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Abstract

The coordination and control of hierarchically organized in-
teracting agents is an important issue in many applications,
e.g., harbor or warehouse automation. A formalism of agents
as hierarchical input/output automata is proposed. A system
of interacting agents is modeled as the parallel composition of
their automata. We extend the usual parallel composition op-
eration of I/O automata with a hierarchical composition oper-
ation for refining abstract tasks into lower-level subtasks. We
provide an algorithm to synthesize hierarchically organized
controllers to coordinate the agents’ interactions in order to
drive the system toward desired states. Our main contribu-
tion regards the formal definition, the representation, the the-
orems about its properties (i.e., the parallel and hierarchical
composition are distributive operations), and the synthesis al-
gorithm, proved to be complete and correct.

1 Motivation
Consider a collection of collaborative agents, having differ-
ent capabilities and programmed to do different things under
different conditions. Given a complex task or goal to accom-
plish, and a description of how each agent behaves, how can
we organize the agents and manage their interactions in or-
der to jointly accomplish a desired objective?

In this paper we provide a representation framework and
algorithms for the above problem. In our formalism, the
agents are represented as hierarchical input/output automata.
Our algorithms synthesize a hierarchically organized collec-
tion of finite-state controllers for managing the interactions
among the agents in order to achieve the goal.

As a motivating example, consider a warehouse automa-
tion infrastructure such as the Kiva system (D’Andrea 2012)
that controls thousands of robots moving inventory shelves
to human pickers preparing customers orders. According to
(Wurman 2014), “planning and scheduling are at the heart
of Kiva’s software architecture”. Right now, this appears to
be done with extensive engineering of the environment, e.g.,
fixed robot tracks and highly structured inventory organiza-
tion. A more flexible approach for dealing with contingen-
cies, local failures, modular design and easier novel deploy-
ments, would be to model each agent (robot, shelf, refill, or-
der preparation, etc.) through its possible interactions with
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the rest of the system, and automatically synthesize control
programs to coordinate these interactions.

The idea of composing finite-state automata into a sys-
tem has been used for a long time for system specification
and verification, e.g., (Harel 1987). Although less popular,
it has also been used in the field of automated planning for
applications that naturally call for composition, e.g., plan-
ning in web services (Pistore, Traverso, and Bertoli 2005;
Bertoli, Pistore, and Traverso 2010), or for the automation
of or a large infrastructure (Bucchiarone et al. 2012).

In our approach, each agent is modeled as an input/output
automaton σ whose state transitions are governed by mes-
sages that are sent to and received from the other agents.
If Σ = {σ1, . . . , σn} is a set of such agents, planning for
them does not mean generating a plan or policy as is typi-
cally done in AI planning. Instead, it means synthesizing a
control automaton σc to manage the interactions among the
agents in Σ. The agents don’t send messages to each other
directly, but instead send them to σc, which receives their
messages and decides which messages to send to the agents
to drive them toward a desired goal. Nondeterministic plan-
ning techniques can be used for synthesizing σc.

Known automata techniques are very useful, but but have
several restrictions that limit their scope for our purpose. A
large system such as a harbor (Bucchiarone et al. 2012) or a
logistics network (Boese and Piotrowski 2009) is generally
both distributed and hierarchical:

• These aren’t tightly-integrated monolithic systems. They
are composed of agents that may even be geographically
distributed. It is more convenient and scalable to rely on
distributed controllers to coordinate their actions.

• Agents are composed hierarchically of components for
various subtasks. One chooses which components (from
among various alternatives) to incorporate into an agent.

The problem of generating a distributed hierarchy of con-
trollers for such agents is novel in the field. It initially re-
quires a theoretical basis, which is the purpose in this paper
(no application nor experimental results are reported here).
Our contributions are:

• We formally define the notion of refinement for hierar-
chical communicating input/output automata, call them
IOAs, and propose a formalization of planning and acting
problems for interacting agents in this original framework.



• We provide theorems about the main properties of this
class of automata. In particular, the operations of paral-
lel composition and refinement are distributive. The proof
of this critical feature for the synthesis algorithm requires
careful developments.

• Distributivity allows us to show that the synthesis of a hi-
erarchical control structure for a set of IOAs can be ad-
dressed as a nondeterministic planning problem.

• We propose a new algorithm for solving this problem, and
discuss its theoretical properties.

In the following, we develop the representation, its prop-
erties and the algorithm synthesising a hierarchical con-
trol structure with multiple distributed controllers; we then
present the state of the art, future work and conclusion.

2 Representation
The proposed formalism relies on a class of automata en-
dowed with composition and refinement operations. Further-
more, both agents and their components are modeled as hier-
archical IOAs, hence in describing the formalism we some-
times will use “agent” and “component” interchangeably.

Automata. The building block of the representa-
tion is a particular input/output automata (IOA) σ =
〈S, s0, I, O, T,A, γ〉, where S is a finite set of states, s0 is
the initial state, I,O, T and A are finite sets of labels called
respectively input, output, tasks and actions, γ : S × (I ∪
O∪T ∪A)→ S is a deterministic state transition function.
Our definition of IOA is similar to that (Lynch and Tuttle
1988) apart from the fact that we also have transitions that
are tasks that can be hierarchically refined. The IOA uses its
inputs and outputs to interact with other IOAs and the envi-
ronment. The semantics of an IOA views inputs as uncon-
trollable transitions, triggered by messages from the exter-
nal world, while outputs, tasks, and actions are controllable
transitions, freely chosen to drive the dynamics of the mod-
eled system. An output is a message sent to another IOA; an
action has some direct effects on the external world. No pre-
condition/effect specifications are needed for actions, since a
transition already spells out the applicability conditions and
the effects. A task is refined into a collection of actions. We
assume all transitions to be deterministic.

We define a state of an IOA as a tuple of internal state
variables each of which keeps track of a particular informa-
tion relevant for that IOA (a representation similar to the
one described in Chapter 2 of (Ghallab, Nau, and Traverso
2016)). States are a tuple of state variables’ values, i.e.,
if {x1, . . . , xk} are the state variables of σ, and each has
a finite range xi ∈ Di, then the set of states is S ⊆∏
i=1,kDi, where Di is a finite set of values that determine

the range of the state variable xi. We assume that for any
state s ∈ S, all outgoing transitions have the same type, i.e.,
{u | γ(s, u) is defined} consists solely of either inputs, or
outputs, or tasks, or actions. For simplicity we assume s can
have only one outgoing transition if that transition is an out-
put, action or a task. Alternative actions or outputs can be
modeled by a state that precedes s and receives alternative
inputs, one of them leading to s.

Figure 1: An IOA σd for a spring door. The bold incoming
arrows are inputs of σd coming from other IOAs or the en-
vironment. The outgoing arrows are messages sent by σd to
other IOAs. The red transition ‘close’ is a command.

Note that despite the assumption that our transition func-
tion γ is deterministic, an IOA can model nondetermin-
ism through its inputs. It may receive multiple different in-
puts at any particular state. These inputs can be messages
from external world modeling nondeterministic outcomes
of events or commands. For example, a sensing action a
in state s is a command transition, 〈s, a, s′〉; several input
transitions from s′ model the possible outcomes of a; these
inputs to σ are generated by the external world. A run of
an IOA is a sequence 〈s0, u0, . . . , si, ui, si+1, . . .〉 such that
si+1 = γ(si, ui) ∀i. It may or may not be finite.
Example 1. The IOA in Figure 1 models a door with a
spring-loaded hinge that closes automatically when the door
is open and not held. To open the door requires unlatching it,
which may not succeed if it is locked. Then it can be opened,
unless it is blocked by some obstacle. Whenever the door is
left free, the spring closes it (the “close” action in red).

Parallel Composition. Consider a system Σ =
{σ1, . . . , σn}, with each σi modeled as an IOA. These com-
ponents interact by sending output and receiving input mes-
sages, while also triggering actions and tasks. The dynam-
ics of Σ can be modeled by the parallel composition of the
components, which is a straightforward generalization of the
parallel product defined in (Bertoli, Pistore, and Traverso
2010) which is same as the asynchronous product of au-
tomata. The parallel composition of two IOAs σ1 and σ2 is
σ1‖σ2 = 〈S1×S2, (s01 , s02), I1∪I2, O1∪O2, T1∪T2, A1∪
A2, γ〉, where γ((s1, s2), u)

=

{
γ1(s1, u)× {s2} if u ∈ I1 ∪O1 ∪A1 ∪ T1,
{s1} × γ2(s2, u) if u ∈ I2 ∪O2 ∪A2 ∪ T2.

By extension, σ1 ‖σ2 ‖σ3 ‖ . . .‖σn is the parallel compo-
sition of all of the IOAs in Σ. The order in which the com-
position operations is done is unimportant, because parallel
composition is associative and commutative.1

We assume the state variables, as well as the input and
output labels, are local to each IOA. This avoids potential
confusion in the definition of the composed system. It also
allows for a robust and flexible design, since components
can be modeled independently and added incrementally to
a system. However, the components are cooperative in the
sense that all of them have a common goal.

If we restrict the n components of Σ to have no tasks
but only inputs, outputs and actions, then driving Σ towards

1Proofs of all of the results stated in this paper are at
〈http://www.cs.umd.edu/%7Epatras/PatraFLAIRS21proofs.pdf〉.



(a) (b) (c)
Figure 2: (a): An IOA for a robot going through a doorway. (b): The IOA σmove of a method for the move task. (c): The IOA
σmonitor of a monitoring method.

a set of goal 2 states can be addressed with a nondeter-
ministic planning algorithm for the synthesis of a control
automaton σc that interacts with the parallel composition
σ1 ‖ σ2 ‖ σ3 ‖ . . . ‖ σn of the automata in Σ. The control
automaton’s inputs are the outputs of Σ and its outputs are
inputs of Σ. Several algorithms are available to synthesize
such control automata, e.g., (Bertoli, Pistore, and Traverso
2010). But in this paper, we also allow the components to
have hierarchy within themselves and we generate a hierar-
chical control structure.

Hierarchical Refinement. With each task we want to as-
sociate a set of methods for hierarchically refining the task
into IOAs that can perform the task. This is in principle akin
to HTN planning (Erol, Hendler, and Nau 1994), but if the
methods refine tasks into IOAs rather than subtasks, they
produce a structure that incorporates control constructs such
as branches and loops. This structure is like a hierarchical
automaton (see, e.g., (Harel 1987)). However, the latter re-
lies on a state hierarchy (a state gets expanded recursively
into other automata), whereas in our case the tasks to be re-
fined are transitions. This motivates the following definition.

A refinement method for a task t is a pair µt = 〈t, σµ〉,
where σµ is an IOA that has both an initial state s0µ and a
finishing state sfµ. Unlike tasks in HTN planning (Nau et
al. 1999), t is a single symbol rather than a term that takes
arguments. Note that σµ may recursively contain other sub-
tasks, which can themselves be refined. Consider an IOA
σ = 〈S, s0, I, O, T,A, γ〉 that has a transition 〈s1, t, s2〉
in which t is a task. A method µt = 〈t, σµ〉 with σµ =
〈Sµ, s0µ, sfµ, Iµ, Oµ, Tµ, Aµ, γµ〉 can be used to refine this
transition by mapping s1 to s0µ, s2 to sfµ and t to σt.3 This
produces an IOA, R(σ, s1, µt) = 〈SR, s0R, I ∪ Iµ, O ∪
Oµ, T ∪ Tµ \ {t}, A ∪Aµ, γR〉, where,
SR = (S \ {s1, s2}) ∪ Sµ,
s0R = s0 if s1 6= s0, otherwise, s0R = s0µ,

γR(s, u) =



γµ(s, u) if s ∈ Sµ \ {s0µ, sfµ},
s0µ if s ∈ S and γ(s, u) = s1,

sfµ if s ∈ S and γ(s, u) = s2,

γ(s, u) if s ∈ S \ {s1, s2} and
γ(s, u) /∈ {s1, s2},

γ(s1, u) ∪ γµ(s, u)if s = s0µ,

γ(s2, u) ∪ γµ(s, u)if s = sfµ.

Some runs in σµ may be infinite, some other runs may end
in a state different from sfµ. Note that we don’t require ev-
ery run to actually end in sfµ. Such a requirement would

2goal is represented through a set of states of IOA
3If σ contains multiple calls to t or σµ contains a recursive call

to t, the states of σµ must be renamed to avoid ambiguity. This is
like standardizing a formula in automated theorem proving.

be unrealistic, since the IOA of a method may receive dif-
ferent inputs from other IOA, which cannot be controlled by
the method. Intuitively, sfµ represents the “nominal” state in
which a run should end, i.e., the nominal path of execution.4

Example 2. Figure 2(a) shows an IOA for a robot going
through a doorway. It has one task, move and one action,
cross. It sends to σd (Figure 1 the input free if it gets through
the doorway successfully. The move task can be refined us-
ing the σmove method in Figure 2(b).

Example 3. Figure 2(b) shows a refinement method for the
move task in Figure 2(a). σmove starts with a start monitor
output to activate a monitor IOA that senses the distance to
a target. It then triggers the task get closer to approach the
target. From state v2 it receives two possible inputs: close or
far. When close, it ends the monitor activity and terminates
in v4, otherwise it gets closer again.

Figure 2(c) shows a method for the monitor task. It waits
in statem0 for the input start monitor, then triggers the sens-
ing action get-distance. In response, the execution platform
may return either far or close. In states m5 and m6, the in-
put continue monitor goes tom1 to sense the distance again,
otherwise the input end monitor goes to the final state m7.

Planning Problem. We are now ready to define the plan-
ning problem for this representation. Consider a system
modeled by Σ = {σ1, . . . , σn} and a finite collection of
methodsM, such that for every task t in Σ or in the meth-
ods of M there is at least one method µt ∈ M for task t.
An instantiation of (Σ,M) is obtained by recursively refin-
ing every task in the composition (σ1 ‖ σ2 ‖ ...σn) with a
method in M, down to primitive actions. Let (Σ,M)∗ be
the set of all possible instantiations of that system, which is
enumerable but not necessarily finite. Infinite instances are
possible when the body of a method contains the same or
another task which can further be refined leading to an infi-
nite chain of refinements. A planning problem is defined as
a tuple P = 〈Σ,M, Sg〉, where Sg is a set of goal states.
Each of the initial components in Σ has a set of goal states,
and Sg is the Cartesian product of those sets. In other words,
the job of the synthesized controller is to make the overall
system reach a state such that each component in Σ is in one
of its goal states. It is solved by finding refinements for tasks
in Σ with methods in M. In principle this is akin to HTN
planning, but we have IOAs that receive inputs from the en-
vironment or from other IOAs, thus modelling nondetermin-
ism. We need to control the set of IOAs Σ in order to reach
(or to try to reach) a goal in Sg . For this reason a solution is

4Alternatively, we may assume we have only runs that termi-
nate, and a set of finishing states Sfµ. We simply add a transition
from every element in Sfµ to the nominal finishing state sfµ.



defined by introducing a hierarchical control structure that
drives an instantiation of (Σ,M) to meet the goal Sg .

We use the terminology of (Ghallab, Nau, and Traverso
2016, Section 5.2.3). A solution means that some of the runs
will reach a goal state. Other runs may never end, or may
reach a state that is not a goal state. A solution is safe if all
of its finite runs terminate in goal states, and a solution is
cyclic or acyclic depending on whether it has cycles.5

The hierarchical control structure is a pair 〈Σc, rDict〉
where Σc is a set of control automata and rDict is a task
refinement dictionary. A single control automaton drives an
IOA σ by receiving inputs that are outputs of σ and gener-
ating outputs that act as inputs to σ. σc.σ is the controlled
system, i.e., σ controlled by σc. The definition of controlled
system is similar to the one in (Ghallab, Nau, and Traverso
2016, Section 5.8). rDict is a dictionary which should have
as its keys all of the tasks in Σ and its refinement. rDict[t]
is a method which should be used to refine task t in order
to achieve Sg . So, rDict uniquely defines an instantiation of
(Σ,M). Finally, Σ is controlled by 〈Σc, rDict〉, and the hi-
erarchical controlled system φs = 〈Σc, rDict〉.(Σ,M) will
have one of the following forms:

σc . (φ1 ‖ φ2), where σc ∈ Σc and φ1,φ2 are IOAs;
σc .R(φ3, s, µt), where σc ∈ Σc, rDict[t] = σµ,

φ3 is an IOA and t is a task in state s;
σc . σ, where σc ∈ Σc and σ ∈ Σ.

Above, φ1,φ2 and φ3 are hierarchical controlled systems.
The form it will have depends on the ordering of parallel
and hierarchical composition chosen by MakeCntrlStruct to
synthesize the controller (see Section 3).

Example 4. The IOA on the bottom in Figure 3 is a control
automaton for the IOAs in Figures 1 and 2(a). This control
automaton is for the system when the move task has not been
refined. The IOA on the top controls the refined robot IOA in
Figure 2(b) and the monitor IOA in Figure 2(c).

3 Solving Planning Problems
The algorithm MakeCntrlStruct (Table 1(a)) solves a plan-
ning problem 〈Σ,M, Sg〉 where Σ is a set of IOAs, M is
a set of methods for refining tasks and Sg is a set of goal
states. The solution is a set of control automata, Σc and a
task refinement dictionary, rDict such that Σ driven by Σc
and refined following rDict reaches the desired goals states,
Sg . Depending on how one of its subroutines is configured,
MakeCntrlStruct can search either for acyclic safe solutions,
or for safe solutions that may contain cycles.

Before getting into the details of how MakeCntrlStruct
works, we need to discuss a property on which it depends.
Given a planning problem, MakeCntrlStruct constructs a so-
lution by doing a sequence of parallel composition and
refinement operations. The following theorem shows that
composition and refinement can be done in either order to
produce the same result:

5In (Cimatti et al. 2003), a weak solution is what we call a so-
lution, a strong cyclic solution is what we call a safe solution, and
a strong solution is what we call an acyclic safe solution.

Figure 3: A hierarchical control structure for the ‘door’ (Fig-
ure 1), refined ‘robot’ for going through a doorway (Fig-
ures 2(a) and 2(b)), and the ‘monitor’ (Figure 2(c)). The in-
puts and outputs of the robot, door and monitor are preceded
with r:, d: and m: respectively.

Theorem 1 (distributivity). Let σ1, σ2 be IOAs, 〈s1, t, s2〉 be
a transition in σ1, and µt = 〈t, σµ〉 be a refinement method
for t. Then R(σ1, s1, µt) ‖ σ2 = R(σ1 ‖ σ2, s∗1, µt), where
s∗1 = {(s1, s)|s ∈ Sσ2

}.
Thus the algorithm can choose the order in which to do

those operations (line (*) in Table 1(a)), which is useful be-
cause the order affects the size of the search space.

Algorithm. Table 1(a) shows our algorithm for synthe-
sizing hierarchical control structures using planning. It does
a sequence of parallel and hierarchical compositions of the
IOAs in Σ until there are no more unrefined tasks and all
pairs of interacting components have been composed.

As discussed in the previous section, (Σ,M)∗ is the set
of all possible instantiations of our system, which is enumer-
able but not necessarily finite. Among this set, some instanti-
ations are desirable with respect to our goal. The while loop
in MakeCntrlStruct implicitly constructs an instantiation of
(Σ,M) by doing a series of parallel and hierarchical com-
positions. In each iteration of the loop the algorithm makes
the choice of whether to do a parallel composition or a re-
finement. The size of the search space depends on the order
in which the choices are made. In an implementation, the
choice would be made heuristically. We believe some of the
heuristics will be analogous to constraint-satisfaction heuris-
tics (Dechter 2003). The while loop exits when the implicit
instantiation of (Σ,M) is complete, i.e., there are no more
tasks to refine, and all interactions between pairs of IOAs
have been taken into account through parallel composition.

When MakeCntrlStruct chooses to compose, it uses the
MakeCntrlAutomaton subroutine to create a control automa-
ton σcij for a pair of IOAs σi and σj which interact with each
other. σi and σj are randomly selected from Σ. We do not in-
clude pseudocode for MakeCntrlAutomaton, because it may
be any of several planning algorithms published elsewhere.
For example, the algorithm in (Bertoli, Pistore, and Traverso
2010) will generate an acyclic safe solution if one exists, and
(Bertoli, Pistore, and Traverso 2010) discusses how to mod-
ify that algorithm so that it will find safe solutions that aren’t
restricted to be acyclic. Several of the algorithms in (Ghal-
lab, Nau, and Traverso 2016, Chapter 5) could also be used.



MakeCntrlStruct (Σ0,M, Sg) . (a)
Σ← Σ0; Σc ← ∅; rDict← empty dictionary
while (there are unrefined tasks in Σ or |Σ| > 1):

nondeterministically choose
which-first ∈ {compose, refine} (*)

if (which-first = compose):
select σi, σj ∈ Σ and remove them
σcij ← MakeCntrlAutomaton (σi ‖ σj , Sg)
if σcij is a failure, then return failure
else: Σc ← Σc ∪ {σcij}

Σ← Σ ∪ {σcij . (σi ‖ σj)}
else if (which-first = refine):

select σ ∈ Σ which has task t
(transition 〈s1, t, s2〉) and remove it
nondeterministically choose µt ∈M to refine t
tnew ← unique new name for t
rDict[tnew]← σµ; Σ← Σ ∪R(σ, s1, µt)

return 〈Σc, rDict〉

ControlledActingWithIOAs (Σ,M, Sg) . (b)
〈Σc, rDict〉 ← MakeCntrlStruct(Σ,M, Sg)
for σ ∈ Σc ∪ Σ : do ExecuteAsync(σ, rDict, Sg)

ExecuteAsync(σ, rDict, Sg)
s← initial state of σ
while s is not final and s /∈ Sg do
〈s, a, s′〉 ← transition coming out of s
switch (type(a)):

case input: a← ReceiveInput( )
case output: GenerateOutput(a)
case command: ExecuteCommand(a)
case task: σµ ← rDict[a]; ExecuteSync(σµ, rDict, Sg)

s← γ(s, a)
if s ∈ Sg then return Success else return Failure

Table 1: (a): Pseudocode for the controller synthesis algo-
rithm. (b): Pseudocode for running IOAs with a synthesized
hierarchical controlled structure.

If MakeCntrlAutomaton succeeds, we include σcij in our set
of solution control automata, Σc and add the controlled sys-
tem, σcij . (σi ‖ σj) to Σ. Otherwise, we fail and terminate
this nondeterministic branch. Note that, we could allow new
components to enter the system at this stage as follows. In-
stead of selecting σj randomly from Σ, we could lookup the
components that interact with σi select σj from them. This
simple extension allows new agents to join in at any stage of
the synthesis without compromising correctness.

When MakeCntrlStruct chooses to refine, it chooses a re-
finement method µt selected from M to refine t. The task
refinement dictionary rDict maps every instance of all tasks
present in Σ to the body of the most optimal refinement
method for them. So, we add σµ (the body of method µt)
to the task refinement dictionary rDict with key tnew. Notice
that we rename the task t to tnew to identify every instance of
task t uniquely. Then, we add the resulting IOA, after doing
the refinement, to Σ and continue the loop.

MakeCntrlStruct is sound and complete (see footnote 1 for
proof). Completeness guarantees that we find the hierarchi-
cal control structure when it exists, but does not guarantee
that our algorithm will terminate or return “no” when there
is no control structure for the problem.

4 Related Work
To our knowledge, there is no previous formalism for the
synthesis of hierarchical distributed controllers for coordi-
nating multiple agents.

(Ghavamzadeh, Mahadevan, and Makar 2006), (Osen-
toski and Mahadevan 2010) and (Jong, Hester, and Stone
2008) use the notion of hierarchy for multi-agent reinforce-
ment learning. These works allow for a hierarchical repre-
sentation of the target plan, to be executed in a collaborative
manner. In our framework, the hierarchical representation is
in the agent itself; the synthesized controllers coordinate in-
teractions among hierarchical agents.

(Atkin et al. 2001) proposes a Hierarchical Agent Control
Architecture (HAC) with a hierarchical representation of ac-
tions, sensors, and goals. HAC includes a least-commitment
partial hierarchical planner, relying on plan skeletons. Given
a set of goals, plans are retrieved, simulated, and executed.
HAC combines hierarchical planning with reasoning by pro-
cedural knowledge. Our approach is different since we allow
for reasoning about alternative refinements of tasks through
the automated synthesis of controllers.

Hierarchical and procedure based frameworks have been
used in robotic systems, e.g., PRS (Ingrand et al. 1996), RAP
(Firby 1987), TCA (Simmons and Apfelbaum 1998), XFRM
(Beetz and McDermott 1994), and the survey of (Ingrand
and Ghallab 2014). These approaches propose reactive sys-
tems, but none of them is based on a formal account with the
synthesis techniques provided in this paper.

(Hu and Feijs 2003) describes an agent-based architecture
for networked devices, where each agent has a controller.
However, the controller does not control inter-agent com-
munication, and no synthesis of interactions is provided.

Hierarchical planning formalisms (including angelic hi-
erarchical planning (Marthi, Russell, and Wolfe 2007) and
its extension (Marthi, Russell, and Wolfe 2008), (Kuter et
al. 2009)) do not represent agents that interact together and
with the external environment. The hierarchical framework
proposed in (Shivashankar et al. 2012) refines goals instead
of tasks; no synthesis of controllers is provided.

Our approach shares some similarities with the hierarchi-
cal state machines of (Harel 1987), which have been used
for the specification and verification of reactive systems. We
rely on the theory of input/output automata (Lynch and Tut-
tle 1988), which has been used to specify distributed discrete
event systems, and to formalize and analyse communication
and concurrent algorithms. The work in (Kessler et al. 2004)
is based on hierarchical state machines, however no auto-
mated synthesis is provided. There is also a vast amount
of literature on controllers for discrete-event systems, e.g.,
(Wong and Wonham 1996; Mohajerani et al. 2011). All these
works focus on the verification rather than on the synthesis
of hierarchical agents through input/output automata.

I/O automata have also been used to formalize non hier-
archical interactions of web services and to plan for their
composition (Pistore, Traverso, and Bertoli 2005; Bertoli,
Pistore, and Traverso 2010). Our work is also different from
the work in (Bucchiarone et al. 2012; 2013), where abstract
actions are represented with goals, and online planning is
used to generate interacting processes that satisfy such goals.



(David et al. 2010) proposes a theoretical framework for
the specification of real-time systems using timed I/O au-
tomata. It provides constructs for refinement, cosistency
checking, logical and structural composition, and quotient
of specifications. We do not represent and reason explicitly
about time. However, the main difference with our work is
that (David et al. 2010) is a framework for the specification,
design, and verification of timed I/O automata, while we
address a synthesis problem by generating automatically a
control automaton. The same difference holds with (Gunder-
sen et al. 2018), which integrates conformance testing into a
framework for model checking.

Our contribution builds on (Ghallab, Nau, and Traverso
2016, Section 5.8), where a system is defined as the parallel
composition of automata σ1‖ . . . ‖σn, describing the possi-
ble evolutions of its n components. A planner for such a sys-
tem synthesizes a control automaton that interacts with the
σi’s to drive them to specified goals. The approach is shown
to be solvable with nondeterministic planning algorithms. It
is however limited to flat nonhierarchical automata.

5 Future Work and Conclusion
We described a formalism for synthesizing hierarchical con-
trol structure for systems that are composed of communi-
cating components. Components are represented as I/O au-
tomata that support parallel composition and task refine-
ment. The synthesized plans have rich control constructs
such as conditional and iterative plans. We describe a novel
planning algorithm for synthesizing such controllers.

We believe this work provides the basis for the online syn-
thesis of real-time systems, e.g., for web services, automa-
tion of large physical facilities such as warehouses or har-
bors, etc. In our future work, we intend to implement our
algorithm and test it on representative problems from such
problem domains. For that purpose, an important topic of
future work will be to extend our algorithm for use in con-
tinual online planning. This should be straightforward, since
our acting algorithm already synthesizes the control struc-
ture online. As another topic for future work, recall that The-
orem 1 (Distributivity) shows that parallel and hierarchical
composition operations can be done in either order and pro-
duce the same result. The size of the planner’s search space
depends on the order in which these operations are done, and
we want to develop heuristics for choosing the best order.
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