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Abstract

This document is a technical report providing calculation details of agregation rules for safety case
confidence propagation. Belief theory is used to express and propagate this confidence, and safety cases are
modeled with GSN (Goal Structuring Notation).

1 Introduction

Following the study published in [1], we propose in this technical report an update of the formulae for con-
fidence propagation. In the same direction as [1], we use the same argument types ([A_;p;] infer C) and
AP [p; infer C], which express respectively the relation of conjunction and disjunction between premises. The
inference between the premises and the conclusion can be expressed either by an equivalence operator [3, 2, 4, 5]
or an implication operator. In this report, we focus on arguments that only use an implication operator. There-
fore, we define three argument types for basic patterns that can be found in an argument modelled with GSN
(Goal structuring Notation). Then, we calculate the formulae to compute belief and disbelief of the top con-
clusion of these arguments, through a combination rule aggregating pieces of information about premises and
rules.

2 Argument types aggregation rules

In [1], we saw that the use of implication is more appropriate than equivalence. However, using only implication
from premises to conclusion sets the degree of disbelief to zero, even if the degree of disbelief in premises is not
null. Indeed modus ponens can only infer C from (p,p = C) and can never infer ~C. To address this issue, we
use two types of rules. The first type can only infer the acceptance of the conclusion, and the second can only
infer its rejection (when the premises are false).

2.1 Direct and inverse rules

As we presented above, we introduce two types of rules for each argument type. The first will be named “direct
rule” which only states that when the premise is true, the the conclusion is also true (rqg; = p; = C). The
second will be named “inverse rule”. In the same way, it can only indicate that when the premise is false,
the conclusion is also false (7n, = —p; = —C). Remember that a rule defines the way in which one or more
premises support a conclusion.

Note that the use of these two rules at the same time is exactly an equivalence here broken into two pieces
((p=C) = (fp= C) A[-p = ~C)).

In the following types, we are going to assign a simple support mass function to each rule.

Type 1 (Conjunction) :



o rgir = (AN1p;) = C:
Mair ([Ni21pi] = C) and ma;r (2) = 1 — mair ([NiZypi] = C) (1)
® riny = 2(AfLypi) = ~C
Mino (~(Aj21pi) = =01) and My (Q) = 1 = Miny (—(ATZ1pi) = —C) (2)

Note that the rule in (2), is equivalent to the conjunction of the inverse rules of the disjunctive type. This
equivalence will affect the form of the confidence formula.

=(Aizipi) = —C = (ViL —pi) = ~C
= N2y (pi = =0)

Notice that : [A;(p; = C)] = [(VILipi) = C].

Type 2 (Disjunction) :
o r4ir = A" [pi = C]:
M (pi = C) and my,, () =1 = mi, (pi = O) (3)
® Tiny = Nimg[7pi = —C)
Miny(—p; = ~C]) and mj,, (Q) = 1 = miy,, ([-p; = ~C]) (4)

The disjunctive rules that we can be use in this case are : ([Vi,p;] = C) and (—[(Vi,p;] = —C). However,
we choose the form of equations (3) and (4) because it is more easy to grasp.

Niei(pi = C) = (Vieipi) = C
~(Vicipi) = —C = (N —pi) = ~C
Type 3 (Hybrid) :
The third argument type (hybrid) is a combination of two types (conjunctive and disjunctive). We associate to

each proposition of this type a single mass function. To avoid redundancy, we eliminate the conjunctive inverse
rule.

o 74 = (Nypi) = C.
o riir = Ny lpi = Cl.

® Tiny = Ny [7pi = 2C]).

2.2 Aggregation formulas

In this section, we use only the Dempster-Shafer rule of combination, without normalisation, to calculate the
aggregation formulas. For simplification reasons, we take the example of a conclusion (C) supported by two
premises (p1) and (p2) to calculate aggregation formulas in each type. Then, we induce the general formulas.

Type 1 (C-Arg): To obtain the combination formula of a C-Arg, we combine the premises (table 1) and
then the rules (direct and inverse) related to the premises (table 2). Then, we combine the results (m,.) with
the focal sets (m,) obtained from the combination of mass function on premises (table 1). Table 3 presents the
results of this combination.

Table 1: Combination of the masses on premises

[mp =mp ®@my [[ mp(p2) | mp(op2) [ mp(T) |
my(p1) p1 A p2 p1 A p2 P1
m,(=p1) -p1Ap2 | -prA-p2 | —p1
my(T) D2 —p2 T




Table 2: Combination the direct and inverse rules

l My = Mgir @ Miny H mdi’!‘([pl A PQ] = C) [ mMry (T) l
Miny (=[p1 A p2] = —C) (prApP2)=C —(p1 Ap2) = —C
Miny(T) (p1 Ap2)=C T

Table 3: Combination of the premises with the rules

[m=mp@m: [[ m-(((prAp2) =C] [ mr(Ip1 Ap2] = C) [ mr(Slp1 Ap2] = —C) [ me(T) ]
myp(p1 A p2) PLAP2AC piApaAC p1 A Dp2 p1 A p2

mp(—p1 A p2) —p1 Apo A=C p2 A (p1 = C) —p1 Apo A=C —p1 A p2

mp(pl A —p2) p1 A —po A =C p1 A (p2 = C) p1 A —-po A C p1 N\ —p2

mp(ﬁpl A —p2) op1 A opo A C —p1 A —p2 -pL A opa A 2C —p1 A —p2
mp(p1) PiA(p2=C) p1A(p2 = C) p1 A (-p2 = -C) P1
mp(—=p1) oo AC —p1 —p1 A=C —p1
myp(p2) p2 A (p1=C) p2 A (p1=C) p2 A (=p1 = =C) P2
mp(—p2) —po A =C —p2 —po A =C —p2
mp(T) [(p1 A p2) = O] [P Aps]=C —lp1 Apa] = ~C 1

belc(C) = my(p1 Ap2) X me([p1 A p2] = C) +myp(p1 Ap2) X my([p1 A p2] = C)

[m([p1 A p2] = C) +m,([p1 Ap2] = C)] x my(p1 A p2)

= [mgir([p1 A p2] = C) X Miny(=[p1 A p2] = —C) + mair([p1 A p2] = C)x
(1 = mino(=[p1 A p2] = =C))] x my(p1 A p2)

= my,(p1)m:(p2)mair ([p1 A p2] = C)

= bel;(pl)beli(pg)belé([pl Apo] = C)

disbc(C) = m,([p1 A p2] = C) x [my(=p1 A p2) +myp(p1 A =p2) + mp(=p1 A =p2) + my(—p1) + my(—p2)]+
m.([p1 A p2] = C) x [my(=p1 Apa2) +mp(p1 A —p2) +my(=p1 A =p2) + mp(=p1) + mp(—p2)]
= [m,([p1 Ap2] = C) +m.([p1 A p2] = C)] x [my(=p1 A p2) + myp(p1 A —p2) + my(=p1 A —p2)
+ myp(=p1) + mp(—p2)]
= {mair([p1 A p2] = C)) X Mino([7p1 A ~p2] = =C) + My ([-p1 A —p2] = —C)x
(1 — mair([p1 A p2] = O} x {my(=pl)ym?(p2) + my(p1)m2(=p2) + mp(~pl)my(—p2)
+ my, (=p1)[1 = m2(p2) — m(=p2)] + mp (=p2)[1 — my(p1) — my,(—p1)]}

= Mino ([7p1 A =p2] = =C) x [m),(=p1) +m2(=p2) — my(=p1)m?(=p2)
= My ([7p1 A —p2] = =C) x [1 = (1 —mp(=p1))(1 — m2(—p2))]
= bel ([-p1 A —p2] = ~C) x [1 — (1 — disby,(p1))(1 — disb) (p2))]

We can generalize the resulting formulas for a C-Arg in the following :

bels(C) = belw (INypi] = ) [ bely (1) (5)
and "
disbc(C) = bels (=[ALypi] = ~C) x (1 - H[l — disb,(p:))) (6)

Equation (5) expresses a Multivalued conjunction. To be equal to one, all the confidence degree in the
premises should be equal to one too (assuming that the degree of confidence in the rule is maximal). On the
other hand, equation (6) does not express a pure Multivalued conjunction of the disbelief case. Instead, it
combines the beliefs of a disjunctive form of premises with a conjunctive form of the inverse rule. The nature

of this formula is explained above.
Type 2 (D-Arg) : To obtain the combination formula of a D-Arg, we are going to combine the rules (direct

and inverse) related to each premise (table 4). Then, we are going to combine each premise (p;) with the
formulas resulting from the rules combination (table 5). Finally, we are going to combine the previous table for

the two premises (tables 6 and 7).



Table 4: Combination the direct and inverse rules of D-Type

l m _ mdzr ® mmv H mzlir(pi = C) [ mMry (T) l
mznv (—\pz = _‘C) pi = C -pi; = -C
My, (T) pi = C T

From table 4, we can calculate the masses of the four focal set resulting from this combination. For instance,
mi(p; = C) = mY,(pi = C) x ml;, (=p; = —C). And since we use propositional variables for which the
frame of discernment has two states : Q = {True, False}. The masses of each rule is equal to its belief degree
(The same remark goes on premises). So we can also write that : mi(p; = C) = bel=(p; = C) = bel=(p; =
C) x bel (—p; = ~C).

Table 5: Combination of each premise with its rule

mi=mi,emi [ mi(pi=C) [ mi(pi=C) [ mi(-pi=~C) [ mi(T) |
my, (pi) piNC piNC pi pi
m%(—‘fl’z‘) —p; A =C —Pi —py A =C —p;

In the same way as in table 4, we can calculate from table 5 the masses of the 8 focal sets resulting from
this combination (p; A C, —p; A =C, p;, —p;, p; = C, —p; = =C,p; = C and the tautology (T)).
For example the mass or belief degree in the focal set p; A C' is calculated as the following :

bel(p; A C) =m;(p; AC)
Dbi
Di
i
pi)my.(pi = C)
bel, (pi)bell, (p; = C)

( C’)+m(pl)xm(p,¢0)
[m;.(pi = C) +my(p; = C)]
[mdlr(pl = C) X mznv(_'pl = _'C) + mdzr(pl = C) (

- mznv(_'pl = _'C)]

3533

(pi) x
(i)
(i)
(i)

A
p
%
p
4
p
4
p
l

Notice that the belief degree of equivalence and implication can be deduced from table 4.
In tables 6 and 7, we calculate m; @ mo which represents respectively the combination of each premise with
its rules (direct and inverse). Due to lack of space we split the table into two sub-tables.

Table 6: Combination of premises and the rules (part 1)

[ m=mi@ma [[ ma(2AC) [ ma(=p2A-C) | ma(p2) ma(—p2) |
mi(p1 A C) pLAp2 ANC 0 p1Ap2 AC p1LA(=p2) AC
m1(—p1 A =C) 0 —p1 A opo—=C —p1 Apo—C —p1 A 2po=C
m1(p1) p1LApaANC p1 A opeoC p1 A p2 p1 A —p2
mi1—p1 (-p1) Ap2 AC | Zp1AopeoC —p1 A p2 —p1 A —p2
m1(p1 = C) p2 ANC op1 A opaoC p2 A (p1 = C) —p2 A (p1 = C)
ml(ﬁp1 = ﬁC) p1 Ap2 A C —p2 A =C p2 N\ (ﬁpl = ﬁO) —p2 A (ﬁpl = ﬁC)
ml(pl EC) p1 Apa AC =p1 A =po—~C pz/\(Pl EC) —\pz/\(pl EC)
m1 (T) pa2 ANC —pa A =C P2 —p2
Table 7: Combination of premises and the rules (part 2)

[ m=mi Q ma H ma(p2 = C) [ ma(—p2 = ~C) [ ma(p2 = C) [ ma(T) ]
m1(p1 A C) p1 ANC p1Apa ANC p1Ap2 AC p1 AC
m1(—p1 A =C) op1 A —pa=C —p1 A =C —p1 A —pa—=C —p1 A =C
m1(p1) p1LA(p2 = C) p1 A (mp2 = =C) P A(p2=C) P1
mi(=p1) —p1 A (p2 = C) —p1 A (=p2 = —C) —p1 A (p2 =C) —-p1
mi(p1 = C) (p1Vpe)=C (p1V—p2)=C (pr=C)A(p2=C) p1=>C
m1(—p1 = -C) (-p1Vp2) = C (=p1 V 2p2) = -C (=p1 = -C)A(p2=C) | -p1 = C
mi(p1 = C) 2= C)ANP1=C) | (p2=~C)A(p1 =0) P1=C)A@2=0) pr=C
m1(T) p2 = C —p2 A ~C' p2=C T

From tables 6 and 7, we can calculate the belief and disbelief degrees in a conclusion supported by two



premises expressing disjunction relation. And then, we can deduce the general formula.

bel-(C) = m(p1 Apa AC) +m(p1 A —p2 AC) +m(=p1 Apa AC) +m(p1 AC) +m(pa AC)
=mi(p1 AC) X ngqbg + ma(p2 A C) % Zml 1) —mi(p1 A C) x ma(p2 A C)
P2
= my(p1)[mi(p1 = C) +my(p1 = C)] + mp(pQ)[mr(pz =C)+mi(p2 = C)]
—my(p1)[me(p1 = C) +my(p1 = O)] x mi(p2)[m(p2 = C) +mi(pi = O]
=1— {1 —=my(p1)[my(pr = O) +my(pr = O]} x {1 — mi(p2)[m7 (p2 = C) +m7(p2 = O)]}
=1~ {1 —my(p1)mg;, (p1 = O)] x [1 —my (p2)mi;, (p2 = O]
=1—[1— bel)(p1)bell, (p1 = O)][1 — bel’(p1)bel2, (p2 = C)]

Note that : belf (C) represents the confidence degree before normalizing.
Normally, due to the appearance of conflict between premises, we should normalize by (1 — m(0)) the conflict
coefficient. This conflict is represented by empty intersection between the focal sets. In our case, it appears
when we one premise supporting the conclusion is verified and the other is not ([p; A C] A [=p; A =C1]). At this
step, we choose not to normalize.

n

m(@) = > [bel(pi)bel’s (pi = C) x disb)(p;)bell, (—p; = —C)] (7)
i=1,ji
Noting bel’,(C) as the belief degree of the conclusion supported by one premise. We can generalize this

formula for (n) premises.
n

belo(C) =1 =[] [1 - belis(C)] (8)

i=1

Following the same reasoning the generalize formula of disbelief degree is :

disbo(C) =1 [][1 = disb(C)] (9)
i=1
Where : ‘ ‘ ‘
bel (C) = bell (pi)bel’, (p; = C)
and

disb (C) = disbl, (p;)bel’, (—p; = —C)

To get a total confidence in the conclusion ((dis-)belief degree = 1). It is only required that the degree of
confidence (or defiance) in one premise supporting the conclusion (bel’,(C)) be equal to one. These formulas
(equations 8 and 9) express a Multivalued disjunction relation because each premise can infer the verification
or rejection of the conclusion alone.

Type 3 (H-Arg) : To calculate the confidence combination formulas in this argument type, we are going
to combine focal sets of tables 6 and 7 (to avoid repetition) with the conjunctive rule of equation (1) in table
8. Then, we are going to deduce the general formulas.

m(C) = my(C) +my(C)

where : m1(C) represents the confidence from the disjunctive part of the argument type and my(C'), represents
the confidence from the conjunctive part.

ma(C) =m(p1 Apa AC)
ma(p1 A p2) X me([p1 A pa] = C)
= me([p1 Apa] = C) x {my(p1)[1 = my(p1 = C) x my(pr = C)]
+mp(p2) X [ —mZ(pz = C)m?(p2 = C)]}
= me([p1 Apal = C) x {my(p1)[1 — mi(p1 = C)] x m3(p2)[1 — mi(p2 = C)]}
= bel— ([p1 A p2] = C) x bely(p1)bel>(p2)[1 — bell, (p1 = C)][1 — bel2, (p2 = C)]



Table 8: Combination the direct and inverse rules of H-Type
m=mgqg® me H me([AP_ pi] = C) me(T)
mg(p1) p1 A [p2 = C] P1
ma(—p1) —p1 —p1
ma(p2) p2 Alp1 = C] P2
ma(—p1) —p2 —p1
ma(p1 A p2) pLApaAC P1 A p2
ma(p1 A —p2) P1 A p2 p1 A T2
ma(—p1 A p2) —p1 A D2 —p1 A p2
ma(—p1 A ~p2) —p1 A T2 —p1 A —p2
md(pl ﬁC) P1 = C P1 =C
mg(—p1 = —C) (=p1 = —C) A ([p1 Ap2] = C) -p; = =C
mg(p2 = C) p2 = C p2 = C
mg(—p2 = —0) (=p2 = =C) A ([pr Ap2] = C) —p2 = ~C
mg(p1 = C) ppr=C pr=C
mg(p2 = C) p2=C p2 =C
mq(p1 AC) pANC pL AC
md(pz/\c) pg/\C pz/\o
md(ﬁpl N ﬁC) =p1 A -C —p1 A =C
md("pz A\ ﬁC) =po A =C —po A =C
md(pl/\pg/\c) pl/\pg/\C pl/\p2/\c
mg(—p1 Ap2 AC) p1 Ap2 AC —prt Ap2 AC
mg(p1 A —p2 AC) prA-p2 AC p1 A-p2 AC
mg(—p1 A —p2 A =C) —p1 A —po A =C —p1 A —po A =C
mg(p1 A —p2 A =C) p1 A —pa A =C p1. A —po A=C
mq(—p1 A p2 A —-C) —p1 Apa A=C —p1 Aps A=C
mqg(p1 A [p2 = C]) p1 A[p2 = C p1 A |p2 = C|
mq(p1 A [p2 = C]) PiA[p2=C p1 A [-p2 = (]
mq(p1 A [p2 = C)) PiA[p2=C p1A[p2 =C]
mg(—p1 A [p2 = CJ) —p1 A [p2 = C] —p1 A [p2 = C]
mg(—p1 A [-p2 = —CY) —p1 A [=p2 = —C] —p1 A [=p2 = —=C]
mg(—p1 A [p2 = C)) -p1 A [p2 = C] —p1 A [p2 =C]
mqg(p2 A [p1 = C)) p2 A [p1 = C] p2 A lp1 = C]
mg(p2 A [=p1 = =C]) p2 A[p1 =C] p2 A [-p1 = =C]
ma(p2 A [p1 = CJ) p2 A (p1 =C) p2A(p1=C)
ma(=p2 A [p2 = C]) -p2 A (p1 = C) —p2 A (p1 = C)
ma(=p2 A [-p1 = =C]) —p2 A (=p1 = =C) —p2 A (=p1 = =C)
ma(—p2 A [p1 = C)) —p2 A (p1 =0) -p2 A (p1 =0C)
mg([p1 = C] A [p2 = C]) (p1=C)A (2= C) A (NPl = O) P1=C)A(p2=0C)
mg([~p1 = ~C] A [p2 = C]) (=p1 = ~C)A (p2 = C) A ([Nypi]l = C) (=p1 = ~C) A (p2 = C)
mq([p1 = C] A [-p2 = -C]) (p1 = C) A (zp2 = =C) A ([N pil = C) (p1 = C) A (zp2 = =C)
mq([-p1 = —C] A [-p2 = —C)) N pi] =C (=p1 = —=C) A (—p2 = =C)
ma([p1 = C] A [p2 = C)) (Pr=C) A (p2 = CO) A ([A2pi] = C) (Pr=C) A (p2 = O)
mg([p1 = C] A [-p2 = =C]) (p1 = C) A (mp2 = —C) A (A7 pi] = C) (p1 = C) A (zp2 = =C)
mg([p2 = C] A [p1 = C)) (P2 =C)A (p1 = C) A (N pil = C) (p2=C)A(p1=C)
ma([p2 = C] A [-p1 = =C) (p2 = C) A (=p1 = -C) A ([N pi] = O) (p2 =C) A (=p1 = —=C)
ma([p1 = CT A [p2 = C)) (p1=C)Alp2 =C] PrL=C)A(p2 =0C)
mq(0) 0 [
mg(T) (Afqpi) = C

-

From tables 6 and 7, we get :

ma(C) =1 —[L—my(p1)m(p1 = C)][1 — my(p1)my(p1 = C)]

=1-[1- bel;(pl)bel;(pl = O)|[1 - belg(pl)beli(m = C)]
So :

belc(C) = bel ([p1 A p2] = C) x {bel}(p1)bel2(p2)[1 — bell, (p1 = O)][1 — bel2, (p2 = C)]}
+{1 = [1 = el (p1)bell, (pr = O)[1 — belz (pr)bel2, (p2 = C)]}

We can generalize the resulting formula for an H-Arg in the following :

belc(C) = bel ([Nf=ypi] = C) x [ [ bely(pi)[1 — bell, (p; = C)] + {1 — [ ][1 — bel, (pi)bel’, (p; = C)]}  (10)
i=1 i=1
We can notice from this equation is mixture of the conjunctive and disjunctive type. If masses on (p; = C)

are equal to zero, the equation become the formula representing the conjunctive type. In the other hand, if the
mass on ([A"p;] = C) is null, we get the formula of an disjunctive type.



The formula of disbelief remain the same as a D-Arg, because we used the same inverse rules. We also notice

that the formula of m(@) does not change from D-Arg to H-Arg.

disbo(C) =1 — [ ][I — disb(C)] (11)

i=1

Where :

3

disby (C) = disbl, (pi)bel’, (~p; = —C)

Conclusion

This report presents the method of calculation of three argument type using Dempster-Shafer rule of combi-
nation. We have chosen to not take into account the conflict in these formulas. However, it can be taken
into consideration either by normalizing by the degree of conflict (1 — m(0)) or by subtracting the masses that
represent the conflict (m()).
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