirschnitz et al. presented a method
confusion attack [22] aiming at forcing the pairing of two
devices using different methods. While some of these attacks
can be used to impersonate a device, none of them can hijack
such a device during an established BLE connection.

Previous research have also focused on discovering vul-
nerabilities that are linked to the stack implementation rather
than the protocol specification, such as Blueborne [3] in 2017
or BleedingBit [4] in 2018. Also, in [14], Garbelini et al.
presented a fuzzing framework named SweynTooth targeting
various BLE stacks, discovering a dozen of vulnerabilities.
While their consequences are generally severe, they are related
to specific implementations and cannot be generalised.

Limitations of existing approaches and contribution. As
far as we know, none of the existing research in this field
have focused on injecting malicious frames into an existing
connection. In [21], Santos et al. hypothesised it would be
too difficult to set up such an injection-based attack in BLE,
because they considered that dealing with race conditions
is complex and would require high performance hardware.
As a consequence, they rejected the possibility of such an
approach. However, as we will further demonstrate afterwards
and illustrate it experimentally, such an attack is actually
possible, and can even take advantage of the race condition

Santos et al. stated as a limitation to injection-based attacks.
We also demonstrate that this approach can be used to perform
new attack scenarios that haven’t been explored yet, such as
hijacking the Slave role or performing a Man-in-the-Middle
attack during an already established connection.

III. BLUETOOTH LOW ENERGY

This section presents a brief overview of the BLE protocol
as well as some more detailed descriptions of the Link layer
(LL), which are directly related to our injection attack.

A. Overview

Bluetooth Low Energy is a lightweight variant of Bluetooth,
dedicated to devices needing low energy consumption.

The stack is split into two major parts: the Controller and
the Host. The lowest layers are included in the Controller,
while the highest ones are handled by the Host.

The physical layer is based on a Gaussian Frequency Shift
Keying modulation. Three main modes can be used in BLE:
an uncoded physical layer with a bitrate of 1 Mbit/s or 2
Mbits/s (respectively called LE IM and LE 2M), or a coded
physical layer using a 250 kbits/s or 500 kbits/s bitrate (called
LE Coded). BLE operates in the ISM band from 2.4 to
2.5 GHz, and defines 40 channels, each with a bandwidth
of 2 MHz. Three channels (37, 38 and 39) are dedicated
to the advertising mode (allowing devices to broadcast data
using some packets named advertisements), while the 37
others channels (numbered from O to 36) are dedicated to
the connected mode, which is used when a connection is
established between two devices.

Every BLE-based application using the connected mode is
built on top of the ATT and GATT layers. These layers define a
client / server model, providing a generic solution to exchange
data between devices. Specifically, an ATT server is a database
of attributes. Each attribute is composed of an identifier, a
type and a value. An ATT client is able to interact with this
database using some requests: for example, a Read Request
allows the client to read a given attribute, while a Write
Request allows to modify the value of an attribute. The GATT
level provides an additional layer of abstraction to define some
services including characteristics and creates generic profiles
for a given type of device.

The Security Manager provides a set of pairing and bonding
procedures to negotiate multiple keys dedicated to increase the
security level of the connection. One of the most important
keys is the Long Term Key, which allows to establish an
AES-CCM encryption over the Link Layer to avoid eaves-
dropping. The Generic Access Profile (GAP) introduces four
different roles, describing the device’s behaviour. Regarding
the connected mode, two roles are defined. The Peripheral role
corresponds to a device that can transmit advertisements and
is connectable, while the Central role corresponds to a device
that can receive advertisements and establish a connection with
another device. The Peripheral is also called Slave as it plays
a slave role in a BLE connection; the Central is called Master.

B. Link layer internals

Our injection-based attack mainly relies on the exploitation
of some specific features of the Link Layer. This subsection
provides a detailed description of these features.

1) Frame format: Every BLE frame transmitted using the
LE IM mode is based on the format described in table I:

TABLE I: Frame format for LE IM

Access Address
4 bytes

CRC

Preamble
3 bytes

1 byte

Protocol Data Unit (PDU)
variable

The preamble is used by the receiver to detect the start of
a BLE frame. The Access Address indicates the mode in use,
either advertising mode or connected mode. The Protocol Data
Unit is a variable field containing the data to transmit. Finally,
a 3 bytes CRC is used for integrity checking.

2) Initiating a connection: When a Peripheral is not in
a connected state, it broadcasts some advertisements on the
advertising channels. The payload generally includes some
information allowing to identify the device, such as the de-
vice name. To establish a connection with a Peripheral, the
Central transmits a dedicated type of advertisement named
CONNECT_REQ right after the reception of an advertisement
from the Peripheral. The corresponding LL PDU, described in
table II, includes some parameters used during the connection.
The Access Address field is used by both devices for every
frame transmitted during the connection.

3) Channel selection: The Channel Map and Hop Incre-
ment fields (cf. Table II) are used by the channel selection
algorithm. Indeed, a BLE connection uses a channel hopping
mechanism to avoid interference with other BLE connec-
tions or wireless communication protocols. Two main channel
selection algorithms are currently usable: Channel Selection
Algorithm #I is based on a simple modular addition, while
Channel Selection Algorithm #2 is based on a pseudo-random
generator. Both of them can be predicted by an attacker to sniff
an established connection (see [19] and [10]). In our study we
consider Channel Selection Algorithm #1, which is the most
commonly used algorithm, however the proposed approach can
be easily adapted to the second algorithm.

4) Transmit window: Two fields WinSize and WinOffset (cf.
Table II) are used to define the transmit window. Indeed, the
first frame of the connection is transmitted on the first selected
channel by the Central to the Peripheral at time ty during the
transmit window defined by formula 1:

tstart S tO S tstart + dsize (1)
tstart = Linit + 125()#5 + doffset

With ¢;,;+ the end of transmission time of the CON-
NECT_REQ frame, dof fset = WinOffset x1250pus and dg;,. =
WinSize x 1250us.

to indicates the beginning of the first connection event, and
is used as a time reference for next connection events.

TABLE II: CONNECT_REQ PDU

Adyv. addr.
6 bytes

CRClInit
3 bytes

WinSize
1 byte

WinOffset

Init. addr.
2 bytes

6 bytes

Access addr.
4 bytes

Hop interval

SCA
3 bits

Timeout
2 bytes

Latency
2 bytes

Channel Map
5 bytes

Hop Increment
5 bits

2 bytes

5) Connection events: Let us consider a connection event
that starts at the time ¢,, of frame transmission from the Master
to the Slave, called the anchor point. ty corresponds to the
first anchor point. When the Slave receives the frame, it waits
during the inter-frame spacing (150us) before sending a frame
to the Master. A bit named More Data (MD) in the header of
frames allows to indicate that more data is available and will
be transmitted during the connection event. If the device does
not have data to transmit, it will transmit an empty frame.

The time between two consecutive anchor points is given
by the Hop Interval parameter, according to the formula 2:

dconnlnterval = Hoplnterval X 1250M5 (2)

Each time a connection event is closed, the next channel is
selected according to the channel selection algorithm in use.
Each connection event is also identified by a 16-bit unsigned
integer named connection event count. Figure 1 illustrates two
typical consecutive connection events.

[Connection event #n I Connection event #n+1]
E‘ dconninterval = HoplInterval x 1250us " _ dconninterval = Hoplnterval x 1250us \:
D) L) Ll
150us H 150us '
: o> : < " ;
i M s J M s ‘
9 —O—>
tn tn+1 th+2

Fig. 1: Two consecutive connection events

6) Acknowledgement and flow control: Each BLE frame
transmitted during a connection includes two 1 bit fields in
the header of the LL PDU, indicating respectively the Se-
quence Number (SN) and the Next Expected Sequence Number
(NESN). Each device also has two 1 bit counters, respec-
tively named transmitSeqNum and nextExpectedSeqNum. The
transmitSeqNum counter is incremented by one (modulo 2) if
the previously transmitted data have been acknowledged. The
nextExpectedSeqNum is incremented by one (modulo 2) when
the next expected frame has been received.

7) Updating the parameters during the connection: The
BLE protocol provides possibilities to update the parameters
used by the channel selection algorithm. A Master is generally
able to manage multiple connections simultaneously, and may
need to modify a connection in order to optimise the following
of multiple connections. It may also consider a given channel
noisy due to high frame loss rate during transmission on that
channel and may choose to blacklist it (i.e. mark it as unused).
The Link Layer provides two main control frames, CON-
NECT_UPDATE_IND and CHANNEL_MAP_IND, to update
the Hop Interval and the Channel Map respectively.

These frames include the new value of the field to update,
and a two bytes field named instant. When the Slave receives

one, it starts the corresponding procedure, and waits for the
time when instant equals to connection event count. Then:

o In the case of a connection update, a transmit window
similar to the one in the initiation of the connection
is computed from the WinOffset and WinSize values of
the CONNECT_UPDATE_IND frame. The new interval
is then applied to the next connection events, as shown
in Figure 2.

o In the case of a channel map update, the new channel
map is used for next connection events.

8) Slave latency: The slave latency field (cf. Table II), that
is initially proposed by the Master in the CONNECT_REQ
packet and can be updated in a connection update procedure,
allows the Slave to avoid entering the listening mode at every
connection event in order to decrease its energy consumption.

IV. ADVERSARY MODEL AND ATTACK OVERVIEW

This section presents a novel type of attack targeting BLE
protocol, allowing the injection of arbitrary frames into an es-
tablished connection. As seen in Section III, the BLE protocol
provides a connected mode, allowing the involved devices to
communicate only at some specific time, making injection-
based attacks difficult to perform by design. According to the
specification [5], one of the involved devices can expand the
receiving window to compensate clock inaccuracy. However,
this also opens the possibility for an attacker to abuse this
feature by performing a race condition attack (see Figure 3).
We focused our work on analysing the feasibility of such
an injection, and explored techniques allowing to solve the
following technical challenges:

¢ (C1) identify when a malicious frame could be in-
jected,

e (C2) investigate how to inject a malicious frame
without altering the connection state consistency,

e (C3) check if the attack is successful or not.

From an offensive perspective, the attack presented in
this paper has a significant impact: indeed, although several
attacks targeting BLE security have already been investigated
in several studies, none of them have made it possible to
interfere with an established connection without breaking the
communication, at least for one of the concerned devices. The
results presented in this paper show that such an attack is
possible and can then be used to perform a wide set of critical
offensive scenarios, including an illegitimate use of victim
device features and hijacking attacks. We believe that this new
offensive capability may consequently impact the availability,
confidentiality and integrity of any BLE communication. In-
deed, the vulnerability presented in this paper is related to
the receiving window expansion described in the protocol
specification, so any BLE device is potentially vulnerable,
independently of its stack implementation. The threat is all

[Connection event #instant IConnection event #instant+1]

[Transmit window]
[Connection event #(instant-1)] b d
doffset=WinOffset x 1250s , dgize=WinSize x 1250ps .
a A4 A -
1 [y L T T L 1
. Hoplntervalyy x 1250us . ' , Hoplntervalye,, x 1250us , Hoplnterval,e,, x 1250us ,
i A 1 v A 1 A
I‘ 'I 1 I‘ 'I‘ 1 'I
1 1 : 1] : 1
‘ : : { : :
1
M s I ! M s l M s ;
1 1
O O @ O‘>
tinstant-1 tinstant tinstant"'doffset
Fig. 2: Connection update procedure
injection point (challenge C1 of Section IV). Subsection V-C
window
! ’ * ' describes how to inject the well-formed frame without altering
i : the consistency of the connection state (challenge C2) and
Legitimate| |Legitimate 1 Malicious ‘egitimate | (Legitimate
Master Slave ! Master ' Master || Slave Subsection V-D describes how to check whether the injection
) O- > is successful or not (challenge C3).

Fig. 3: Attack overview

the more serious as the attack is straightforward on common
BLE chips and can be performed as soon as an attacker is
within radio range of the targeted connection. The attack is
also compatible with all versions of BLE, from 4.0 to 5.2.
The adversary model considered is as follows:

« the attacker must be within the radio range of the target,

« the attacker uses a standard BLE 4.0 or BLE 5.0 device,

o the attacker is capable of passively sniffing the traffic,

and actively crafting and transmitting spoofed packets on
BLE channels,

« the attacker does not need to exploit any BLE vulnera-

bility on the target devices.

As far as encrypted communications are concerned, the
vulnerability being related to the design of the BLE Link
Layer, it is independent of the security mechanisms provided
by the protocol. Therefore, exploiting the race condition to
inject a frame in an encrypted connection remains technically
possible. Indeed, even if the attacker cannot obtain the Long
Term Key used for encryption by some other mean, he can
still inject an invalid packet, leading to a denial of service. As
a consequence, enabling the security mechanisms provided by
BLE limits the impact of the attack but the vulnerability itself
(race condition allowing to inject a frame) remains, with at
least an impact on availability.

V. INJECTABLE: INJECTING ARBITRARY FRAMES IN AN
ESTABLISHED CONNECTION

In this section, we present the InjectaBLE attack, allowing to
inject arbitrary frames in an established connection. Perform-
ing such an attack requires to identify a specific time when a
frame can be successfully injected by the attacker, called the
injection point. Subsections V-A and V-B describe the specific
features of the Link Layer that make it possible to find such an

A. Clock (in)accuracy

As mentioned earlier, the start of transmission of a Master
frame in a given connection event is used as a time reference,
named anchor point. Theoretically, given an anchor point t,,
the next anchor point should occur at t,4; according to the
formula 3.

A3)

An attacker cannot inject a frame at this specific time, as
this frame would collide with the legitimate Master’s packet.
However, the legitimate devices involved in an established
connection use multiple timers based on a clock named Sleep
Clock. As this clock can introduce a drift in time, the Slave
cannot assume that its Sleep Clock is perfectly synchronised
with the Master’s and should listen for an extra time before
and after the timing estimated from the anchor point.

tn+1 - tn + dconn[nterval

B. Window widening

The specification introduces a concept named window
widening, which consists in extending the listening time of a
given device to compensate clocks inaccuracies. In the specific
case of Slave’s Link Layer receiving the next connection event,
the window widening w is computed using formula 4.

 SCAy + SCAg

trext Anchor — tlastAnchor 32
1000000 X (tAnch lastAnch) + uSs

“)
o SCAy : sleep clock accuracy of Master’s LL (in ppm),
o SCAg : sleep clock accuracy of Slave’s LL (in ppm),
o tnestAnchor - predicted next anchor point time (in us),
o liastAnchor - last observed anchor point time (in ps).

If the Slave transmits a frame for every connection event
(i.e. slave latency equals to 0), the formula can be rewritten:

_ SCAy + SCAg

1000000 ©)

X dconnlnterval + 32LLS

A Slave latency greater than O increases the interval between
the last observed anchor point and the predicted next anchor
point, resulting in a larger window. In that case, equation 5
can be considered as the minimal window widening.

As a consequence, given a predicted anchor point t, 1, the
Slave will accept the Master’s packet initiating the connection
event if it is transmitted during the receive window from t,, 11—
w to t,41 + w, as illustrated in figure 4.

Receive window

Hoplinterval x 1250us

< —
) 1 Z 1
: 1 1 1
M s - l M S
* 9 >
th 1 W theg thegtw

Fig. 4: Window widening for a Slave receiving the next
connection event

C. Injecting an arbitrary packet

A frame transmitted in the previously mentioned receive
window being considered as a Master packet by the Slave,
this feature allows a race condition attack, in which an attacker
can inject an arbitrary frame in an established connection by
transmitting it at the beginning of the receive window.

For this injection to be successful, the attacker has first
to be synchronised with the connection: as mentioned in the
related work, multiple approaches already exist to passively
sniff a connection. Second, the attacker must forge a valid
frame to inject. It will be considered as new data by the
Slave if its Sequence Number (denoted as SN,) equals the
Next Expected Sequence Number counter of the Slave’s Link
Layer (denoted as NESN;). Similarly, the NESN bit in the
attacker frame (denoted as N ESN,) should indicate that the
previous frame transmitted by the Slave (denoted as SNy) was
successfully received. Thus, the attacker should have observed
in the connection event preceding the injection attempt a frame
transmitted by the Slave and extracted the SNy and NESN;
bits. The SN, and N ESN, bits of the injected frame are then
set according to the equation 6.

(6)

SN, = NESN,
mod 2

NESN, = (SN, +1)

Third, the attacker has to calculate the receive window to
transmit the injected frame as soon as possible during this
window. He/she can use equation 5 to estimate the window
widening. The Master’s Sleep Clock Accuracy can be extracted
from the CONNECT_REQ packet or from control packets em-
bedding this information (e.g. LL_CLOCK_ACCURACY_REQ
or LL_CLOCK_ACCURACY_RSP). The Slave’s Sleep Clock
Accuracy can be estimated at 20 ppm, which is the worst case
from the attacker’s perspective.

D. Checking the injection success

In order to perform various attacks requiring the injection of
multiple frames, the attacker must be able to identify whether
the injection of each frame is successful or not. This is not
straightforward as even a successful injection does not always
provoke an observable change in the behaviour of the Slave
receiving the frame. Therefore, we need an heuristic that only
relies on the observation of the parameters of the Link Layer,
to indicate whether the injection is successful or not.

An injected frame is considered as valid by the Slave if:

« the injected frame is transmitted before the Master’s one
during the receive window,
o the CRC of the injected frame equals the calculated one.

Let’s consider an injection attempt with ¢, the start time
of the injected frame transmission (i.e., the beginning of the
attack), d, the transmission duration of the injected frame and
t,, the beginning of the legitimate Master’s frame transmis-
sion.

An injection attempt may result in three different situations,
as illustrated by figure 5:

a) the injected frame is transmitted in the receive window
before the start of transmission of the legitimate frame
(to +do <tpm)

b) the injected frame is transmitted in the receive window,
but the end of the frame collides with the legitimate
frame (t, + d, > t,,)

c) the legitimate frame is transmitted before the injected
frame (t, > t,;n)

In situation a), the injection attempt is successful, because
the two conditions are met. Situation b) can result in a suc-
cessful injection if the collision does not corrupt the injected
frame, otherwise the CRC is invalid and the injection attempt
fails. Indeed, a collision might not result in a corruption when
the power of the injected signal is by far superior to the
power of the legitimate signal from the Slave’s perspective.
It can also happen if the modification resulting from the
superposition of two signals doesn’t change the result of the
heuristic used by the demodulator to demodulate the injected
signal. This is possible in some configurations, depending
on the phase difference between the injected and legitimate
signals from the Slave’s perspective, along with the previously
mentioned power difference. Situation c¢) leads to a failed
injection attempt, because the first condition is not fulfilled.

Since an injection attempt may or may not be successful
depending on the situation, the attacker can build an heuristic
allowing him to know if a given injection was successful. This
heuristic is based on the two previously mentioned conditions:

« the injected frame is transmitted before the Master’s one

during the receive window: a direct observation of the
legitimate packet transmitted by the Master is usually not
possible because the attacker transmits its own injected
packet at the same time. However, the Slave’s response
can be used to infer this information indirectly. Indeed, if
the injected frame was transmitted before the legitimate
one, the Slave will consider the start of transmission of

a) [Receive window b) { Receive window c) [Receive window
| Min; i o My ! : Minj
R M o da | i M §
D — e ! L da
—© O-O—O > —O O—0—0 > —O-O0—0O @ >
t, t+d, t, t, t, t+d, t, ot t,+d,

Fig. 5: Three possible outcomes of an injection attempt

the injected frame as the new anchor point. Consequently,
the Slave will transmit its own frame 150 ps after the end
of transmission of the injected frame. If ¢, is the start of
transmission of the Slave’s response, this requirement can
be expressed as :

to+do+150 -5 <ty <ty +dy+150+5

We empirically estimated a window width of 10us,
resulting in the 5us in the above formula. This estimation
has been established by injecting some specific packets
that have an observable impact on the Slave device (e.g.
transmitting a response, terminating the connection ...).

o the CRC of the injected frame equals the computed
one: similarly, the attacker cannot directly check if a
collision occurs and corrupts the injected frame during the
transmission because he/she cannot listen to the channel
during the injection. However, the Slave’s response can
also be used to infer this information, because if the frame
was received by the Slave with a CRC field that does
not match the calculated one, the Slave will not change
its nextExpectedSeqNum counter to indicate that the last
received frame must be transmitted again, resulting in a
NESN field equal to the one used in the previous frame
transmitted by the Slave. If SN is the SN field of Slave’s
response and NESN/ is the NESN field of the Slave’s
reponse, this requirement can be expressed as:

(SN, +1) mod 2= NESN!) A (NESN, = SN)

Finally, the global heuristic that allows the attacker to
detect the success of the injection can be expressed by the
propositional formula 7:

(ta +do +150 — 5 < ts <ty + dg + 150 + 5)A o

(SN, +1) mod 2= NESN.)A(NESN, = SN))
with ¢, the start of the transmission of the injected frame,
d, the duration of the transmission of the injected frame, ¢,
the start of transmission of the Slave’s response, SN. the SN
field of the Slave’s response, NESN! the NESN field of the
Slave’s response.

E. Implementation

We have developed a proof of concept in order to easily
perform the InjectaBLE attack and evaluate it. It has been im-
plemented on a development dongle embedding a nRF52840

chip from Nordic Semiconductor. This chip natively supports
BLE 5.0 and allows a low level access to the Radio peripheral,
which eases the implementation.

The dongle communicates with the Host using a cus-
tom USB protocol, allowing to transmit commands to the
embedded software. A lightweight BLE sniffer has been
implemented, based on previous works [8], [19] and [17]
on BLE connection eavesdropping. When a new connection
is detected by the sniffer, it synchronises with the channel
hopping algorithm and transmits the received packets to the
Host. Then, if a specific command is transmitted to the dongle,
it starts the injection process and tries to inject the malicious
frame defined in the command:

o before the injection, the window widening in use is

estimated using formula 5.

o the dongle performs an injection attempt as soon as
possible during the window previously defined.

o the heuristic defined in formula 7 is then used to check
whether the injection was successful or not.

« if the injection attempt fails, a new one is prepared.

« if the injection attempt succeeds, a notification is trans-
mitted to the Host indicating the number of injection
attempts before a successful injection.

Based on this main feature, the dongle also exposes an API
allowing to perform the various scenarios described in Section
VI. A minimal BLE stack has also been implemented, to mimic
the behaviour of the different roles involved in the connection.

VI. ATTACK SCENARIOS

This Section describes and illustrates four main scenarios
allowing an attacker to achieve interesting offensive objectives,
such as illegitimately using a device functionality, hijacking
any device involved in the connection or performing a Man-
in-the-Middle attack during an established connection.

A. Scenario A: illegitimately using a device functionality

This first attack scenario can be considered as the straight-
forward application of the injection attack. Indeed, IoT devices
based on BLE usually implement the Slave role, so our injec-
tion approach may be used to trigger a specific functionality
exposed by the targeted device. More specifically, injecting
ATT Requests allows the attacker to interact with the ATT
server, which is used in BLE as a generic application layer.
Note that any ATT request supported by the target device could
be possibly injected.

For example, an attacker could inject a Read Request
targeting a specific handle: if the injection is successful, the
Slave will generate and transmit a Read Response containing
the data. It may allow him to extract interesting information
from a given characteristic: depending on the type of device,
this could have a critical impact on confidentiality. Similarly,
an attacker could inject a Write Request or a Write Command
to a given device. These ATT requests allow to modify the
value of a given characteristic: as a consequence, the attacker
is able to trigger a specific behaviour of the device, which
could result in a critical impact on integrity or availability.

To illustrate the impact of this attack scenario, we have per-
formed injection attacks targeting three commercial devices: a
lightbulb, a keyfob and a smartwatch. We reverse engineered
these devices to identify the type of ATT requests and the
corresponding payloads used to trigger their main features.
We then forged and injected malicious traffic triggering the
following features:

« lightbulb: turning the bulb on and off, changing its colour,
changing its brightness,

o keyfob: making the keyfob ring,

o smartwatch: transmitting a forged SMS to the watch.

B. Scenario B: hijacking the Slave role

This second attack scenario is aimed at hijacking the Slave
role. If this attack succeeds, the Slave is forced to exit the
connection, allowing the attacker to replace it without breaking
the connection from the Master’s perspective.

This attack scenario is based on the injection of a Link-
layer control packet: these packets are used by devices to
control the connections. More specifically, the attack is based
on the injection of a LL_TERMINATE_IND packet that is used
by a device to indicate to the other one that the connection
should be terminated. Since the packet injection is ignored
by the Master and accepted by the Slave, it forces the Slave
to exit the connection. However, the Master is not aware of
the fact that the legitimate Slave is not present anymore: this
situation allows the attacker to imitate the Slave behaviour in
order to hijack the connection. To do so, the attacker must
wait during the inter-frame spacing (150 ps) after the end
of transmission of a Master’s packet before transmitting its
frame, and carefully set the SN and NESN fields. This attack
scenario is illustrated in figure 6.

This scenario has been successfully implemented for the
three previously mentioned devices. All of them exposed
a characteristic corresponding to the Device Name which
allowed us to transmit a forged value "Hacked” when a Read
Request targeting this characteristic was received. Let us note
that such a scenario may have critical consequences depending
on the type of target: as an example, an insulin pump or a
pacemaker could be hijacked, allowing the attacker to transmit
fake health data.

C. Scenario C and D: hijacking the Master, the Slave or both
of them simultaneously (Man-in-the-Middle attack)

We have explored two other attack scenarios, based on
the same approach. The scenario C consists in hijacking the
Master role. While this kind of hijacking attack was already
possible using the BTLEJack tool [9], its strategy is based on
jamming and can easily be detected by a monitoring system.
Our approach only requires the injection of a single malicious
frame, making it more discrete and reliable. Scenario D
allowed us to carry out a Man-in-the-Middle attack without
interrupting the connection. Indeed, previous approaches to
perform Man-in-the-Middle attacks [7], [15] could only be
used before the initiation of the connection, which limits
drastically their usability. In other words, using our strategy,
an attacker could establish a Man-in-the-Middle attack at any
time, even if a connection is already established between
two legitimate devices. This strategy is critical as long term
connections are very common in BLE communications, and
massively used by devices such as smartwatches or trackers.

These two scenarios use a similar approach, which is
based on the injection of a CONNECTION_UPDATE PDU as
described in Section III-B: it can be used by the Master at any
time during the connection in order to modify the parameters
of the channel selection algorithm, and especially the Hop
Interval. The attack relies on a simple idea: the attacker
injects a forged CONNECTION_UPDATE PDU containing
arbitrary parameters, indicating to the Slave that the connection
parameters will change at a given time. When that time is
reached, the Slave waits during the window offset specified
by the attacker, ignoring the legitimate Master’s frame, then
uses the new parameters while the Master continues to use the
old ones, allowing the attacker to synchronise with the Slave
and hijack the Master role or to synchronise with both of
them, resulting in a Man-in-the-Middle. In the first case (e.g.
Master hijacking) the legitimate Master no longer receives any
response after the time at which the parameters are changed, so
it leaves the connection due to timeout. Note that this approach
is particularly powerful because it could also be used to hijack
the Slave role, in a similar way to scenario B, since the attacker
knows both the old and the new parameters. This approach is
illustrated in figure 7.

We evaluated experimentally the Master hijacking using the
three previously mentioned devices: with the Master’s role
successfully hijacked, it allowed us to trigger the same features
as in scenario A. Similarly, scenario D was evaluated on our
three commercial devices, allowing us to arbitrarily modify the
data exchanged between the legitimate devices: for example,
a SMS transmitted by the smartphone to the smartwatch has
been modified on the fly, or the RGB values describing the
colour of the lightbulb have also been altered on the fly.

VII. SENSITIVITY ANALYSIS

We conducted several experiments to validate our attack.
The objective was twofold: test its feasibility in a realistic
environment and analyse the impact of different parameters
upon the attack success rate. We focused on three main

Connection event #n I

Connection event #n+1]

Connection event #n+2 I Connection ev

1 1 1 1
r&——Hoplinterval x 1250us———»+€&——Hoplinterval x 1250us———»r€«——Hoplinterval x 1250us———»
1 1 1

«—Receive window—> .
: ! i ! 150ps
Foooeees <
TERMINATE

o M S M S

1 1
! 150ps !

The slave exits the

Injection attempt =——@ .
connection

=@ The attacker imitates the slave's behaviour

¢ Y

Fig. 6: Description of the slave hijacking

[Connection event #(instant) l Connection event #(instant+1)]
- Hoplntervalyy X 125008 - - - - - - - - - - 3 »<----- Hoplntervalyy x 12508 - - - - - - - - - - >
1 1
1 1
[Connection event #n I M S M S
: - Hdpintervaloig x 1250ps - ---==--- > »
<—Receive window— 1 Connection event # Connection event #
vopanTans) : , (instant) (instant-1)
i CONNECT. h)
E EUPDATE 4 m S 1 < Hoplnterval,e,, x 125011sy g Hopinterval,e,, x 1250ps)y.
] L.

Injection attempt

1
'€ WinOffset x 1250 ps»«d- - WinSize x 1250 ps- - -», :
i]

M S i m S

The attacker can synchronise with the Master,
the Slave or both of them simultaneously

Fig. 7: Description of the Man-in-the-Middle attack

parameters that may have a significant impact on the attack
success: the Hop Interval, the payload size and the distance
between the attacker and the target Slave. One parameter at
a time was changed and its impact on the attack success
was assessed by monitoring the number of injection attempts
before a successful injection.

A. Experiment 1: Hop Interval

Our first experiment focused on the Hop Interval parameter.
Indeed, this parameter is directly involved in the estimation of
the window widening as indicated in equation 5. Theoretically,
as the attack relies on a race condition based on this window
with the legitimate Master, the injection should be more
difficult when the Hop Interval value is lower.

According to the specification, the theoretical Hop Interval
range is from 6 to 3200. However, we chose to focus on six
different values from 25 to 150 for two main reasons:

e We wanted to focus on the worst case of an injection
attempt, which occurs when the injected frame collides
with the legitimate frame, which means considering low
Hop Interval values. Since the injected frame used during
this experiment was 22 bytes long over the air (i.e., 176
ws of transmission time using the LE /M physical layer),
none of the window widening values calculated from the
tested Hop Intervals allowed an injected frame to be
entirely transmitted without a collision.

o We wanted to conduct our experiment on target real-life
devices and most of them do not allow the use of high
Hop Interval values, because the resulting connections
could be extremely unstable and break quickly. We thus

used the Hop Interval values in the range supported by
a connected lightbulb, which was the commercial device
supporting the widest range of Hop Interval values we
were able to find.

To be able to precisely tune the Hop Interval parameter,
we used a modified version of the open-source Mirage frame-
work [11], [12] to simulate a Central device, because of its
capability to access the HCI on a low level.

We reversed the communication protocol built over GATT
used by this lightbulb, then selected a Write Request allowing
to turn the light off as our injection frame. The corresponding
payload is 14 bytes long, making the entire frame 22 bytes
long. We chose a frame with a visible effect on the device to
validate our heuristic.

The experimental setup was quite simple: the legitimate
Peripheral and Central devices and the attacker were placed
on the three vertices of an equilateral triangle, with 2 meters
edges. The Central initiates connections with the Peripheral
repeatedly while the attacker synchronises with these connec-
tions and starts the injection attack at a specific connection
event. The experiment was conducted in a realistic envi-
ronment, including several other BLE devices and multiple
WiFi routers. Let us note that synchronising the attack tool
with a connection is not trivial, especially in such a noisy
environment. For each Hop Interval value, we performed
25 injection attacks, and monitored the number of injection
attempts required before a successful injection. The results
are presented in figure 9.

The attack was successful for every tested connection. The
variance of the number of unsuccessful attempts decreases

<—2m
@ ©

<1 m><€<Im><€Im><€Im>»<—2m

Fig. 8: Experimental setup

quickly between 25 and 100, and stabilises afterwards. Sim-
ilarly, the median value remains at a low value less than 4.
These results show that the injection is always feasible even
with small Hop Intervals, and the number of injection attempts
required before a successful injection is generally low. The
experiment confirms that the Hop Interval has a significant
impact on the injection attack success. However, the injection
is more reliable with higher values.

B. Experiment 2: Payload size

This experiment was focused on the payload size of the
injected frame, and was intended to empirically confirm that
injecting shorter frames increases the probability of success.

The experimental setup and the environment are similar to
the one presented above. We selected four different values of
payload size: 4, 9, 14 and 16, which correspond to frames that
have an observable effect on the target lightbulb (such as dis-
connecting it, turning it off, or changing its colour), allowing
to confirm the success of an injection attempt independently
from our success detection heuristic.

We repeated the experiment 1, this time with a fixed Hop
Interval of 75, and iterating over the different payload sizes.
The results are displayed in figure 9.

Similarly to experiment 1, we observe higher reliability
when the payload size decreases, which is consistent with
the theory as a smaller portion of the injected frame collides.
The number of injection attempts required before a successful
injection remains very low (less than 3 for the median).

C. Experiment 3: distance

Our last experiment was conducted to evaluate the impact of
the distance between the attacker and the legitimate Peripheral.
Theoretically, since the distance impacts the signal strength of
the injection from the Peripheral’s perspective, it may lower
even more the success rate when a collision with the legitimate
frame occurs. We used the same lightbulb as Peripheral, but
used a smartphone as legitimate Central to get closer to a real-
life scenario. The phone was used to establish 25 connections
per tested distance, using its default Hop Interval value equal
to 36. As we chose to only inject the 22 bytes long Write
Request allowing to turn the bulb off, this Hop Interval value
doesn’t allow for collision-free transmissions.

The experimental setup was slightly different from the one
used in experiments 1 and 2: we placed the lightbulb and
the phone within two meters of each other, then we tested
six different positions for the attacker, from 1 to 10 meters,
as illustrated in figure 8. This allowed us to evaluate the
attack success when the attacker is closer to the Peripheral

than the legitimate Central (position A), when they are at the
same distance (position B) and when the attacker is further
(positions C,D,E and F).

The results are presented in figure 9. They show a significant
impact of the distance between the attacker and the Peripheral
on the reliability, as the variance increases when the distance
is higher. It validates our assumption that the attacker has an
higher probability to quickly perform a successful injection
if closer to the target. However, let us note that each tested
connection leads to a successful injection: it means that the
attacker can perform a successful attack from every location,
including position F which is 10 meters away from the Periph-
eral, while the legitimate Master is only 2 meters away. This
experiment highlights the practical feasibility of the attack,
and shows that, even under adverse conditions in a realistic
environment, the attack is still possible.

We also tested the attack effectiveness behind a wall, to eval-
uate the impact of obstacles. The experimental setup was very
similar to the distance experiment: the lightbulb (legitimate
Peripheral) and the phone (legitimate Master) were placed
within two meters of each other in the same room, while the
attacker was located at four different positions behind a wall,
from 2 to 8 meters from the Peripheral. Similarly to the other
experiments, we established 25 connections per tested distance
and measured the number of injection attempts needed before
a successful injection. Results are presented in figure 9: as
expected, the presence of a wall increases the number of
injection attempts needed to perform a successful injection,
and the variance increases with the distance. However, even if
the attack requires more attempts, we managed to successfully
inject a frame for every connection we tested, even in the worst
case from the attacker’s perspective. These results show that
this attack is realistic and could be carried out even if the
attacker is not in the same room as the target.

VIII. COUNTER-MEASURES

The InjectaBLE attack exploits a vulnerability that is inher-
ent to the BLE protocol specification. As a result, we should
consider every BLE communication as potentially vulnerable
and the environments exposed to BLE devices should be
designed and monitored with the assumption that some attacks
could potentially be carried out through legitimate communi-
cations. Several counter-measures could be investigated either
to limit the impact of the attack, or to prevent or detect it.

As explained in section III-B, the practical implementation
of the InjectaBLE attack requires injecting arbitrary frames
at specific moments. Three solutions could be investigated.
Each one requires more or less deep changes in the BLE stack
or in the usage of BLE chips. These changes may not be
appropriate from the user’s point of view in the case of an
industrial environment, because of a possibly high number of
devices to reprogram and the cost of certification processes.

The first solution deals with some communication time
parameters of the stack itself. For example, by reducing the du-
ration of the widening windows the possibility for an attacker
to inject a frame at the right time will be mechanically reduced.

8 8 ° 60 °
ESS ° 12 55 50
£30 10 50
= ° 45 ° 40
© 25 . 20 . °
o
v 4 35 o
g2 o % 30
c15 6 25
i ° 20 20
°10 4 ° 15 o
o

2 5 o o o] 2 % 10 . 10
S He - & & 7 . & :

25 50 00 125 150 4 16 1 6 10 2

75 1 9 14
Hop Interval Payload size

R 4 6
Distance (m) Distance (m) - Wall

Fig. 9: Experiment Results

More precisely, the rate of successful injection will decrease
due to the collision with a legitimate frame. However it
should be noted that such an approach requires changes to the
BLE standard which could have side effects on the reliability
and stability of the communications. The second solution is
slightly less restrictive. Without going as far as modifying
the BLE standard, it requires to systematically activate the
encryption mechanisms defined in BLE specification. If all
frames are correctly ciphered, an attacker will not be able to
easily sniff the connection parameters and forge a valid frame.
In this specific case, the vulnerability is still present, even
if its impact is limited to Denial of Service attacks. While
this solution could be straightforward, it is not in reality. It
must be noted that the majority of BLE communications are
poorly or not at all encrypted today (see [26] for a qualitative
study of the percentage of BLE devices activating encryption
mechanisms). As a consequence, in most cases, this counter-
measure requires end-users to reprogram all their devices,
which could be tricky, especially in the context of industrial
devices.

During our experiments, we noticed that some manufactur-
ers do not use the native protocol encryption but rather choose
to implement their own over the GATT application layer. We
strongly advise against this solution, since in this case the
LL control frames will not be encrypted and we have already
demonstrated in our attack scenarios that an attacker could
achieve interesting objectives by injecting this kind of frames,
such as initiating a Man-in-the-Middle and not forwarding the
legitimate traffic to perform a denial of service.

The last solution is based on a non intrusive approach.
Defensive solutions dedicated to the IoT context could be
considered to monitor and detect in real time or not attacks
targeting wireless protocols. An Intrusion Detection System
(IDS) designed to monitor BLE Link Layer could be able to
detect, at the right instant, the presence of double frames: the
legitimate Master frame and the attacker one. For instance,
the IDS proposed in [18] is able to identify deviations from
legitimate behaviour by monitoring the radio activity of the
wireless environment. F. Galtier et al. also propose, in [13],
an /DS able to fingerprint legitimate devices (based on physical
characteristics of the radio signals) and to detect inappro-
priate fingerprints related to the attacker frames. Monitoring
solutions designed to detect BLE spoofing attacks, such as
[24] or [25], may also detect behavioural anomalies in the

communication between the devices, for example variations in
the timing between packet emissions or change of BLE profile,
and hence detect the injection attempts. Machine Learning
oriented solutions can also be effective, as in [16], where
A. Lahmadi et al. used Neural Networks to build an attacker
model, and detect Man-in-The-Middle attacks.

IX. CONCLUSION

In this paper, we demonstrated the feasibility of a new
injection attack named InjectaBLE targeting the BLE protocol,
allowing to inject malicious frames into an established connec-
tion. This attack significantly increases the attack surface of
BLE communications, because it exploits a vulnerability of the
specification itself independently of the stack implementations,
and can be achieved quite easily using common BLE chips.
We analysed the impact of multiple factors on the attack
success rate and demonstrated that exploiting this weakness
could allow an attacker to perform critical attack scenarios that
were not realistic until now, such as Slave hijacking or Man-in-
the-Middle attack targeting established connections. We also
performed sensitivity analyses that showed that this injection
always succeeds in various experimental conditions.

Activating the BLE native cryptographic mechanisms can
efficiently mitigate this attack. However, in practice, the vast
majority of commercial devices do not use encryption, making
them vulnerable by design to InjectaBLE. The results pre-
sented in this paper clearly highlight the need to generalise
the systematic use of encryption in BLE communications.

The new offensive capabilities provided by InjectaBLE open
opportunities for other critical attack scenarios that need to be
carefully investigated. For example, being able to hijack the
Slave role may potentially allow an attacker to transmit an ATT
notification indicating that the ATT server structure has been
modified: it could be used to expose a malicious keyboard
profile instead of the original one, and inject keystrokes to
the Master by implementing HID over GATT protocol. We
plan to explore the practical feasibility of this attack as future
work. In parallel, it’s important to design efficient defensive
approaches, e.g., a passive monitoring system allowing to
detect InjectaBLE in real time.

REFERENCES

[1] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Key negotiation
downgrade attacks on bluetooth and bluetooth low energy,” ACM

[3]

[4]

[5]
[6]

[7

—

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]
[20]
[21]

[22]

[23]

[24]

Trans. Priv. Secur., vol. 23, no. 3, Jun. 2020. [Online]. Available:
https://doi.org/10.1145/3394497

D. Antonioli, N. O. Tippenhauer, K. Rasmussen, and M. Payer, “Blur-
tooth: Exploiting cross-transport key derivation in bluetooth classic and
bluetooth low energy,” 2020.

Armis, “Blueborne Technical White Paper,”
https://go.armis.com/hubfs/BlueBorne Technical White Paper.pdf,
2017.

_ “BleedingBit Technical White Paper,”
https://go.armis.com/hubfs/BLEEDINGBIT - Technical =~ White

Paper.pdf, 2018.

Bluetooth Core Specification, Bluetooth SIG, 12 2019.

S. Briuer, A. Zubow, S. Zehl, M. Roshandel, and S. Mashhadi-Sohi, “On
practical selective jamming of bluetooth low energy advertising,” in 2016
IEEE Conference on Standards for Communications and Networking
(CSCN), 2016, pp. 1-6.

D. Cauquil, “BtleJuice, un framework d’interception pour le Bluetooth
Low Energy,” https://www.slideshare.net/NetSecureDay/nsd16-btle-
juice-un-framework-dinterception-pour-le-bluetooth-low-energy-
damien-cauquil, 2017.

——, “Sniffing btle with the micro:bit,” PoC or GTFO, vol. 17, pp.
13-20, 2017.

, “You’d better secure your BLE devices or we’ll kick your butts
1”7 2018, https://media.defcon.org/DEF CON 26/DEF CON 26 presenta-
tions/Damien Cauquil - Updated/DEFCON-26-Damien-Cauquil-Extras/.
“Defeating Bluetooth Low Energy 5 PRNG for fun and
jamming,” 2019, https://media.defcon.org/DEF CON 27/DEF CON 27
presentations/DEFCON-27-Damien-Cauquil-Defeating-Bluetooth-Low-
Energy-5-PRNG-for-fun-and-jamming.PDF.
R. Cayre, “Mirage
https://github.com/RCayre/mirage/.

R. Cayre, V. Nicomette, G. Auriol, E. Alata, M. Kaaniche, and G. Mar-
conato, “Mirage: towards a metasploit-like framework for iot,” in 2079
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2019, pp. 261-270.

F. Galtier, R. Cayre, G. Auriol, M. Kaéniche, and V. Nicomette, “A
psd-based fingerprinting approach to detect iot device spoofing,” in 25th
IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC 2020).

M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and
E. Kurniawan, “Sweyntooth: Unleashing mayhem over bluetooth low
energy,” in 2020 USENIX Annual Technical Conference (USENIX ATC
20). USENIX Association, Jul. 2020, pp. 911-925. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/garbelini

S. Jasek, “Gattacking Bluetooth Smart Devices,” 2017.

A. Lahmadi, A. Duque, N. Heraief, and J. Francq, “Mitm attack
detection in ble networks using reconstruction and classification ma-
chine learning techniques,” in MLCS 2020-2nd Workshop on Machine
Learning for Cybersecurity, 2020.

S. Qasim Khan, “Sniffle: A sniffer for Bluetooth 5 (LE),” 2019,
https://hardwear.io/netherlands-2019/presentation/sniffle-talk-hardwear-
i0-nl-2019.pdf.

J. Roux, E. Alata, G. Auriol, M. Kaéniche, V. Nicomette, and R. Cayre,
“Radiot: Radio communications intrusion detection for iot-a protocol
independent approach,” in 2018 IEEE 17th International Symposium on
Network Computing and Applications (NCA). 1EEE, 2018, pp. 1-8.
M. Ryan, “Bluetooth: With Low Energy comes Low Security,” 2013.
——, “How Smart is Bluetooth Smart ?”” 2013.

A. Santos, J. Filho, A. Silva, V. Nigam, and I. Fonseca, “Ble injection-
free attack: a novel attack on bluetooth low energy devices,” Journal of
Ambient Intelligence and Humanized Computing, 09 2019.

M. von Tschirschnitz, L. Peuckert, F. Franzen, and J. Grossklags,
“Method confusion attack on bluetooth pairing,” in 202/ 2021 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2021, pp. 213-228. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00013

J.-L. Wu, Y. Nan, V. Kumar, D. Tian, A. Bianchi, M. Payer, and D. Xu,
“Blesa: Spoofing attacks against reconnections in bluetooth low energy,”
in WOOT @ USENIX Security Symposium, 2020.

J. Wu, Y. Nan, V. Kumar, M. Payer, and D. Xu, “Blueshield: Detecting
spoofing attacks in bluetooth low energy networks,” in 23rd Inter-
national Symposium on Research in Attacks, Intrusions and Defenses
({RAID} 2020), 2020, pp. 397-411.

github repository,”

[25]

[26]

M. Yaseen, W. Igbal, I. Rashid, H. Abbas, M. Mohsin, K. Saleem, and
Y. A. Bangash, “Marc: A novel framework for detecting mitm attacks in
ehealthcare ble systems,” Journal of Medical Systems, vol. 43, no. 11,
p. 324, 2019.

C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprinting
of vulnerable ble iot devices with static uuids from mobile apps,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1469-1483.

