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Introduction

Material or information transfer between several dynamical physical systems can often be modeled by the interconnection of an overall system and a delay element. Such systems are called time-delay systems. Stabilizing or destabilizing effects introduced by the delay have been widely investigated in the literature. [START_REF] Bellman | Differential-Difference Equations[END_REF][START_REF] Hale | Theory of Functional Differential Equations[END_REF][START_REF] Richard | Time delay systems: an overview of some recent advances and open problems[END_REF][START_REF] Gu | Stability analysis of time-delay systems : a Lyapunov approach[END_REF][START_REF] Niculescu | Advances in time-delay systems[END_REF][START_REF] Fridman | Introduction to Time-Delay Systems : Analysis and Control[END_REF] The behavior of linear time-delay systems is provided by the roots of the associated characteristic equation [START_REF] Michiels | Stability and Stabilization of Time-Delay Systems : An eigenvaluebased approach[END_REF][START_REF] Pekar | Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results[END_REF], which is given analytically by Lambert W functions [START_REF] Maghami Asl | Analysis of a system of linear delay differential equations[END_REF]. Numerically, the spectrum location is indeed estimated with approximated finite-dimensional models of the infinite-dimensional part. Padé approximations [START_REF] Golub | Matrix Computations[END_REF] are recognized to be the most used tools to approximate the delay block and traduce the behavior of time-delay systems. Multiple other ways to design these approximated models can also be found in the literature such as pseudo-spectral collocation [START_REF] Breda | Pseudospectral differencing methods for characteristic roots of delay differential equations[END_REF][START_REF] Engelborghs | A Matlab package for bifurcation analysis of delay differential equations[END_REF], spectral least square [START_REF] Vyasarayani | Galerkin approximations for higher order delay differential equations[END_REF] or spectral tau [START_REF] Ito | Legendre-Tau approximations for functional differential equations[END_REF][START_REF] Ito | A Fully-Discrete Spectral Method for Delay-Differential Equations[END_REF] methods, to cite a few. Each spectral technique can take into account Fourier, Chebyshev or Legendre approximation methods. One obtains therefore accurate characteristic roots on compact sets of the complex plane and plots good approximations of the solution. Note that numerical comparative studies on the accuracy [START_REF] Vyasarayani | Spectral approximations for characteristic roots of delay differential equations[END_REF] have been conducted and conclude that models based on Legendre coefficients are efficient most of the time. Surprisingly, none of these approximated models are used to deal with stability. The connection with stability analysis of the original time-delay system is effectively not straighforward. [START_REF] Fioravanti | H ∞ analysis and control of time-delay systems by methods in frequency domain[END_REF] Indeed, if roots are located on the imaginary axis, the convergence properties are not usable to assess the stability. There exists multiple ways to analyze the stability properties of time-delay systems, multiple paths may be used. [START_REF] Niculescu | Advances in time-delay systems[END_REF][START_REF] Fridman | Introduction to Time-Delay Systems : Analysis and Control[END_REF][START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF] In the frequency domain, one determines explicitly the imaginary crossing of the poles. [START_REF] Louisell | A Matrix Method for Determining the Imaginary Axis Eigenvalues of a Delay System[END_REF][START_REF] Sipahi | Exact upper and lower bounds of crossing frequency set and delay independent stability test for multiple time delayed systems[END_REF] Especially, matrix pencil approach [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF][START_REF] Louisell | Matrix polynomials, similar operators, and the imaginary axis eigenvalues of a matrix delay equation[END_REF] examines and calculates analytically the imaginary axis eigenvalues of the retarded matrix delay systems. In addition, application of Nyquist theorem [START_REF] Mondié | Robust stability of quasipolynomials and the Finite Inclusion Theorem[END_REF] also lead to some conditions, which can be checked on Mikhailov diagrams. In the time domain, several fundamental results are based on the necessary and sufficient condition of existence of a complete Lyapunov-Krasovskii functional. [START_REF] Kharitonov | Time-delay systems: Lyapunov functionals and matrices[END_REF] Since the computation of the involved delay Lyapunov matrix is an hard task, discretization procedures have been developed (see discretized Lyapunov functional [START_REF] Gu | Stability of Time-Delay Systems[END_REF] based for instance on Legendre polynomials coefficients [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF]). The recent work [START_REF] Gomez | Lyapunov matrix based necessary and sufficient stability condition by finite number of mathematical operations for retarded type systems[END_REF] also solves the delay equations verified by the Lyapunov matrix-function thanks to polynomial approximation. [START_REF] Jarlebring | Characterizing and computing the H2 norm of time-delay systems by solving the delay Lyapunov equation[END_REF] These competitive but complementary methods can be used and provide tangible results on stability of time-delay systems. Otherwise, some robust approaches can be pursued to make the link between stability and approximation schema. Originally, the delay element e -hs was embedded into a unit norm-bounded unstructured uncertainty. Using the small gain theorem, it results a classical delay-independent condition. In order to refine the results, a method proposed in many recent papers consists in extracting from the delay transfer function a delay-dependent finitedimensional system. The infinite-dimensional remainder is then embedded into an unstructured uncertainty. [START_REF] Fioravanti | H ∞ analysis and control of time-delay systems by methods in frequency domain[END_REF][START_REF] Bourkas | Deterministic and Stochastic Time-Delay Systems[END_REF] The use of classical tools like small gain theorem, µ-analysis or integral quadratic constraints allows to construct conservative stability tests. [START_REF] Zhang | Toward less conservative stability analysis of time-delay systems[END_REF] Notice that the candidate filters or constraints are not easy to find. There are often related to a specific Padé remainder transfer function [START_REF] Knospe | Stability of linear systems with interval time delays excluding zero[END_REF] or to Bessel inequality on polynomial orthogonal basis [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF]2]. This paper proposes to merge spectral and robust approaches to ease the stability analysis of time-delay systems. The main contributions are listed below.

• In the foreground, two augmented time-delay systems are proposed and express the dynamics of the original one. The finite-dimensional part is issued from a spectral method on Legendre polynomials basis and the infinite-dimensional part is coming from the remainder. Such interconnections allow us to formulate the relation with Padé approximations.

• In the background, the stability of time-delay systems is formulated in terms of frequency-sweeping tests based on H∞ analysis. This is made possible by handling these augmented systems and removing high-pass filters associated to the Fourier-Legendre remainders.

Section 2 is dedicated to the problem statement. Then, technical tools on the use of Legendre polynomials are given in Section 3. From there, Section 4 proposes the remodeling of the transported part on the first Legendre polynomials coefficients. These models are nice to the extent that the delay turns out to be approximated by the well-known (n-1|n) and (n|n) Padé approximants and that a natural filter is obtained. Afterwards, two augmented time-delay systems are constructed in Section 5. Based on Padé properties, we recall that the eigenvalues of our finite-dimensional part can approximate the expected eigenvalues on compact sets. Lastly, Section 6 deals with stability analysis in the light of the application of the small-gain theorem on the whole interconnection between the approximated model, the high-pass filter and the bounded remainder. Finally, in Section 7, examples are shown off to highlight the effectiveness of our modeling to approximate eigenvalues and deal with stability of time-delay systems with respect to the delay.

Notations:

In this paper, the set of natural, real, non-negative real, complex numbers and n × m real matrices are respectively denoted N, R, R ≥0 , C and R n×m . Moreover, In is the identity matrix of size n, diag(d1, ..., dn) is the diagonal matrix defined by its diagonal coefficients (d1, ..., dn) and M T denotes the transpose of matrix M . For any square matrix M , det(M ), adj(M ), tril(M ) and M 0 stands respectively for its determinant, adjugate matrix, lower triangular part and symmetry positive definiteness. For M ∈ R n×n , its characteristic polynomial is χM (s) = det(sIn -M ). In addition, [ A B

C D ] denotes the block matrix whereas ( A B C D ) denotes the usual form of a realization of a linear system. Notation |( A B C D )|H ∞ refers to the H∞ norm of the system defined as the maximal singular value for any frequency. Furthermore, for any analytic function F1 and F2, F1(s) = O s→0 F2(s) means that the ratio F 1 F 2 (s) is finite for s tends to 0. Throughout this paper, variables in capital letters represent the Laplace transforms associated with variables in non-capital letters. Finally, L 2 (0, 1; R) represents the set of squareintegrable functions from normalized interval (0, 1) to R with its associated dot product z1|z2 = 1 0 z1(θ)z2(θ)dθ and C ∞ (E1, E2) refers to the set of smooth functions from E1 to E2.

Problem statement

Consider a linear time-delay system with a single constant delay h > 0, modeled as an interconnection between an ordinary differential equation (1a) and a transport partial differential equation (1b) given by

ẋ(t) = Ax(t) + B d u(t), y(t) = C d x(t), , ∀t ∈ R ≥0 , (1a) 
       h ∂ ∂t z(t, θ) = - ∂ ∂θ z(t, θ), ∀θ ∈ [0, 1], z(t, 0) = y(t), u(t) = z(t, 1), , ∀t ∈ R ≥0 , (1b) 
where matrices A, B d and C d respectively belongs to R m×m , R m×1 and R 1×m and are assumed to be constant and known.

Remark 1 Note that B d and C d could also belong to R m×l and R l×m for l ∈ N. For the sake of simplicity, we have chosen l = 1 since it can be easily extended to the general case by appealing to the Kronecker product. The case l = 2 is used in section 7 for Example 3.

C d (sI -A) -1 B d Finite-dimensional part (1a) Y (s) U (s) H(s) = e -hs
Infinite-dimensional part (1b) Figure 1: Block diagram of time-delay system (1).

Remark 2 By noting that z(t, θ) = C d x(t -θh), system (1) can be seen as a time-delay system where z is the infinite-dimensional state function considered over the normalized interval [0, 1] instead of [-h, 0], leading to the usual formulation ẋ(t) = Ax(t) + B d C d x(t -h). Therefore, the results presented in this paper cover the large class of retarded time-delay systems.

Remark 3 Assuming f absolutely continuous from [-h, 0] to R n , system (1), satisfying the initial conditions x(0) = f (0) and z(0, θ) = C d f (-hθ) for any θ ∈ [0, 1], has a single solution (x, z) which belongs to continuous functions in time from R ≥0 to R n × L 2 (0, 1; R). [START_REF] Coron | Control and nonlinearity[END_REF] System (1) is depicted by Figure 1 in Laplace domain where s ∈ C is the Laplace variable. The infinite-dimensional part (1b) is driven by the transport equation and one obtains G(s, θ) = e -θhs Im, the transfer function between Y (s) and Z(s, θ). Throughout the paper, we will use indifferently the following notation

H(s) = G(s, 1) = e -hs , (2) 
for the transfer function between Y (s) = Z(s, 0) and U (s) = Z(s, 1).

The goal of the paper is to understand and to characterize the behavior of such time-delay systems and especially its stability. For that, the main issue is to approximate the infinite-dimensional part (1b), related to transport phenomenon, in a specific manner in order to get to underlying results on stability of time-delay systems. In the sequel, one recalls in the preliminaries section, some tools, which will be used to develop approximated models of the delay element.

3 Preliminaries

Padé approximants

Let an analytic function H ∈ C ∞ (C, C) be expanded in a Maclaurin series.

Definition 1

The rational approximation with numerator Np(s) = p i=0 ais i at order p and denominator Dq(s) = q i=0 bis i at order q is called (p|q) Padé approximant of function H(s) if

H(s) - Np(s) Dq(s) = O s→0 (s p+q+1 ). (3) 
Padé approximants can be seen as a generalization of Taylor expansion with a ratio of two polynomials given as power series. [START_REF] Baker | Padé Approximants[END_REF] Actually, Padé approximations are often used to solve numerically nonlinear fractional partial differential equation [START_REF] Özdemir | Numerical solution of fractional Black-Scholes equation by using the multivariate Padé Approximation[END_REF] and some extensions such as Padé-Chebyshev [START_REF] Kaber | Analysis of some Padé-Chebyshev approximants[END_REF] or Padé-Legendre [START_REF] Chantrasmi | Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces[END_REF] approximations have been proposed to improve the solution.

In the rest of the paper, we focus on the (n -1|n) and (n|n) Padé approximations of the transfer function H(s) = e -hs .

Legendre polynomials

Define Legendre polynomials l k , for any k ∈ N, by

l k :        [0, 1] → R θ → k i=0 (-1) i (k + i)! (k -i)!(i!) 2 θ i . (4) 
The orthogonal family (l k ) k∈N spans the Hilbert space L 2 (0, 1; R). In the following, (l k ) k∈N , as a basis of the state space of system (1b), is used to define extra-signals based on the projection of the state z(t) on each Legendre polynomial.

For convenience of notation, the n first Legendre polynomials are concatenated in vector

n(θ) = l0(θ) . . . ln-1(θ) T ∈ R n . (5) 
Some properties of Legendre polynomials [START_REF] Gautschi | Orthogonal polynomials, quadrature, and approximation: computational methods and software (in Matlab)[END_REF] in terms of values at the boundaries, norm and derivation are recalled here,

n(0) = 1n, n(1) = 1 * n , n T n = I -1 n , d dθ n(θ) = -Ln n(θ), ∀n ∈ N, (6) 
with

1n = 1 . . . 1 T ∈ R n , In = diag(1, . . . , 2n -1) ∈ R n×n , 1 * n = (-1) 0 . . . (-1) n-1 T ∈ R n , Ln = tril(1n1 T n -1 * n 1 * T n )In ∈ R n×n . (7) 

Fourier-Legendre series

Consider a function G(s) in C ∞ ([0, 1]; C), for all s ∈ C. Its Fourier-Legendre series on the interval [0, 1] is

G(s, θ) = ∞ k=0 l k |G(s) l k |l k l k (θ), ∀θ ∈ [0, 1].
Let us now define the truncated version Gn at order n in N as follows, for all θ ∈ [0, 1],

Gn(s, θ) = n-1 k=0 l k |G(s) l k |l k l k (θ) = T n (θ)In n|G(s) . (8) 
Notice that the boundary values of Gn(s) are easily expressed as

Gn(s, 0) = Cn n|G(s) , Gn(s, 1) = C * n n|G(s) , with Cn = 1 T n In, C * n = 1 * T n In. (9) 
In the following, our objective is to use Padé approximation combined with Legendre polynomials in order to build an approximation of G(s, θ) = e -θhs , the transfer function between Y (s) and Z(s, θ).

Fourier-Legendre remainder

Define Fourier-Legendre remainder Gn done by truncation at order n of the transfer function G on Legendre polynomials coefficients is, for all s ∈ C and θ ∈ [0, 1],

Gn(s, θ) = e -θhsn-1 k=0

(2k + 1)l k (θ) l k |G(s) . ( 10 
)
Remark 4 This remainder (10) is well-defined on the segment [0, 1] with respect to θ by the fact that G(s) belongs to C ∞ ([0, 1], C) for any s in C and Gn(s) converges uniformly on any compact subset of C.

Lemma 1 For any n ∈ N, the Fourier-Legendre error Gn defined by (10) satisfies the following statement,

Gn(s, θ) = O s→0 (s n ), ∀θ ∈ [0, 1].
Proof : The statement of Lemma 1 means that Gn(s, θ) has its n -1 first derivatives with respect to s evaluated at s = 0 equal to zero. Notice that error (10) can be rewritten as

Gn(s, θ) = ∞ k=n (2k + 1)l k (θ) 1 0 e -τ hs l k (τ )dτ.
Then, since G is smooth and Gn converges uniformly, p successive derivations of Gn with respect to s give

∂ p ∂s p Gn(s, θ) = ∞ k=n (2k + 1)l k (θ) 1 0 (-hτ ) p e -τ hs l k (τ )dτ.
Evaluating it at s = 0 and by the fact that τ p can be decomposed on p first Legendre polynomials, one obtains zero for p < n.

This error is close to zero for s near zero and allows us to expect that it leads to accurate models, which satisfy the definition of the Padé approximations (3).

A technical lemma

Recall the matrix inversion lemma, also called Woodbury matrix identity. For any vectors u, v in R n and non singular matrix M in R n×n , it states that

1 -v T (M + uv T ) -1 u = (1 + v T M -1 u) -1 . (11) 
Remind also the matrix determinant lemma, for any matrices defined above,

det(M + uv T ) = det(M )(1 + v T M -1 u). (12) 
Derived from ( 11),( 12), a usefull lemma can then be given.

Lemma 2 For any u ∈ R n with a non-zero first component, v ∈ R n not equal to the zero vector and L ∈ R n×n a strictly lower triangular matrix such that rank(L) = n -1, one obtains

1 -v T (sIn + L + uv T ) -1 u = O s→0 (s n ). ( 13 
)
Proof : The matrix inversion lemma [START_REF] Coron | Control and nonlinearity[END_REF] applied to vectors u, v and matrix

M = sIn + L gives 1 -v T (sIn + L + uv T ) -1 u = (1 + v T (sIn + L) -1 u) -1 ,
and the matrix determinant lemma ( 12) leads to

1 -v T (sIn + L + uv T ) -1 u = det(sIn + L) det(sIn + L + uv T ) .
Then, since L is strictly lower triangular, we have

det(sIn + L) = det(sIn) = s n .
and, because L has non-zero under diagonal coefficients and under the hypothesis done on vectors u, v, matrix L + uv T has full rank which means det(sIn + L + uv T ) = 0 in a neighborhood of s = 0, which concludes the proof.

Modeling of the delay element

In this part, the objective is to split the delay transfer function in an adequate manner to reach delay-dependent stability results. The finite-dimensional part is chosen to be a nice approximation of the delay and, on the contrary of what it is usually done in spectral methods, the remainder is conserved and structured in order to use robust analysis and to establish stability results.

Naive Padé modeling

An intuitive approach in Laplace domain is to take Padé rational approximations

P (pn|qn) (s) = Np n (s)
Dq n (s) of the transfer H(s) = e -hs . Indices pn and qn are positive integers which are given in function of n ∈ N. These approximations are as accurate as required on any compact subset of C if the limit of pn qn for n → ∞ is finite.

Proposition 1 The delay transfer function H(s) = e -hs can be split into two parts

H(s) = P (pn|qn) (s) + H(s) -P (pn|qn) (s) , (14) 
and P(pn|qn) (s) = H(s) -P (pn|qn) (s) is the (pn|qn) Padé remainder to be evaluated hereafter.

This splitting is depicted on Figure 2. To take advantages of the relevance of these approximated models, one knows that the choice of the error put aside is not inconsequential. Indeed, focusing on (n-1|n) or (n|n), errors P(pn|qn) (s) are upper bounded [START_REF] Lam | Model reduction of delay systems using Padé approximants[END_REF] and lead to some conservative results. Along the frequencies denoted ω, the modulus of both errors P(n-1|n) (jω) and P(n|n) (jω) are depicted in Figure 3. In particular, | P(n|n) |H ∞ = 1 2 for any n ∈ N. Hence, the errors transfer function can be embedded into a norm-bounded uncertainty [START_REF] Bourkas | Deterministic and Stochastic Time-Delay Systems[END_REF]. By interconnection with the ordinary differential equation part, the small-gain theorem can then be applied. Nevertheless, in practice, this naive model is too conservative, not suitable and does not lead to an efficient stability criterion. A deeply fit of the remainder is then recommended and implies to design filters. Indeed, one notes that the slopes in low frequencies are respectively 40ndB and (40n + 20)dB by decade. But, such candidate filters [START_REF] Knospe | Stability of linear systems with interval time delays excluding zero[END_REF], closely related to a specific Padé remainder transfer function, are difficult to find. Guided by spectral methods [START_REF] Vyasarayani | Spectral approximations for characteristic roots of delay differential equations[END_REF] and stability works [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF]2] with Legendre polynomials, we have chosen to bypass the design of adequate filters by the use of a description of the delay element thanks to the n first Legendre polynomials coefficients. For n ∈ N, it forms a particular state n|z(t) denoted hereafter as zn(t). On this state space, two models are designed by considering Fourier-Legendre remainders at order n (see subsection 4.2) and ) and G(s, 0). Then, the resulting state form representations obtained reveal to give the (n-1|n) and (n|n) Padé approximated models and to provide suitable filters. Including the interconnection with the finite-dimensional system (1a), these new decompositions of transfer function H involve, by a small-gain approach, stability results for time-delay systems.

A first modeling with Fourier-Legendre remainder at order n

To derive information from the delay, thanks to the n first Legendre polynomials coefficients collocated in zn, one proposes to study the Fourier-Legendre remainder at order n of transfer function H(s) = G(s, 1), denoted Hn(s) given by Hn

(s) = Gn(s, 1) = e -hs -C * n n|G(s) . ( 15 
)
Proposition 2 The delay transfer function H(s) = e -hs satisfies the following decomposition

H(s) = C * n (hsIn -An) -1 1n + 1 -C * n (hsIn -An) -1 1 * n Hn(s), ( 16 
)
where the left finite-dimensional part

h -1 An 1n h -1 C * n 0 is a realization of the (n-1|n) Padé approximation P (n-1|n) (s)
of the delay. Matrix C * n is defined in [START_REF] Chantrasmi | Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces[END_REF] and

An = -(Ln + 1 * n C * n ). ( 17 
)
Proof : Using an integration by parts, the dynamics of the n first Legendre coefficients zn(t) lead to

h żn(t) = -n ∂ ∂θ z(t) = d dθ n z(t) -n(1)z(t, 1) + n(0)z(t, 0).
The properties of Legendre polynomial coefficients given in [START_REF] Bellman | Differential-Difference Equations[END_REF] ensure that the previous equation can be rewritten

h żn(t) = -Lnzn(t) -1 * n z(t, 1) + 1nz(t, 0). ( 18 
)
The signal z(t, 1) can be approximated by its the truncated Fourier-Legendre series at order n. The remainder on the side θ = 1 is called n(t) and we have

u(t) = z(t, 1) = C * n zn(t) + z(t, 1) -C * n zn(t) n (t)
.

That implies h żn(t) = Anzn(t) + 1ny(t) -1 * n n(t), u(t) = C * n zn(t) + n(t). (19) 
In the Laplace domain, the error is defined by En(s) = Hn(s)Y (s), where the error transfer function is given by [START_REF] Fridman | Introduction to Time-Delay Systems : Analysis and Control[END_REF]. It is the remainder of the truncated Fourier-Legendre series of G with θ = 1 at order n. System (19) leads to

Zn(s) = (hsIn -An) -1 (1n -1 * n Hn(s))Y (s), U (s) = C * n Zn(s) + Hn(s)Y (s).
The transfer function H(s) = e -hs from Y (s) to U (s) can then be rewritten as the sum given by ( 16). Thanks to Lemma 1, we already have Hn(s) = O s→0 (s n ). Then, considering An given in [START_REF] Golub | Matrix Computations[END_REF], by application of Lemma 2 with vectors u = 1 * n , v T = C * n and matrix L = Ln which satisfy the expected assumptions, we find

H(s) -C * n (hsIn -An) -1 1n = O s→0 (s 2n ).
According to the definition of the Padé approximations given in (3) and knowing that χ An (hs) is a polynomial of degree n and that C * n adj(hsIn -An)1n is a polynomial of degree n -1 with respect to s, we prove that

Hn(s) = C * n (hsIn -An) -1 1n is a (n -1|n) Padé approximant of the transport equation H(s) = e -hs .
Remark 5 The same proposition was also proven by induction. [START_REF] Bajodek | Insight into stability analysis of time-delay systems using Legendre polynomials[END_REF] Note that the proposed proof is quite different and easier to generalize to other transfer functions H.

A second modeling with Fourier-Legendre remainder at order n + 1

To describe more precisely the delay, based on tau-models with Legendre polynomials, Fourier-Legendre remainders at order n + 1 are now taken into consideration. This second error transfer function based on Fourier-Legendre remainders of the delayed transfer functions G(s, 1) and G(s, 0) is called H n and is equal to

H n (s) = Gn+1(s, 1) -(-1) n Gn+1(s, 0). ( 20 
)
It is constructed naturally in the proof of the following proposition thanks to information taken from the boundary condition.

Proposition 3

The delay transfer function function H(s) = e -hs satisfies this new decomposition

H(s) = C n (hsIn -A n ) -1 B n + D n + 1 -C n (hsIn -A n ) -1 1 * n H n (s), (21) 
where system

h -1 A n B n h -1 C n D n
is a realization of the (n|n) Padé approximation P (n|n) (s) of the delay and where the infinite-dimensional residual part H n (s) is given by [START_REF] Gu | Stability analysis of time-delay systems : a Lyapunov approach[END_REF]. Matrices of this representation are defined by

A n = -Ln + 1 * n C n , B n = 1n -D n 1 * n , C n = C * n -D n Cn, D n = (-1) n . ( 22 
)
Proof : To obtain a more accurate model than the one proposed in Proposition 2, one takes into account one more Legendre coefficient. Since we have, for θ = 0,

z(t, 0) = y(t) = Cn+1zn+1(t) + * n+1 (t),
the additional coefficient zn is evaluated from the boundary condition as follows

(2n + 1)zn(t) = y(t) -Cnzn(t) - * n+1 (t).
That involves a novel output approximation given by

z(t, 1) = C * n+1 zn+1(t) + n+1(t), = C * n zn(t) + D n (2n + 1)zn(t) + n+1(t), = C n zn(t) + D n z(t, 0) + n (t), taking n (t) = n+1(t) -D n * n+1 (t)
. This error signal, combination of the errors at order n + 1 given at each side of the segment [0, 1], can be seen as the inverse Laplace transform of H n (s)Y (s) with H n (s) = Gn+1(s, 1) -D n Gn+1(s, 0), as suggested in [START_REF] Gu | Stability analysis of time-delay systems : a Lyapunov approach[END_REF]. By putting aside this error n (t) done on u(t) = z(t, 1), the dynamical equation ( 18) leads to

h żn(t) = A n zn(t) + B n y(t) -1 * n n (t), u(t) = C n zn(t) + D n y(t) + n (t). ( 23 
)
The Laplace transform of such system [START_REF] Ito | A Fully-Discrete Spectral Method for Delay-Differential Equations[END_REF] gives

Zn(s) = (hsIn -A n ) -1 (B n -1 * n H n (s))Y (s), U (s) = C n Zn(s) + (D n + H n (s))Y (s).
The transfer function H(s) between Y (s) and U (s) can then be cut into two parts as formulated by [START_REF] Hale | Theory of Functional Differential Equations[END_REF]. Thanks to Lemma 2 with u = 1 * n , v T = C n and L = Ln from the structure of A n and Lemma 1 applied at order n + 1, one obtains

H(s) -C n (hsIn -A n ) -1 B n -D n = O s→0 (s 2n+1 ).
Therefore, according to (3) and because we know that χ A n (hs) is a polynomial of degree n and that C n adj(hsIn -

A n )B n + χ A n (hs)D n is a polynomial of degree n, the transfer function H n (s) given by C n (hsIn -A n ) -1 B n + D n is a (n|n) Padé approximant of the expected transfer function H(s) = e -hs .
Remark 6 Older works [START_REF] Ahmad | The orthogonal polynomials and the Padé approximation[END_REF] deal theoretically with the link between Padé realization and Legendre orthogonal polynomials but never focus on the error part and the potential underlying applications.

Synthesis on the two Legendre-based modeling

By the use of the first Legendre polynomials coefficients, two models have been presented in order to approximate finely the delay behavior. Especially, the finite-dimensional parts turn out to be related to the well-known (n -1|n) and (n|n) Padé approximants. From n coefficients,

Hn(s) := h -1 An 1n h -1 Cn 0 , H n (s) := h -1 A n B n h -1 C n D n , (24) 
are respectively equal to P (n-1|n) (s) and P (n|n) (s). Moreover, our Legendre-based models extract from the Padé remainders the finite-dimensional filters

Wn(s) := h -1 An 1 * n -h -1 C * n 1 , W n (s) := h -1 A n 1 * n -h -1 C n 1 . (25) 
The leftover infinite-dimensional parts are simply Fourier-Legendre remainders at orders n and n + 1 and they can also be given on the state form representation as

Hn(s) := -h -1 Ln 1n -1 * n e -hs -h -1 C * n e -hs , H n (s) := -h -1 Ln 1n -1 * n e -hs -h -1 C n -D n + e -hs . (26) 
To sum up, the transport phenomenon has been modeled as shown in Figure 4. In the next section, by having the same realization state, finite-dimensional approximated part Hn and filter Wn (resp. H n and W n ) are merged into the same delay-dependent finite-dimensional block. By interconnection with (1a), two augmented systems equivalent to (1) are finally constructed. Modal and frequency analysis of time-delay systems is then investigated in the next seciton.

5 Modeling of time-delay systems

Augmented time-delay systems

Focusing on time-delay system (1), it is now possible to split it to have a finite-dimensional part which, increasing its order n, incorporates a more precise description of the behavior of the whole system. System (1) can then be rewritten as the interconnection depicted in Figure 5 where the finite-dimensional part can be given by ( 27) or [START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF]. These models are simply a Redheffer product of the finite dimensional part (1a) with each state representations [START_REF] Gu | Stability of Time-Delay Systems[END_REF] and [START_REF] Ito | A Fully-Discrete Spectral Method for Delay-Differential Equations[END_REF] proposed above. From one side, one obtains ξn(t)

y(t) = An Bn Cn 0 ξn(t) n(t) , (27) 
H n (s) (resp. H n (s)) + Finite-dimensional approximated part Y (s) U (s) Hn (s) (resp. H n (s))
Infinite-dimensional Fourier-Legendre remainder part

W n (s) (resp. W n (s)) E n (s) (resp. E n (s))
Finite-dimensional filter Finite-dimensional part

Y (s) E n (s) (resp. E n (s)) Hn (s) (resp. H n (s))
Infinite-dimensional Fourier-Legendre remainder part with ξn(t) = x(t) hzn(t) and

An = A h -1 B d C * n 1nC d h -1 An , Bn = B d -1 * n . Cn = C d 0 . (28) 
From the other side, one gets ξn(t)

y(t) = A n Bn Cn 0 ξn(t) n (t) , (29) 
where Bn and Cn are given in [START_REF] Knospe | Stability of linear systems with interval time delays excluding zero[END_REF] and where

A n = A + B d D n C d h -1 B d C n B n C d h -1 A n . ( 30 
)
Remark 7 Note that model [START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF] is identical to the one developed by Legendre-tau method [START_REF] Ito | Legendre-Tau approximations for functional differential equations[END_REF] based on Galerkin approximations. It is recognized to be very accurate to approximate solutions of system (1).

The interconnected infinite-dimensional part is represented by its transfer function given by (15) (resp. ( 20)), closely linked with Fourier-Legendre remainder of the transported transfer function G on each extremities. These two augmented time-delay systems [START_REF] Kharitonov | Time-delay systems: Lyapunov functionals and matrices[END_REF], [START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF] have good properties to deal with spectrum analysis and assess stability of time-delay systems.

Approximation of the characteristic roots

Putting aside the infinite-dimensional part, both finite-dimensional models given by the state matrices An and A n can be used to approximate the characteristic roots of the original time-delay system (1). As increasing n, these models are able to formulate more and more precisely the behavior of the infinite-dimensional system thanks to the information on the transported signal contained into the additional states zn(t). Indeed, the following theorem proves that a certain number of the m + n eigenvalues of An (resp. A n ) can approximate as close as desired the characteristic roots of system (1) increasing n. 

with Np n (s) and Dq n (s) respectively being the numerator and denominator of the (pn|qn) Padé approximation of function e -hs . Here, the cases (n -1|n) and (n|n) are handled. Based on convergence results issued from Padé theory [START_REF] Baker | Essentials of Padé Approximants[END_REF], χn(s) converges uniformly to χ(s) on compact sets of the complex plane.[breda2015eig] By application of the Hurwitz's theorem [START_REF] Conway | Functions of one complex variable I[END_REF], the zeros of χn are close enough to some zeros of χ (i.e. characteristic roots of the original time-delay system), for n chosen sufficiently large, which concludes the proof.

Remark 8 For more details, one refers to Theorem 8 and the associated proof in [START_REF] Bajodek | Insight into stability analysis of time-delay systems using Legendre polynomials[END_REF].

Nevertheless, even if this convergence property from Padé is interesting, it is not sufficient to assert the stability of time-delay systems. Using robust analysis, and especially the small gain theorem, the whole model is exploited in order to obtain numerically tractable stability conditions.

Stability analysis of time-delay systems

Based on the strong properties of the modeling proposed in the previous section, subsequent stability analysis can be obtained by a robust approach.

Structure of the infinite-dimensional Fourier-Legendre remainders

Taking into account the well-chosen remainder n (resp. n ), multiple ways to analyze the stability of the original time-delay system (1) can be investigated. Relying on the fact that the realization of the Padé approximated finitedimensional models (27) (resp. ( 29)) are constructed on Legendre polynomials coefficients, orthogonal polynomial properties can be used. By considering Bessel inequality, a Lyapunov-Krasovskii approach provides sufficient condition of stability with respect to the delay. For instance, stability criterion can be proposed in term of linear matrix inequality. [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF][START_REF] Bajodek | Insight into stability analysis of time-delay systems using Legendre polynomials[END_REF] Nevertheless, a more intuitive approach consists in applying the small-gain technique. Even if it is a conservative approach, it brings a straightforward and fast delay-dependent stability criterion given in 6.2 by Theorem 2.

To do so, the infinite-dimensional remainders are embedded into a delay-free unstructured uncertainties. That implies to verify that errors Hn (resp. H n ), the transfer functions from Y (s) to En(s) (resp. E n (s)) given by ( 15) (resp. ( 20)), are bounded. Define error bounds γn and γ n such as

γn| Hn|H∞ < 1, γ n | H n |H ∞ < 1. ( 33 
)
These lower bounds are computed with a precision 10 -3 thanks to derivative-free optimization such as Nelder-Mead algorithm [START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF] applied to | Hn| 

| Gn(jω, θ)| 2 ≤ |G(jω, θ)| 2 + n-1 k=0 (2k + 1) | l k |G(jω) | 2 l k |l k ≤ |e -jθhω | 2 + (2n -1)|e -jθhω | 2 = 2n, ∀ω ∈ R.
However, by the use of these bounds the result would be too restrictive. Indeed, the bounds γn and γ n are much finer.

As both errors can be given in function of hs, the bounds γn and γ n are independent of the delay h and can directly be saved and shown on Table 1. Consequently, a sufficient delay-dependent stability condition based on the small-gain theorem is applied to augmented time-delay systems ( 27) and [START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF]. Remark 11 The modulus of both errors Hn (resp. H n ) are depicted in Figure 6. In Table 1, these errors have been roughly bounded independently of hω. However, Figure 6 shows that the error remains small in larger ranges of frequencies as the order n increases. For low frequencies, the slope is of 20ndB (resp. 20(n+1)dB) by decade as Lemma 1 applied to Hn (resp. H n ) shows. Then, the error could also be deeply fitted by using a frequency characterization and applying Kalman-Yacubovich-Popov on frequency intervals [START_REF] Iwasaki | Generalized KYP Lemma : unified frequency domain inequality with design applications[END_REF]. By upper bounding the error by a high-pass filter, the µ analysis can also be used to propose a tighter result. The subsequent results would be less restrictive but at the price of a much more complex algorithm than the proposed application of the small-gain theorem leading to Theorem 2. A last possible way to improve the conservatism of the result consists in better choosing the high-pass filter Wn (resp. W n ). It might be possible to improve the resulting by scaling other basis of L 2 (0, 1; R). This could be the subject of future works.

Sufficient condition of stability by application of the small-gain theorem

By H∞ analysis, a stability condition for time-delay systems with respect to the delay is formulated in the following theorem.

Theorem 2 If the H∞ norm of system (27

) (resp. ( 29 
)
) is lower than γn (resp. γ n ) then time-delay system (1) is stable.

Proof : By application of the small-gain theorem on the augmented time-delay system (27), we directly obtain the sufficient condition of stability. Indeed, the inequality | An Bn Cn 0 |H ∞ < γn implies, thanks to [START_REF] Maghami Asl | Analysis of a system of linear delay differential equations[END_REF],

| An Bn Cn 0 |H ∞ | Hn|H∞ < 1.
The proof works similarly for system (29) by replacing Hn, An and γn by H n , A n and γ n , respectively.

Remark 12

It is important to see that a necessary condition of Theorem 2 at order n is the stability of the corresponding finite-dimensional model. If An (resp. A n ) is not stable then, the test cannot be performed.

By reformulation of Theorem 2, calling

ρn = 1 γn | An Bn Cn 0 |H ∞ , ρ n = 1 γ n | A n Bn Cn 0 |H ∞ , (34) 
if ρn < 1 (resp. ρ n < 1) then system (1) is stable.

It is also possible to extend the proposed theorem to time-delay systems subject to polytopic uncertainties. Assuming matrices A, B d and the inverse of the delay h contained into a bounded convex polytope P, the problem can be tackle with linear matrix inequalities as presented in the following Corollary.

Corollary 1 If it exists a unique symmetric positive definite matrix Pn such as

PnAn+A T n Pn+C T n Cn PnBn * -γ 2 n
are negative definite on the vertices of the convex hull formed by P, then system (1) subject to these uncertainties is stable.

Proof : Firstly, by application of Kalman-Yacubovitch-Popov lemma [START_REF] Rantzer | On the Kalman-Yakubovich-Popov lemma[END_REF], the criterion given by Theorem 2 is equivalent to find a positive definite matrix Pn such as

PnAn+A T n Pn+C T n Cn PnBn * -γ 2 n is negative definite. Then, it
suffices to notice that γn is fixed and that matrices An(h, A, B d ) and Bn(h, A, B d ) are linear with respect to 1 h and parameters in matrices A, B d to prove the statement. Corollary 1 and the associated proof can also be adapted to system (29) instead of system [START_REF] Kharitonov | Time-delay systems: Lyapunov functionals and matrices[END_REF] replacing γn by γ n .

Numerical test

The delay-dependent criterion given by Theorem 2 run numerically as described below.

• Build matrices An, Bn and Cn, which depend on matrices A, B d , C d and the delay h of the initial system.

• Compute an upper bound of the H∞ norm of system [START_REF] Kharitonov | Time-delay systems: Lyapunov functionals and matrices[END_REF] with Matlab function hinfnorm.

• Define ρn the delay-dependent ratio of the computed bound to γn, already stored in memory (see Table 1).

• Evaluate if ρn is strictly lower than 1. If this holds, then the initial system (1) is stable.

Replacing system ( 27) by [START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF], the error bound γn by γ n and the ratio ρn by ρ n , the same process can be conducted.

Remark 13

For n = 0, the tests are extended to Hn(s) = e -hs and H n (s) = e -hs -1 and are delay-independent since no Legendre polynomials coefficients and delay-dependent matrices are considered in the finite-dimensional part. System (27) corresponds to initial Figure 1 and corresponding test is simply

| A B d C d 0 |H ∞ ≤ 1. For the second model, it is related to | A+B d C d B d C d 0 |H ∞ ≤ 2.
Note that the main objective of the paper was to highlight the links between the Legendre methods for time-delay systems and the Padé approximations. The objective was not to provide stability tests, which appear as a simple by-product of this main contribution. Nevertheless, the last example section shows that this criterion enable to reach a good precision on the intervals of stability with respect to the delay.

Examples

Presentation of the examples

The following time-delay systems are chosen to illustrate our results. 

Approximation of characteristic roots

In this section, the two finite-dimensional models designed previously are investigated. To focus the study on the influence of the model and the order n on the approximation, one chooses h = 0.3 for each examples. The eigenvalues of An and A n , called sn, are compared with the real eigenvalues s * computed with a precision of 10 -15 to illustrate Theorem 1. The error done on the location of the characteristic roots in norm is depicted on Figures 7a,7b, 7c and 7d for Example 1, 2, 3 and 4, with respect to the norm of the expected eigenvalues itself. On the figures, the dependence to the order n is paired with a color scale. Markers + and × stands respectively for the (n -1|n) and (n|n) Padé approximants. First, the approximated eigenvalues are closer and closer to the expected ones as n increases and, on compact sets |s * | < R, any precision r from 1 to 10 -15 can be reached for large enough orders n. One also remarks that the eigenvalues close to 0 in norm are approximated with smaller n than those which are far from the origin. For instance, the eigenvalues such as |s * | < 5 are approximated about 10 -5 over for any n ≥ 4, for all the examples. However, focusing on |s * | < 30, the order as to be higher than n * = 10 to be have an accuracy of 10 -5 . Furthermore, Comparisons with characteristic root computation techniques have been pursued [START_REF] Bajodek | Insight into stability analysis of time-delay systems using Legendre polynomials[END_REF] and, on studied examples, the error made by approximation is quite similar and even better than the pseudo-spectral method [START_REF] Breda | Pseudospectral differencing methods for characteristic roots of delay differential equations[END_REF]. In addition, in the case where the model is stable, a frequency analysis of the error has been made to propose a sufficient condition of stability for time-delay systems. In the following, this delay-dependent criterion given by Theorem 2 is tested.

Illustration of the small gain theorem

In this part, using γn and γ n computed in Firstly, the expected intervals of stability with respect to the delay, recalled in horizontal dotted lines on Figures 8a, 8b, 8c and 8d, is found more and more precisely as n increases. High values of the order n are required to evaluate the stability for larger delays h. In addition, looking at Table 2, one can see that the first stability criterion which uses An and γn needs most of the time higher values n that the second one which uses A n and γ n . This is not true for any delay as we can see for h = 0.280 on Table 2a or Figure 8a. Furthermore, for n = 0, both tests are never verified since it corresponds to a delay-independent frequency test, as recalled in Remark 13. It is also interesting to see that sometimes, at least for n = 1, the small-gain test cannot be performed due to the instability of the finite-dimensional part (see Remark 12). For example, in Table 2d, ρ1 = ∞ because A1 is unstable. In any case, even if no hierarchy is guaranteed as for sufficient conditions on linear matrix inequality framework [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF], the presented small-gain theorem seems to lead to a growing area of stability contrary to standard small-gain theorem applied directly on Padé approximant errors (H -Hn or H -H n ). Notice though that counterexamples for a strict hierarchy can be exhibited. Invoking now necessary and sufficient results [START_REF] Gomez | Lyapunov matrix based necessary and sufficient stability condition by finite number of mathematical operations for retarded type systems[END_REF], our result is weaker in the sense that Figure 8: Allowable delays guaranteed by Theorem 2. For a given order n, the information on the left (marker +) is related to ρ n < 1 and on the right (marker ×) to ρ n < 1.

the necessity has not been proven. However, in terms of the order of discretization, Table 2b highlights that our method works as soon as n = 2 instead of n 500, which is the necessary and sufficient order calculated in [START_REF] Gomez | Lyapunov matrix based necessary and sufficient stability condition by finite number of mathematical operations for retarded type systems[END_REF]. Moreover, as emphasized by Corollary 1, our methodology can be maintained for parameters uncertainties. Lastly, even if there is no guarantee that the entire set of stability is reached, our numerical results and Padé convergence properties are encouraging. A proof of convergence is an arduous task and is kept for future works. Table 3 finally collects the computation time spent to achieve an order for which the stability test given by Theorem 2 is satisfied, for a given delay h and increasing by unitary steps the order from n = 0. This frequency criteria takes less than 0.06s for all the tested delays. Compared to Lyapunov techniques [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF], higher orders need to be tested. But, the computation time is up to ten times better than the linear matrix inequality proposed in Theorem 5 [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF].

To conclude, these tables and figures strengthen the potential of the proposed method to assess the stability of time-delay systems in a fast and easy way.

Conclusions

In this paper, we have designed models for time-delay systems by interconnecting cleverly a finite-dimensional system with an infinite-dimensional system. The finite-dimensional part is constructed by adding some new states depending on the approximation of the delay element. It includes projections of the distributed state on the first Legendre polynomials. Taking Fourier-Legendre truncation on input and output bounds, these especial models at order n turn out to be realizations of the (n -1|n) and (n|n) Padé approximants. From there, one ensures that the characteristic roots of retarded time-delay systems can be approximated as accurately as required with the proposed models. Compared to Padé approximations of the delay, the Fourier-Legendre remainder induce quite natural candidate filters which add precious information to study the stability of the time-delay system. Then, using an upper bound of this well-chosen infinite-dimensional part and the small-gain theorem, a simple delay-dependent stability condition is given. Both statements confirm the effectiveness of models based on Legendre polynomials coefficients and are finally illustrated on four examples. Based on the same framework, a generalization to other coupling between an ordinary and a partial differential equation such as cross transport, diffusion or wave phenomena is forthcoming. This research could also be extended to multiple and time-varying delays. Afterwards, by H∞ synthesis, controllers and observers could be easier to design with early-lumping techniques [START_REF] Morris | Design of finite-dimensional controllers for infinite-dimensional systems by approximation[END_REF]. 
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  Figure 2: Naive modeling of the delay element (1b).

  First error transfer function.

  Second error transfer function.
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 3 Figure 3: Modulus of P(n-1|n) on the top and P(n|n) on the bottom with respect to the frequencies.

Figure 4 :

 4 Figure 4: Modeling of the delay element (1b) by the use of Legendre polynomials.

Figure 5 :

 5 Figure 5: Block diagram of the redesigned time-delay system.

Theorem 1

 1 For R > 0, if system (1) contains K characteristic roots with multiplicities ν * k∈{1,...,K} into the open ball B(0, R), then K k=1 ν * k eigenvalues of An (resp. A n ) converges towards them. More precisely, ∀r ∈ (0, r * ), ∃n * ∈ N; ∀n ≥ n * , max|sn -s * | ≤ r, (31) with s * the vector which contains the K expected roots repeated by their multiplicity and sn the vector with the corresponding approximated eigenvalues. Proof : Define χn and χ which belong to C ∞ (C, C) as ∀s ∈ C, χn(s) = det (sIn -A)Dq n (s)-B d C d Np n (s) , χ(s) = det (sIn -A)e hs 2 -B d C d e -hs 2 ,

Lemma 3

 3 For any n ∈ N, the H∞ norms of Hn and H n exist. Proof : First, Hn and H n recalled in (26) are causal transfer functions with no poles in the right half planes. By confining now to the imaginary axis with frequencies denoted ω, pair functions | Hn|(ω) and | H n |(ω) are smooth, null in zero and have a bounded behavior as ω → ∞ ( lim s→∞ ( Hn(s)) = 1 and lim s→∞ ( Hn(s)) ≤ 2). From the extreme value theorem, both errors are upper bounded.

- 1 H∞Remark 9

 19 (resp. | H n | -1 H∞ ) with an initial point at low frequencies. Note that γn < 1 and γ n < 0.5 confirm that the minimal bounds are not reached for ω tends to ∞. Remark 10 Besides, values of | Hn|H∞ and | H n |H ∞ could be upper bounded by application of the restrictive triangular inequality and Bessel inequality by √ 2n and 4(n + 1), respectively. In fact, we have

n 1 .

 1 000 0.793 0.722 0.680 0.651 0.629 0.611 0.597 0.584 0.573 0.564 0.555 0.547 γ n 0.500 0.470 0.450 0.435 0.423 0.413 0.404 0.397 0.391 0.385 0.380 0.375 0.371 Table 1: Lower bounds of | Hn | -1 H∞ and | H n | -1 H∞ with respect to n. Second error transfer function.

Figure 6 :

 6 Figure 6: Modulus of Hn on the top and H n on the bottom with respect to the frequencies.

Example 1 Example 4

 14 Consider (1) with A = 1, B d = -2 and C d = 1. Example 2 Consider (1) with A = [ 0 0 0 0 ], B d = -1 0.5 0 -0.5 and C d = [ 1 0 0 1].[START_REF] Gomez | Lyapunov matrix based necessary and sufficient stability condition by finite number of mathematical operations for retarded type systems[END_REF] The two transported signals settled here are treated with Remark 1 invoking Kronecker products.Example 3 Consider (1) withA = 0 1 -4 -1 , B d = [ 0 1 ] and C d = [ 2 1].[START_REF] Louisell | A Matrix Method for Determining the Imaginary Axis Eigenvalues of a Delay System[END_REF] Consider system (1) with A = ].[START_REF] Freitas | Delay-induced instabilities in gyroscopic systems[END_REF] Once again here, the transported signals are treated thanks to Remark 1.

  Example 1 with h = 0.3.

  Example 2 with h = 0.3.

  Example 3 with h = 0.3.

  Example 4 with h = 0.3.

Figure 7 :

 7 Figure 7: Error done on the eigenvalues with respect to the order n.

Table 1 ,

 1 Theorem 2 is applied to each examples. On Figures 8 for Examples 1, 2, 3 and 4, if the stability condition is respected at order n, then the area is colored. As previously, + and × markers refers to Theorem 2 applied with (n -1|n) Padé and (n|n) Padé approximants, respectively. For the computation, because the H∞ norm of An(h) Bn upper and lower bound of the intervals of stability is done by dichotomy at a precision of 10 -3 . In addition, the function hinfnorm, which is used to upper bound the H∞ norm of system (27) (resp. (29)), has been settled to ensure a precision of 10 -3 on the peak value, same tolerance as for γn (resp. γ n ). To better understand the results, the ratios which have to be lower than 1 are collected on Tables 2a, 2b, 2c and 2d for Example 1 with h = 0.280, Example 2 with h = 1, Example 3 with h = 2.006 and Example 4 with h = 0.714, respectively. Focusing on the first pocket of stability of Example 2, one shows that the analytical bound[START_REF] Louisell | A Matrix Method for Determining the Imaginary Axis Eigenvalues of a Delay System[END_REF] h = 2.006 has been recovered from order n = 11. The process times are finally compared with other existing methods in Table3for given delays chosen in the second and third pocket of stability of Examples 3 and 4.

	Cn	0	and A n (h) Bn Cn 0	are continuous in h, the

  .248 0.110 0.089 0.072 0.057 0.052 0.046 0.040 0.037 0.034 0.031 ρ n 4.000 1.028 0.221 0.130 0.109 0.081 0.071 0.064 0.053 0.050 0.046 0.041 0.039 (a) Example 1 with h = 0.280. 1.426 1.493 1.157 2.282 6.291 21.97 92.44 237.2 75.69 11.75 1.578 0.191 0.121 ρ n ∞ 1.124 2.531 11.81 48.74 212.6 685.8 325.9 58.69 8.841 1.181 0.166 0.142 (c) Example 3 with h = 2.006. .154 1.206 0.219 0.080 0.069 0.060 0.053 0.048 0.044 0.041 ρ n ∞ 13.218 12.496 3.758 0.957 0.169 0.098 0.083 0.072 0.066 0.060 0.054 0.050 (d) Example 4 with h = 0.714.

	n	0	1		2	3	4	5	6	7	8	9	10	11	12
	ρ n 0.981 0n ∞ 0 1	2	3	4	5	6	7	8	9	10	11	12
	ρ n	∞	1.526 1.007 0.212 0.186 0.153 0.113 0.107 0.094 0.080 0.077 0.070 0.063
	ρ n 2.108 2.674 0.943 0.261 0.238 0.166 0.148 0.134 0.106 0.105 0.095 0.083 0.081
								(b) Example 2 with h = 1.				
	n	0	1		2	3	4	5	6	7	8	9	10	11	12
	ρ n	0	1		2	3	4	5	6	7	8	9	10	11	12
	ρ n ∞	∞	12.946 4									

n

Table 2 :

 2 Ratio ρ n (resp. ρ n ) of the upper bound of the H ∞ norm of systems (27) (resp. (29)) to γ n (resp. γ n ).

	Delay	h = 2.006	h = 4.450	h = 4.751
	Method	Order Time Order Time Order Time
	Theorem 2 with (27)	11	0.05s	11	0.05s	11	0.05s
	Theorem 2 with (29)	11	0.05s	10	0.05s	15	0.06s
	Theorem 5 [44]	4	0.10s	6	0.20s	6	0.21s
			(a) Example 3.			
	Delay	h = 0.714	h = 2.150	h = 3.750
	Method	Order Time Order Time Order Time
	Theorem 2 with (27)	5	0.02s	8	0.04s	14	0.05s
	Theorem 2 with (29)	4	0.02s	8	0.04s	13	0.05s
	Theorem 5 [44]	2	0.05s	5	0.45s	9	3.2s

(b) Example 4.

Table 3 :

 3 Process times to assess the stability.[2] Y. Ariba et al. "Stability Analysis of time-delay Systems via Bessel Inequality : A quadratic separation approach". In: International Journal of Robust and Nonlinear Control 28.5 (2018), pp.1507-1527.