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Abstract—We propose a path optimization method for ma-
nipulation. The method tries to minimize path length in the
configuration space of the whole system (robots and objects).
The problem is cast into a quadratic program with linear
constraints. The current path is shorten iteratively. When a
collision is detected along an iteration, the method backtracks
to the previous collision-free path, adds a linear constraint that
prevents the bodies in collision to come close to each other and
starts again. The algorithm stops when the global minimum
under the collision constraints is reached. The method is run
on three different benchmarks, using the real geometric models
of the robots Baxter, UR-3 and PR-2.

I. INTRODUCTION

Manipulation planning is an instance of path planning where
objects are moved by robot grippers. This implies a lot of
constraints on the motion of the system composed of the robots
and of the objects. Namely, when an object is not grasped, it
should remain still in a stable placement, while when an object
is grasped by a gripper, it should move in a rigid manner with
the gripper.

This problem has given rise to a lot of interest for the past
forty years. Pioneering works by [23] and [1] first considered
low dimensional problems where robots and objects move in
translation. [20] is the first work that applies random motion
planning methods to the problem of manipulation planning.
Since then, random methods have been applied extensively to
the manipulation planning problem [21, 17, 4, 12, 18, 13, 6,
8, 5, 2, 10, 9]. Alternative methods based on optimal control
have also been proposed [22].

Despite their efficiency and the fact that they are easy to
implement, random sampling methods suffer a big drawback:
the resulting path is usually far from optimal and includes use-
less detours. Asymptotic optimal versions of random methods
exist [19], but optimality comes at a cost of much longer search
time.

Numerical optimization methods like STOMP [11] or
CHOMP [24] have been proposed for the classical path
planning problem without manipulation. The main problem
in casting path optimization into a numerical constrained op-
timization problem is the collision avoidance part. Most meth-
ods sample the initial trajectory and add inequality constraints
on the distance between each pair of body that can potentially
collide with each other. As a result, the optimization problem
includes thousands of inequality constraints and is intractable

without pre-processing the robot and/or environment mod-
els. STOMP and CHOMP for instance both precompute a
geometrical approximation of the robot using spheres. [14]
proposes a trajectory optimization method with continuous
collision detection. This method performs better than STOMP
and CHOMP. This method relies on distance computation
where we only rely on collision detection, the latter being
cheaper to computer, easier to implement and more robust in
practice. Moreover, none of those methods have been extended
to manipulation motions. A sequential quadratic programming
approach is proposed in [7]. Their method optimizes the
parameters of a task plan (object intermediate position, robot
trajectories. . . ). However, the method is a preliminary work
and has only been used on circles moving in a two dimensional
plane.

A few years ago, [3] proposed a simple path optimization
method that handles collision checking in a most efficient way.
The idea is to express the path optimization problem as a
quadratic program (QP), to iterate over shorter and shorter
paths and to introduce a linearized constraint on the distance
between to bodies only when a collision between those bodies
is detected along an iteration. Each time a collision is detected,
the search resumes at the latest collision-free iteration.

This paper proposes an extension of the latter method to
manipulation paths. The initial method optimizes path length
for robots without constraints. The extension described in this
paper extracts the free variables of the set of waypoints of
the initial trajectory and optimizes over those variables as
described in Section IV.

II. DEFINITION OF THE PROBLEM

In this section we recall the principle of the method de-
scribed in [3]. We denote by C ⊂ Rn the configuration space of
the robot. A path resulting from a random sampling algorithm
is usually a concatenation of linear interpolations between
waypoints: (q0,q1, · · · ,qN+1) where N is the number of
intermediate waypoints. q0 and qN+1 are the initial and
final configurations of the path. They should therefore not be
modified by the optimization method. The problem we want
to solve is to find a sequence of new values for (q1, · · · ,qN )
such that the resulting concatenation of linear interpolations is
collision-free and shorter than the initial one.

We denote by x the optimization variables.

x , (q1, · · · ,qN )



a) Parameterization: for simplicity, we denote also by x
the mapping from interval [0, N +1] to the free configuration
space, such that for any j ∈ {0, · · · , N}, for any κ ∈ [j, j+1],

x(κ) = (κ− j)qj+1 + (1− (κ− j))qj (1)

b) Cost: Let W ∈ Rn×n be a diagonal matrix of positive
weights. We define the distance between two configurations q2

and q1 as

‖q2 − q1‖W ,
√
(q2 − q1)TW 2(q2 − q1)

Weights are used to make rotation and translation variables
homogeneous, and to give more importance to rotation degrees
of freedom that move points farther to their rotation axis.
Given q0 and qN+1 fixed, the cost we want to minimize is
defined by

C(x) ,
1

2

N+1∑
k=1

λk−1‖qk − qk−1‖2W (2)

where λk are constant weights associated to each linear
interpolation. The role of those weights will be explained in
the next section.

Let us notice that the cost is not exactly the length of path x
for norm ‖.‖W , but it can be established that paths minimizing
the above cost also minimize length.

An important point is that the cost is a quadratic function
of the optimization variables x. We denote by H the constant
Hessian matrix of the cost.

In the next Section, we recall how the previous method
described in [3] works.

III. PATH OPTIMIZATION: THE CLASSICAL CASE

Input: the initial path x0

Input: integer m ≥ 2
1 L ← ∅
2 for i← 0 to ∞ do
3 x∗i ← Optimum(xi, L)
4 if CollisionFree(x∗i) then return x∗i
5 y0 ← xi; l← 0
6 repeat
7 yl+1 ← yl +

x∗i−xi

m
8 l← l + 1
9 until not CollisionFree(yl+1) and l < m

10 if CollisionFree(yl+1) then return yl+1

11 L ← L ∪ NewConstraint(yl, yl+1)
12 xi+1 ← yl

13 end
Algorithm 1: OptimizePath

For any non negative integer i, we denote by

xi , (q1,i, · · · ,qN,i) (3)

the values of the waypoints at iteration i. Algorithm 1 takes
as input the initial path x0 and a parameter m bigger than 2.

C = R2

q0

y0 = x0 = x1

q5

x∗0

y1

P1

P2

L(x) −D(y0) = 0

x∗1

Fig. 1. The path optimization method as described in Algorithm 1 for a point
moving in the plane. The initial path x0 is in bold black. The global optimum
x∗
0 is the straight line in blue. y1 (thin black) obtained by Equation (4) is in

collision on the third linear interpolation at parameter κ = 2.46. x1 is set to
y0 = x0 and a linear constraint is added: namely P2 = x(κ) should stay on
the red line. x∗

1 is the global minimum with the constraint. It is collision-free:
this is the result of the algorithm (Line 4).

As stated in the previous section, the cost (2) is quadratic
with respect to the optimization variables. At the optimum,
the waypoints are aligned along the line segment [q0,qN ]. To
improve efficiency, we choose the λk in such a way that at
optimum, the distance between waypoints is proportional to
their distance in the initial path. This avoids the undesirable
effect of the waypoints tending to be at equal distance to
each other. However, this is optional and for simplicity, the
λk can be thought of as being equal to 1. We denote by x∗0
this minimal cost path.

At each iteration i, the optimum x∗i under the current
constraints is computed. If x∗i is collision-free, the algorithm
returns x∗i . Otherwise, a sequence yl, starting with y0 ← xi,
is computed by moving from the current value to x∗i .

yl+1 ← yl +
x∗i − xi

m
(4)

Equation (4) is applied until yl+1 is in collision. Then, xi+1 ←
yl and the method adds a linear constraint as described in the
next section.

A. Linear constraint

If yl+1 as computed above is in collision, we denote by
1) κ the parameter along the path where a collision has

been detected,
2) B1 and B2 the bodies of the robot that are in collision,
3) P1 and P2 two points on B1 and B2 respectively that

coincide when the robot is in configuration yl+1(κ),
4) P1(q), P2(q) the position of P1, respectively P2 when

the robot is in configuration q.



Note that B2 is the environment if the collision occurred
between a body of the robot and the environment. Given the
above definitions, we define d as the mapping from C to R
that maps to any value of q the half squared distance between
P1 and P2 when the robot is in configuration q:

d(q) =
1

2
‖P2(q)− P1(q)‖2 (5)

We define D as the corresponding mapping defined on CN :

D(x) = d(x(κ))

We deduce immediately from this definition that

D(yl) > 0 D(yl+1) = 0

We define L as the linearization of D at yl:

L(x) = D(yl) +
∂D

∂x
(yl)(x− yl).

From Definition 1, we notice that D only depends on two
waypoints qj and qj+1. ∂D

∂x (yl) is a row vector of the form:

∂D

∂x
(yl) =

(
0 · · · 0 (1− β) ∂d

∂q
(yl(κ)) β

∂d

∂q
(yl(κ)) 0 · · · 0

)
where β = (κ − j). Note that in [3] the constraint is
expressed differently, but the linearization yields the same
linear constraint.

Finally, the following constraint is added.

L(x)−D(yl) = 0 (6)

Figure 1 illustrates the algorithm on a simple case. Note that
in this simple case, the workspace and configuration spaces
are the same. Therefore P2 is the point robot.

In the next section, we explain how to extend this method
to paths with constraints.

IV. EXTENSION TO MANIPULATION

In manipulation planning, the configuration space C ⊂ Rn

of the system is the Cartesian product of the configuration
spaces of the robots and objects. A manipulation path can
be decomposed into a sequence of paths such that along each
elementary path, a given constraint applies to the configuration
of the system.

a) Example: let us consider the simple case of a ma-
nipulator arm that manipulates one object (Figure 2). The
configuration of the system is denoted by (qrob,qobj) where
qrob is the configuration of the robot and qobj ∈ SE(3) is
the configuration of the object. Any manipulation path is a
concatenation of transit and transfer paths. The constraint
related to transit is that the object should remain static in
a stable pose. The constraint related to transfer is that the
relative pose between the object and the gripper should remain
constant along the motion. In both cases, the position of
the object depends on the configuration of the robot. The
optimization method described in the previous section can thus
be applied to the paths of the robot along transfer and transit
sections without modifying configurations that connect these

Fig. 2. Manipulator arm manipulating an object.

Fig. 3. A humanoid robot manipulating an object with two hands.

sections. The path of the object is then deduced from the path
of the robot.

We now generalize the simple reasoning above to general
cases with several objects and robots. Our approach is based
on the framework described in [16]. This framework defines a
constraint graph the states of which contain sets of constraints
applying to the system. In the example of Figure 2 above, the
states are placement and grasp. The edges of this graph are
called transitions and contain additional constraints that apply
to the system along paths. For instance, in state placement, the
object should lie in a stable pose. Along transition transit, an
additional constraint states that the object should not move.

The result of manipulation planning is thus a sequence of
motions each one associated to a set of constraints. As stated
above in a simple case, some constraints can be explicit: the
object is in a given position with respect to the gripper, or the
object is at a fixed position. Some constraints can be implicit,
or some explicit constraints can be incompatible and need to
be expressed implicitly as explained in the next section.

A. Implicit and explicit constraints

Let us consider another example displayed in Figure 3. With
the same notation as in example of Figure 2, The constraints
that apply to the system in the current state are the following.



q0 q1
qwp

S0 S1 Swp

T0 T1 Twp−1

Fig. 4. A manipulation path is a sequence of elementary paths subject to a
given set of constraints. Each waypoint qj lies in a state Sj , 1 ≤ j ≤ N−1.

• quasi-static equilibrium and fixed pose of the feet:
h(qrob,qobj) = 0,

• object is in left hand: qobj = fl(qrob)
• object is in right hand: qobj = fr(qrob)

The two latter explicit constraints are clearly not compatible.
However, the set of constraints can be solved by substituting
fr(qrob) for qobj :

h(qrob, fr(qrob)) = 0

fr(qrob)− fl(qrob) = 0

qobj = fr(qrob)

[15] explains how to automatically solve this type of system
composed of explicit and implicit constraints using Newton-
Raphson algorithm.

B. Manipulation path

a) Notation and definitions: let q ∈ Rn denote a config-
uration of the whole system. We denote by
• I a subset of {1, · · ·n},
• |I| the cardinal of I ,
• I(q) ∈ R|I| the vector composed of the components of

q of indices in I in increasing order.
For instance, if I = {2, 4, 5}, |I| = 3, I(q) = (q2,q4,q5) ∈
R3.

b) State and transition constraints: for any j between 1
and N , waypoint qj is subject to the constraints of state Sj

and of transition Tj−1. Altogether, these constraints can be
reduced to the following form as explained in [15]:

∃ outj , inj , freej a partition of {1, · · · , n} (7)
outj(qj) = fj(inj(qj), freej(qj)) (8)

hj(inj(qj)) = 0, (9)

• outj(qj) are the coordinates that are computed by explicit
constraints,

• inj(qj), the input variables of the implicit and explicit
constraints,

• freej(qj) the variables that are not constrained either by
explicit or implicit constraints.

In example of Figure 2, if qj−1 and qj are in placement,
Tj−1 is transit. We denote by rob and obj the subset of
indices corresponding respectively to the robot and object in
the configuration variable:

obj(q) = qobj rob(q) = qrob

qj−1 qj − qj−1

freej−1

freej

qj

freej−1 ∪ freej(qj − confj−1)

W

freej−1 ∪ freej(qj − confj−1)
Wj

Fig. 5. Cost to be optimized as a quadratic function of the free waypoint
coordinates. The part of the cost relative to the segment linking two waypoints
is the distance between the sub-vectors of coordinates included in freej ∪
freej and weighed by the submatrix of W containing the rows and columns
of indices in freej ∪ freej .

With this notation,

outj = obj, inj = ∅, freej = rob

obj(qj) = obj(qj,0).

If qj−1 and qj are in grasp, Tj−1 is transfer. The above
constraints are

outj = obj, inj = ∅, freej = rob

obj(qj) = fgrasp(rob(qj)).

C. Optimization of manipulation paths

In equations (7-9), freej(qj) are the free variables in
the sense that they can be modified freely without affecting
implicit constraint (9). Only the output variables outj(qj) are
modified.

The extension of the optimization method described in
Section III consists in restricting optimization to the free
variables of all waypoints. (3) thus becomes:

xi = (free1(q1,i), · · · , freeN (qN,i))

a) Cost: to remain quadratic, the computation of the cost
is restricted to the free variables. However the free variables
of two successive waypoints may not be the same:

C(x) ,
1

2

N+1∑
j=1

λj−1‖freej−1 ∪ freej(qj − qj−1)‖2Wj
(10)

where Wj is the symmetric positive definite matrix composed
of the rows and columns of W of indices in freej−1∪freej .
See Figure 5.

b) Linear constraints: the path optimization algorithm is
the same as in the classical case. The difference resides in the
expression of the linear constraints. If at iteration i+ 1 (4)
a collision occurs at parameter κ between waypoints qj and
qj+1, a linear constraint is added as in Section III-A. The
only difference between Section III-A and the manipulation
case is the dependency of some components of waypoints qj



and qj+1 with respect to the free variables freej(qj) and
freej+1(qj+1). According to (8),

outj(qj) = fj(inj(qj), freej(qj)),

outj+1(qj+1) = fj+1(inj+1(qj+1), freej+1(qj+1)),

The gradient of the linear constraint is now:

∂D

∂x
(yl) = (0 · · · 0 (1− β)Mj βMj+1 0 · · · 0) ,

with

Mj =
∂d

∂q
(x(κ))

∂qj

∂freej(qj)
(freej(qj)),

Mj+1 =
∂d

∂q
(x(κ))

∂qj+1

∂freej+1(qj)
(freej+1(qj+1)),

where matrix ∂qj

∂freej(qj)
(freej(qj)) denotes the variation of

the components of qj with respect to the free components.
This matrix of n rows and |freej | columns is of the following
form:

∂qj

∂freej(qj)
(freej(qj)) =

freej{

outj{

inj{


I|freej |

∂fj
∂freej(qj)

∂fj
∂inj(qj)


(11)

where fj is defined by (8). In the above expression, the
indices freej , outj and inj are assumed to be consecutive
and ordered. In the general case the lines of the matrix
corresponding to these subsets may be interleaved.

D. Convergence analysis and refinement

Algorithm 1 solves a sequence of quadratic programs (QP)
with linear constraints (lines 2–13). The cost is the same for
all QP and one linear constraint is added at each iteration
(line 11). Note that the inner loop (line 6) finishes at most
after m− 1 iterations.

In most cases, the new linear constraint does not belong
to the vector space spanned by the previous linear constraints
and the search space dimension decreases by 1. The algorithm
thus terminates in a number of iterations that is at most the
initial dimension of search space, that is the number of free
parameters.

1) Refinement: to cope with the case when a new linear
constraint belongs to the subspace spanned by the previous
linear constraints, we replace line 11 of Algorithm 1 by
Algorithm 2. This refinement looks for pairs of trajectories
on line segment [yl,yl+1] such that one of the trajectories
is in collision, and the other one is not. As soon as a pair of
trajectories yields a linear constraint that is not spanned by the
previous ones, the refinement loops breaks and Algorithm 1
resumes with this new constraint. In practice, the for loop
terminates at the first iteration since the new constraint being
spanned by the previous ones is very unlikely. For security,
we exit when the number of iterations reaches 3.

if NewConstraint(yl, yl+1)∈ span(L) then
yfree ← yl; ycoll ← yl+1;
for l← 0 to ∞ do

y← yfree+ycoll

2 ;
if CollisionFree (y) then yfree ← y;
else ycoll ← y ;
if NewConstraint(yfree, ycoll) /∈ span(L)

then
L ← L ∪ NewConstraint(yfree,
ycoll);

break;
if l ≥ 3 then return yfree;

end
else
L ← L ∪ NewConstraint(yl, yl+1)

Algorithm 2: Algorithm refinement

placement grasp

q0

q1

q2

q3

q4

q5

q6

Fig. 6. Example of a manipulation path to be optimized. The system
is composed of a robot and a movable object. dim C = 12. The 6 first
components of the configuration represent the configuration of the robot. The 6
last components represent the pose of the object. The initial path is composed
of N = 5 waypoints: q1, q2 in placement, q4, q5 in grasp and q3 in grasp
∩ placement.

V. EXAMPLE

Let us consider a manipulation path for the example dis-
played in Figure 2. The configuration space of the system
is of dimension 12. A manipulation path for this system is
described in Figure 6. The input, output, and free variables
for this path are the following:

free1 = {1, · · · , 6} in1 = ∅ out1 = {7, · · · , 12}
free2 = {1, · · · , 6} in2 = ∅ out2 = {7, · · · , 12}
free3 = ∅ in3 = {1, · · · , 6} out3 = {7, · · · , 12}
free4 = {1, · · · , 6} in4 = ∅ out4 = {7, · · · , 12}
free5 = {1, · · · , 6} in5 = ∅ out5 = {7, · · · , 12}

Note that q3 has no free variable due to the closed chain
constraint. The optimization algorithm will thus modify the
robot configuration for waypoints q1, q2, q3, and q4 in order
to make the transit and transfer sub-paths shorter.

For j = 4, 5, the pose of the object outj(qj) depends on
the configuration of the robot:

outj(qj) = fgrasp (freej(qj))



Note that along the transfer part of the path (between q3

and q6), the position of the object depends on the position of
the robot. The rows labeled outj of matrix (11) correspond to
the variation of the object pose with respect to the variation
of the robot configuration.

VI. SPLINES

Up to now, we have considered paths as linear interpolations
between waypoints. This assumption makes the theoretical
developments clearer. However, linear interpolations are con-
tinuous but not differentiable.

We have extended the method to piece-wise polynomial
trajectories as follows.

A. Fitting initial path

The initial path computed by a random sampling method
is composed of piecewise linear interpolations. The first step
consists in fitting a C1 piecewise polynomial curve following
exactly the same path. For that, we replace each linear interpo-
lation (qj ,qj+1, j ∈ {0, N} by a Bezier curve with 4 control
points: (P0,j , P1,j , P2,j , P3,j) such that

P0,j = P1,j = qj

P2,j = P3,j = qj+1

B. Cost

The cost of each path is defined by

C(x) ,
1

2

N∑
j=0

λj

∫ 1

0

‖freej ∪ freej+1(Bj(t))‖2Wj−1
(12)

where Bj is the j-th Bezier curve. This cost is again quadratic
in the selected components of the Bezier curve control points
that constitute the optimization variables:

x , (freej(P0,j), freej ∪ freej+1(P1,j),

freej ∪ freej+1(P2,j), freej+1(P0,j))j∈{0,··· ,N}

C. Boundary conditions

To make sure that the trajectory starts from q0 and ends at
qN+1 with 0 velocities, we set the following constraint:

P0,0 = P1,0 = q0 (13)
P2,N = P3,N = qN+1 (14)

D. Continuity constraints

To make sure that the trajectory is continuously differen-
tiable, we set the following constraints on consecutive Bezier
curves:

P3,j = P0,j+1 (15)
P3,j − P2,j = P1,j+1 − P0,j+1 (16)

(15) corresponds to the continuity of the trajectory through
waypoints, and (16) corresponds to derivability of the trajec-
tory through waypoints.

Constraints (13),(14),(15),(16) are linear in the optimization
variables. They are thus easy to integrate in the quadratic
program in the same way as collision constraints.

E. Joint bound constraints

To make sure that the trajectory remains inside the joint
bounds, we constrain all control points of the Bezier curves to
remain within those bounds. An interesting property of Bezier
curves is indeed that they are included in the convex hull of
their control points.

These constraints are inequality constraints on some param-
eters of the optimization algorithm. They are handled easily
using an active set method (See for instance qpOASES).

In the following section, we show some experimental results
where our method optimizes paths using piecewise polynomial
paths.

VII. EXPERIMENTAL RESULTS

We have applied our method to three different problems.
For each problem, 20 different paths are planned to solve
a manipulation problem using a random sampling algorithm.
Each path is then optimized using the method described in this
paper. The first optimization uses linear interpolation, while
the second optimization builds continuously differentiable
paths using sequences of Bezier curves with 4 control points
(Section VI). Both optimization are run on the same input
path, they are not consecutive.

The software is run on an “Intel(R) Core(TM) i7-3540M
CPU @ 3.00GHz” with 4096 kB of cache memory, and
8039160 kB of RAM.

For each benchmark, the results are reported in a table with
minimal, maximal and average values of
• the cost of the initial path,
• the cost of the optimized path,
• the ratio between the final cost and the initial cost,
• the number of iterations of the internal loop (Alg. 1

line 6),
• the number of collision constraints inserted by the algo-

rithm,
• the number of waypoints of the initial (and final) path,
• the time of computation in seconds.
The movie attached to this paper displays one pair of initial

– optimal paths for each benchmark.

A. Baxter benchmark

Fig. 7. Baxter robot manipulating boxes. The goal of the manipulation task
is to swap the positions of the boxes possibly using both arms.

https://projects.coin-or.org/qpOASES


In this benchmark (Figure 7, tables I, II), Baxter is requested
to swap two boxes on the table. The robot needs either to use
both arms or to put a box in an intermediate position. The
number of different collision objects is 40 and the number of
pairs of objects to test for collision is 820.

Initial final final cost / number of
cost cost initial cost iterations

min 50.98 11.74 0.12 8
max 170.31 93.24 0.55 179
mean 90.33 34.40 0.37 56.05

number of number of time of
collisions waypoints computation

(seconds)
min 4 17 2.74
max 86 39 101.58
mean 23.05 23.05 19.93

TABLE I
RESULTS FOR BAXTER WITH LINEAR INTERPOLATIONS.

Initial final final cost / number of
cost cost initial cost iterations

min 20.39 4.41 0.11 10
max 68.12 33.92 0.50 260
mean 36.13 12.51 0.34 97.2

number of number of time of
collisions waypoints computation

(seconds)
min 4 17 6.97
max 128 39 212.29
mean 42.65 23.05 48.41

TABLE II
RESULTS FOR BAXTER WITH PIECEWISE BEZIER CURVES.

B. Construction set benchmark

Fig. 8. Construction set: two robot arms assemble magnetic cylinders and
spheres.

In this benchmark (Figure 8, tables III, IV), two UR-3
robots are requested to assemble two spheres on a cylinder.
The number of different collision objects is 24 and the number
of pairs of objects to test for collision is 293.

C. PR2 benchmark

In this benchmark (Figure 9, tables V-VI), PR 2 is requested
to move a box from a table in front of it, to the top of a

Initial final final cost / number of
cost cost initial cost iterations

min 220.48 128.45 0.35 1
max 653.56 230.49 0.69 47
mean 306.35 160.96 0.54 24.40

number of number of time of
collisions waypoints computation

(seconds)
min 0 21 2.24
max 19 32 12.54
mean 8.10 22.95 5.83

TABLE III
RESULTS FOR THE CONSTRUCTION SET WITH LINEAR INTERPOLATIONS.

Initial final final cost / number of
cost cost initial cost iterations

min 88.19 45.78 0.33 1
max 261.43 85.30 0.61 62
mean 122.54 57.35 0.48 27.15

number of number of time of
collisions waypoints computation

(seconds)
min 0 21 14.24
max 27 32 61.51
mean 9.55 22.95 22.99

TABLE IV
RESULTS FOR THE CONSTRUCTION SET WITH PIECEWISE BEZIER CURVES.

piece of furniture between it. The number of different collision
objects is 170 and the number of pairs of objects to test for
collision is 5089. The kitchen model (https://github.com/code-
iai/iai maps) is indeed composed of 146 boxes and cylinders.

Initial final final cost / number of
cost cost initial cost iterations

min 44.34 12.15 0.15 1
max 101.18 58.16 0.81 79
mean 69.95 22.72 0.33 27.25

number of number of time of
collisions waypoints computation

(seconds)
min 0 12 4.04
max 32 28 384.07
mean 10.10 17.45 84.08

TABLE V
RESULTS FOR PR-2 WITH LINEAR INTERPOLATIONS.

D. Result analysis

The average time of computation ranges from a 6 seconds
to more than one minute for linear interpolations, and from
around 20 seconds to 2 minutes for Bezier curves. The
average number of iterations ranges from 25 to 56 for linear
interpolations and from 27 to 100 for Bezier curves.

Note that for the same initial trajectory, Bezier curves have
approximately twice as many parameters. This explains why
the maximal number of iterations is higher.



Fig. 9. PR2 moves a box from one place to another in a kitchen environment.
The box is on the piece of furniture behind the robot in final configuration.

Initial final final cost / number of
cost cost initial cost iterations

min 17.74 4.77 0.14 1
max 40.47 18.55 1 147
mean 28.08 8.64 0.33 48.53

number of number of time of
collisions waypoints computation

(seconds)
min 0 12 7.77
max 71 28 420.63
mean 20.63 17.45 115.06

TABLE VI
RESULTS FOR PR-2 WITH PIECEWISE BEZIER CURVES.

Given the number of collision pairs in each example, and
given the fact that robot bodies are composed of meshes, the
time of computation is very reasonable.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an extension of an existing
path optimization method to the problem of manipulation. The
method has been tested on three benchmarks with satisfactory
results.

The main advantage of the method is that it does not handle
collision avoidance by sampling distance inequality constraints
along the path. Instead, it introduces simple linearized con-
straints.

The main limitation of the method is that waypoint config-
urations that contain a closed kinematic chain – for instance
configuration where a robot grasps an object – are not opti-
mized.

In the future, we aim at addressing this latter issue by
extending the algorithm to non-linear optimization with equal-
ity constraints. We will also test the combination of linear
interpolations and Bezier curves by running first the method
on linear interpolation and then on Bezier currves to make the
resulting trajectory differentiable.
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A geometrical approach to planning manipulation tasks.
the case of discrete placements and grasps. In 5th

International Symposium on Robotics Research, Tokyo,
Japan, 1989.

[2] Dmitry Berenson, Siddhartha S Srinivasa, and James
Kuffner. Task space regions: A framework for pose-
constrained manipulation planning. The International
Journal of Robotics Research, page 0278364910396389,
2011.

[3] M. Campana, F. Lamiraux, and J. P. Laumond. A
gradient-based path optimization method for motion
planning. Advanced Robotics, 30(17-18):1126–1144,
2016. doi: 10.1080/01691864.2016.1168317. URL
https://hal.archives-ouvertes.fr/hal-01301233.

[4] S. Dalibard, A. Nakhaei, F. Lamiraux, and J.P. Laumond.
Manipulation of documented objects by a walking hu-
manoid robot. In IEEE International Conference on
Humanoid Robots (Humanoids), pages 518–523. IEEE,
2010.

[5] Andrew Dobson and Kostas Bekris. Planning representa-
tions and algorithms for prehensile multi-arm manipula-
tion. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 2015.

[6] Mamoun Gharbi, Juan Cortés, , and Thierry Siméon.
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Kaarina Seppälä, Mylène Campana, Nicolas Mansard,
and Florent Lamiraux. Hpp: a new software for con-
strained motion planning. In IEEE/RSJ Intelligent Robots
and Systems, October 2016.

[17] Dennis Nieuwenhuisen, A Frank van der Stappen, and
Mark H Overmars. An effective framework for path
planning amidst movable obstacles. In Algorithmic Foun-
dation of Robotics VII, pages 87–102. Springer, 2008.

[18] Jun Ota. Rearrangement of multiple movable objects-
integration of global and local planning methodology. In
Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, volume 2, pages
1962–1967. IEEE, 2004.

[19] S. Karaman Sertac and E. Frazzoli. Sampling-based
algorithms for optimal motion planning. International
Journal of Robotics Research, 30(7):846–894, 2011.
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