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Abstract

Computational protein design (CPD) is a powerful technique for engineering
new proteins, with both great fundamental implications and diverse practical
interests. However, the approximations usually made for computational e�-
ciency, using a single fixed backbone and a discrete set of side-chain rotamers,
tend to produce rigid and hyper-stable folds that may lack functionality. These
approximations contrast with the demonstrated importance of molecular flex-
ibility and motions in a wide range of protein functions. The integration of
backbone flexibility and multiple conformational states in CPD, in order to re-
lieve the inaccuracies resulting from these simplifications and to improve design
reliability, are attracting increased attention. However, the greatly increased
search space that needs to be explored in these extensions defines extremely
challenging computational problems. In this review, we outline the principles
of CPD and discuss recent e↵ort in algorithmic developments for incorporating
molecular flexibility in the design process.

Keywords: Computational protein design, Multistate design, Backbone
perturbations, Continuous flexibility, Provable and heuristic algorithms.

Introduction

Computational structure-based protein design (CPD) seeks to identify se-
quences that adopt desired structures and perform targeted functions. CPD has
become an increasingly important tool to engineer proteins for biotechnological
and medical applications and also to test our understanding of the biophysi-
cal and functional mechanisms of naturally evolved proteins. It has produced
striking successes, including the engineering of proteins with new topologies, im-
proved thermostability, increased binding a�nity, altered ligand specificity and
new activities [36]. Despite these important successes, to improve the reliability
and generalize the design of proteins with new and optimized functionalities,
CPD faces several challenges. The main one lies in the exploration of the high-
dimensional sequence and conformation space accessible to proteins and the
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discrimination of solutions. The high complexity of this task leads to approxi-
mations. The most usual one is to consider a single backbone template state of
the protein with fixed 3D coordinates while sampling amino acid side-chain con-
formations among a finite set of discrete states (rotamers) [26]. This simplified
instance of the design problem is useful for computational e�ciency. However,
such simplifications may compromise design success.

In this paper, we review recent advances that try to better account for the
inherent flexibility of proteins. Neglecting flexibility in CPD approaches leads
to a suboptimal formulation of the problem: the continuous nature of side-
chain angles means that tiny adjustments could have avoided steric clashes; the
plasticity of the backbone may allow to accommodate changes in amino acid
properties [61, 19] (Figure 1). The lack of protein flexibility in CPD may thus
neglect a significant portion of the sequence space which is otherwise accessi-
ble to properly folded and functional protein and thus introduce some biases
in sequence selection. Moreover, molecular flexibility is crucial for several of
the many functions of proteins [60]. Conformational changes of the protein
backbone are essential for the functioning of molecular rotors, switches and
pumps [71]. They also play key roles in molecular recognition [8] and enzyme
catalytic process [5]. Structural flexibility, ranging from small fluctuations to
large-scale rearrangements, is thus important to consider for protein design.

We review each of these limitations and how they have been partially ad-
dressed by generalized variants of the basic CPD problem, (1) by using contin-
uous rotamers, (2) by allowing adjustments in the protein backbone or (3) by
considering several possible backbone states. These extensions can, and ideally
should, be combined. They still need to be improved, to ultimately target the
design of the dynamic properties of proteins. But the computationally very
challenging problems that they define often impose strict computational restric-
tions on the size of the systems that can be considered. In the conclusion, we
finally discuss recent sequence-based Machine Learning approaches to CPD [20],
which implicitly consider backbone flexibility by keeping the structure latent.

Fundamental formulation and algorithms

Problem formulation

The canonical problem of protein design is to produce a sequence of amino
acids that will fold into a protein that performs a desired function. That is,
we want to find a sequence s that stably adopts a conformation that will per-
form a given function. The stability can be captured by a real-valued energy
function E(s, ✓,�) that describes the conformational energy of sequence s when
it adopts the three-dimensional conformation defined by the backbone torsion
angles ✓ and amino acid side chain torsion angles �. Equipped with these, com-
putational protein design (CPD) reduces to the problem of identifying one or
more designs (s⇤, ✓⇤,�⇤) that adopt the target conformation ✓⇤, i.e., such that
E(s⇤, ✓⇤,�⇤) = min✓,� E(s⇤, ✓,�). Beyond stability, the final protein function is
often assumed to be a consequence of its adopted conformation. It can be more
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Figure 1: Three di↵erent levels of protein flexibility described in the paper: side chains can
move continuously, the backbone may slightly fluctuate, and some regions of the proteins may
shift between distinct conformational states.

explicitly represented by including additional terms in the minimized energy
function, defining a final objective “score function”. It can also be captured by
constraining the search to a subspace of function-favorable conformations. This
formulation can be generalized to protein complexes using additional rigid body
degrees of freedom (set by docking). Given the continuous nature and high
dimensionality of ✓,�, the discrete nature of s and the non-convex nature of E,
the CPD problem [10] was reduced to a fully discrete problem where the back-
bone is rigid (✓ being fixed), the side-chain angles � are discretized into a set
of statistically significant conformations (or rotamers) and the energy function
is approximated by a sum of terms capturing interactions between at most two
bodies. The resulting “rigid-backbone, discrete rotamers, pairwise decompos-
able energy” design problem requires to identify the “Global Minimum Energy
Conformation” (GMEC) (s⇤,�⇤) that minimizes the decomposable energy E on
the backbone (✓⇤), a problem that remains computationally very challenging
(NP-hard [49]). This formulation, however, makes it possible to precompute
the terms that contribute to E(s, ✓⇤,�) for every possible rotamer and pair of
rotamers of every residue (and pair of residues). These precomputed terms de-
fine the so-called energy matrix [53], making energy computations extremely
e�cient.

At his core, this widely studied and adopted formulation is flawed by the
flexibility of protein backbone, which implies that even if (s⇤,�⇤) minimizes
the energy of the rigid target backbone, there may be di↵erent backbone states
(✓i) that could decrease the energy of s⇤ even further. This single target back-
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bone formulation is also intrinsically incapable to account for the importance
of protein dynamics in many of their functions, including their ability to act as
switches that can adopt several stable conformations. We ignore in this paper
the additional complexities (and flexibility) that can be raised by the presence
of ligands and co-factors. In practice, they are often addressed by the same
approaches that try to capture protein flexibility.

Heuristic and provable algorithms

Because of its computational complexity, the rigid-backbone problem has
been tackled using various heuristics, including greedy local search [45] and
stochastic optimization approaches such as Monte Carlo (MC) [35] or genetic
algorithms [50]. In practical settings, these stochastic methods only o↵er asymp-
totic guarantees of convergence to the GMEC and detecting convergence reliably
can only be achieved using provable methods. Indeed, in finite time, these rou-
tines may remain trapped in local minima far from the global one. To try to
avoid this problem, multiple independent finite runs are performed for a heuris-
tically set number of times, with the hope that all the low energy landscape will
be covered. However, even on small redesign problems, non negligible energy
gaps may still exist between the actual GMEC energy and what established
stochastic optimization algorithms can sometimes produce [68, 57]. On a set of
100 test protein designs, Simoncini et al. [57] showed that Simulated Annealing,
as implemented in Rosetta [37], could fail to identify the GMEC for most of
the design problems, even after one thousand repeats. This means that there
is always an (unknown) limit on the size of systems for which a solution of
su�ciently low energy can be found with confidence with stochastic methods.
While these limitations are somewhat mitigated by the fact that the optimized
energy function is only approximate and does not need to be absolutely opti-
mized, in the end, when a design (s,�) experimentally fails, the possibility that
the optimization algorithm is the source of the failure remains.

Provable algorithms guarantee that the GMEC will be returned in finite
time, ensuring that discrepancies between CPD predictions and experimen-
tal results come exclusively from modeling inadequacies. Once dominated by
algorithms combining the Dead-End-Elimination theorem with Best-First A*
search [38], the state of the art in provable rigid backbone protein design is
now defined by automated reasoning algorithms, initially introduced in artifi-
cial intelligence [26]. They rely on the encoding of the pairwise energy matrix
as a so-called Cost Function Network (CFN) [63, 62]. They are often able to
solve problems with more than 100 mutable residues in reasonable time, while
remaining provable. In many situations, and thanks to their increased e�-
ciency, it becomes very comfortable to obtain a guaranteed result even with
limited computational resources. Surprisingly, these algorithms can even be
significantly faster than heuristic approaches, as they know when the global
optimum is reached. On a large set of CPD benchmarks, the CFN prover
toulbar2 has been shown to o↵er speed-ups of several orders of magnitude
compared to other state-of-the-art provable methods, giving access to guaran-
teed GMECs for design problems that were previously out of reach of provable
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algorithms [63, 1, 57, 62, 64]. The energy function being only approximate,
it is also possible to ask for weaker, easier to produce, proofs that just guar-
antee a bounded distance to the GMEC. On a benchmark set of 99 design
problems and especially for full protein redesign, randomized variants of CFN
algorithms [6] often provided solutions with lower energies than sophisticated
Monte Carlo replica exchange methods [66], although without a complete proof
of optimality. These progresses are important when more challenging design
problem formulations accounting for flexibility need to be tackled and some of
these algorithms have made their way into established CPD software [29].

Algorithms considering a single input structure

Side chain flexibility
A first missing source of flexibility in the conventional CPD formulation lies

in the continuous nature of side chain rotations (Figure 1). The choice of a lim-
ited set of discrete conformations can lead to situations where a given rotamer
will not fit because of steric clashes that could be removed by tiny continuous
adjustments. This situation is often dealt with heuristically, by lowering the
contribution of the repulsive van der Waals term in the score function (called
soft variants in Rosetta) or continuous pre-minimization of the contribution of
each rotamer to the score function in one and two bodies terms [18]. This last
approach may however lead to a representation where a rotamer is assumed to
adopt di↵erent continuous positions in di↵erent two-bodies terms. This incon-
sistency is avoided in Osprey [29], where the continuous aspect of the side-chain
angles is explicitly dealt with: each rotamer represents a subspace of contin-
uous side chain angles, and terms in the score function matrix become lower
bounds on their final contributions, assuming ideal minimized conformations
as above. As the design progresses, these lower bounds are tightened by post-
hoc minimization until an optimal continuous side chain design is found and
proven. In this sense, Osprey o↵ers provable continuous rotamer design, al-
though this relies on the assumption that the score function in the continuous
subspace covered by each rotamer can be e↵ectively minimized (e.g., is convex
in the rotamer subspace). LUTE is an alternative approach that machine learns
a decomposed energy function of discrete rotamers on continuously minimized
samples (or other non pairwise decomposable energy functions), that can be
later provably optimized as in the discrete rotamer case [28]. The quality of the
fit of the learned function can be empirically estimated through residuals.

Side chain flexibility also induces entropic e↵ects: a backbone conformation
compatible with a large number of side chain conformations can have higher
probability to be observed (i.e., higher stability at room temperature) than one
corresponding to a single conformation at the GMEC. This e↵ect can be ac-
counted for by explicit free energy computations in the context of one sequence
(a computationally expensive #P-hard problem). Again, Monte Carlo meth-
ods [56] compete here with provable methods [67, 32]. For design, optimizing
the explicit side-chain free energy defines a computationally even more chal-
lenging problem (closely related to the NPPP-complete Marginal MAP problem
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in graphical models [48]). It can nevertheless be tackled by Osprey, at least
on small design problems [46], with recent computational speedups obtained
in MARK* [32], using LUTE and structural similarities to accelerate energy
integration.

Backbone flexibility

A simple approach to introduce backbone flexibility in CPD protocols con-
sists in interleaving sequence optimization and backbone relaxation within an it-
erative algorithm, usually called design-and-relax (D&R). This type of approach
was first proposed using a MC-based minimization procedure to relax the pro-
tein structure after the resolution of a fixed-backbone CPD problem [37, 43].
A variant of this method performs a stronger relaxation by applying Rosetta
FastRelax method instead of MC-based energy minimization [34, 65]. In our
knowledge, this type of iterative D&R approaches have only been proposed in
the framework of stochastic algorithms, although, in principle, they are also
applicable to provable algorithms. Provable approaches however require to re-
compute the energy matrix at each iteration, which can be expensive.

Heuristic CPD algorithms can also take into account backbone flexibility by
interleaving side-chain moves/mutations and local backbone (or ligand’s pose)
moves at each step of the stochastic optimization process. This type of method
is called Coupled-Moves in Rosetta [47, 39]. The first version of the Coupled-
Moves method [47] used the Backrub technique [16], illustrated in Figure 2, to
perform local backbone moves. A variant of the Coupled-Moves method pro-
posed by Loshbaugh and Kortemme [39] replaced Backrub moves by robotics-
inspired KIC moves [40] (Figure 2), showing enhanced overall performance. KIC
moves are usually applied to larger flexible fragments such as loops, and give
access to larger-amplitude motions of the backbone. After the application of
a local backbone move, Coupled-Moves applies a strategy based on Boltzmann
probabilities to select the most promising side-chain move or mutation. This
requires to recompute interaction energies for all the residues implied in the
backbone move, which may have a significant cost when the overall process
is repeated a larger number of times. Note that local Backrub-like moves are
also used in SHADES, which also constrains the sequence search space using
natural spatially-close non-contiguous amino acid patterns for sequence deter-
mination [58].

Provable algorithms have also been extended for including backbone pertur-
bations. Actually, the first algorithm to incorporate Backrub moves into protein
design was a provable algorithm [21]. More recently, building on the DEE/A*
algorithm, Donald and coworkers developed provable approaches to incorporate
continuous backbone flexibility in the design process [27, 25]. As for continu-
ous side chain flexibility [19], backbone flexibility can be handled by computing
bounds on the energies of the backbone continuous internal coordinates in a
vicinity around the starting structure backbone. The main di�culty relies on
the choice of coordinates to appropriately represent the flexibility of the back-
bone in the surrounding of the mutations, without leading to an intractable
search space. Indeed, unless they are very specific, local backbone changes may
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Figure 2: Several methods to perform local backbone perturbations. Backrub moves [16]
perform a subtle rotational motion of a backbone fragment around the axis defined by the
C↵ atoms at both ends of the fragment. They usually involve three consecutive C↵ atoms, as
illustrated here, but can be applied to larger fragments. Shear moves also perform slight local
rearrangements inspired from the observation of crystallographic alternate structures [61]. A
Shear move is defines from 4 C↵ atoms. C↵i+1 is slightly rotated about C↵i+1 in the plane
C↵i-C↵i+1-C↵i+2, and C↵i+4 is rotated about C↵i+3 in the plane C↵i+2-C↵i+3-C↵i+4,
while preserving the distance between C↵i+2 and C↵i+3. KIC moves, inspired from robotics,
give access to a broader conformational space. They are illustrated for a small fragment of 5
residues here. Two pivot C↵ atoms define the ends of the sampled fragment, and a third C↵
atoms is selected within this fragment. The backbone �, angles of the rest of the residues in
the fragment are perturbed, either using values sampled from a Gaussian distribution around
their current value or using statistical information extracted from experimentally determined
polypeptide structures [59]. Then, the �, angles of the three pivot residues are determined
using an inverse kinematics solver [9].

propagate along the protein to a distant region. To avoid such propagated
changes, the dead-end-elimination algorithm with perturbations (DEEPer) uses
small backbone perturbations such as Backrub or Shear [27] (Figure 2). To
enable a larger degree of continuous motion of a backbone fragment, a new
type of backbone coordinate system was introduced by Hallen and Donald [25].
The approach allows to compute all atomic coordinates as a function of the
novel degrees of freedom, by calculating Coordinates of Atoms by Taylor Se-
ries (CATS). DEEPer and CATS can be used in combination with continuous
side-chain flexibility [27, 25].

Algorithms considering several input structures

The previously described methods allow for local conformational search, con-
sidering only one backbone structure as input (algorithms referred as Single
State Design (SSD)). When the final backbone conformation is uncertain or
when it is explicitly desirable to simultaneously stabilize (or destabilize) several
states, Multistate Design (MSD) makes it possible to simultaneously consider
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Figure 3: Sequences scoring and ranking according to CPD methods using one or several
backbone template(s) as input. In SSD, a single state (green) is used to score and rank
sequences (seq1, seq2, seq3, seq4) according to their energy, which defines the fitness function
(dashed arrow): the best sequence is seq1. In MSA, MSD and meta-MSD, an ensemble
of (here) four backbone states (magenta, green, cyan and yellow) is used to score and rank
sequences. In MSA, the fitness of each sequence (dashed arrow) is computed using the
minimum of the sequence energies in each state. The sequence seq2 is ranked first as it has
the best energy on the magenta backbone state. In MSD, the fitness of each sequence (dashed
arrow) is defined by the (weighted) sum of the sequence energies over all backbone states: the
best sequence is seq3. meta-MSD relies on : (i) the classification of each designed state into
three microstates (major (left), transition and minor (right)) according to their structural
features; (ii) the analysis of an energy profile with relative energy di↵erences between states
determining whether sequences are expected to transit between the states. seq4, being the
only sequence that stably populates the three states and with a low transition barrier, is
ranked as the best sequence.

independent conformations of the protein (or complex). These conformations
can be geometrically close to each other, but can also represent large, function-
ally important conformational changes. They can typically be extracted from
natural structures or models of the same protein, from iterated local backbone
perturbations using the aforementioned move classes (Figure 2), or from MD
simulations. In MSD, for a fixed sequence, side-chains will still tend to orga-
nize themselves following a minimum energy (or optimal) conformation. The
aim of MSD is then to find a sequence that optimizes a combination of these
optimal energies over the various input backbones, often denoted as the fitness
of the sequence. Several fitness functions can be considered depending on the
design target (Figure 3). When the aim is to stabilize any of the considered
conformational states, the Boltzmann-weighted average of the energies (defined
as the sum of optimal energies, weighted by their Boltzmann probabilities) in
each state may be an attractive criteria [14]. Because this gives an exponential
advantage to the backbone with lowest energy, the computation of this fitness
has been approximated by the minimum optimal energy [12, 33, 69] defining
what is called “multistate analysis” (MSA) [13]. MSA showed interesting re-
sults when combined with local backbone fluctuation search algorithms for each
state. Such multi-state design has been applied successfully in several protein
design cases [30, 2, 4, 14, 5]. When, instead, the aim is to design a sequence that
fits several conformational states that must be adopted for the targeted function
(e.g., states defining conformational switches), it is important that the energies
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of all states contribute to the definition of the fitness. In this case, it is usual
to optimize the average of the optimal energies over all states, a problem we
denote as ⌃-MSD [69, 54]. Computationally speaking, SSD, MSA and ⌃-MSD
define “positive design” problems that try to stabilize desirable states, and are
just NP-complete [69].

When one seeks a sequence that also needs to destabilize some undesirable
states (e.g. to optimize specificity or a bound vs. unbound state), a sequence
that maximizes the di↵erence in optimal energies between desirable and unde-
sirable states is often sought. These “negative design” problems define compu-
tationally far more challenging NPNP-complete problems [69]. This is consistent
with the fact that solving a negative multi-state design problem requires to
explore the sequence space, and for each sequence and state, to explore its con-
formation space. However, provable algorithms can exploit properties allowing
to prune both of these spaces, leading to algorithms that explore only a minute
fraction of these spaces.

Similarly to what LUTE later used with continuous rotamers [28], CLASSY
[44] exploits a decomposable energy on sequences, which has been machine
learned on side-chain-optimized samples. This solves the problem of computing
“optimal” energies for a sequence in a given state, bringing the problem back
to NP-completeness (at the cost of the approximations made in the learned
energy model). Provable Integer Linear Programming optimization techniques
can then directly be used on the learned function. Without these approxima-
tions, COMETS relies on an extension of DEE to a multistate situation [24].
Due to the extreme problem complexity, COMETS remains usable only on rel-
atively small design spaces. Given their e�ciency for SSD, CFN-based algo-
rithms solving the “Weighted Constraint Satisfaction Problem” have been used
by iCFN [33], an MSD tool which allows for larger design spaces using discrete
rotamers. iCFN can perform both positive and negative design, but cannot
use the average energy criteria of ⌃-MSD, making it less suitable when large
conformational changes must also be considered.

Lately, by using a simple problem reduction, POMPd emerged as one of
the most e�cient provable positive MSD algorithm, outperforming iCFN for
discrete rotamers positive design problems, whether with an MSA or ⌃-MSD
fitness [69].

Finally, when the objective is to design proteins that dynamically exchange
between conformations, sequences must be designed to yield an energy profile
that allows conformational transition to occur on a functional timescale (Fig-
ure 3). Multiple states must have su�ciently low energies and the energy di↵er-
ences between states be small enough for the conformational transition to oc-
cur. Chica and co-workers [15] have recently proposed “meta-multistate design”
(meta-MSD) which has been successfully applied for the design of Streptococ-
cal protein G domain �1 (G�1) variants capable of spontaneous conformation
switching in a millisecond timescale. The procedure relies on the generation
of an ensemble of backbone templates that sample the conformational land-
scape, split into micro-states in order to reduce complexity. These micro-states
are generated by optimizing rotamers for predefined sequences on all backbone
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templates and are divided into minor, major and transition states according
to their structural features. The selected sequences must stably populate the
predefined major and minor states with a transition state barrier small enough
to allow switching between these two states.

Conclusion and future directions

Outstanding progresses in CPD algorithms and protocols, leading to success-
ful designed proteins have been achieved in the few last decades [53]. Especially,
provable CPD algorithms have advanced significantly, becoming competitive
with respect to stochastic algorithms to handle complex CPD problems while
yielding provable guarantees on the solutions [26]. It has become clear that the
incorporation of backbone flexibility in CPD methods is essential to improve the
accuracy of their predictions and enable more challenging designs. Design meth-
ods including di↵erent degrees of protein flexibility tend to predict sequences
with lower energy and to recapitulate known sequence profiles at designed posi-
tions more accurately [39]. However, algorithmic and methodological advances
are still needed for introducing greater conformational variability at both local
and global scales while exploring a large sequence space. Such advances would
enable the design of proteins to perform more complex tasks involving dynamics,
thus paving the way for innovative applications.

A major direction for broadening the range of protein functionalities lies
in the ability to design proteins capable of conformational changes. Recent
advances have been made, including the design of systems that dynamically ex-
change between two conformational states [31, 15, 17, 70]. Although multi-state
design approaches have opened new avenues to address the design of switchable
protein systems, significant advances are needed to generalize the design of a
dynamic mode in a protein fold. Aiming to go further in this direction, in-
teresting algorithmic approaches have been proposed to simultaneously explore
conformational transitions and sequences for the design of optimized protein
motions [41]. However, the practical applicability of these methods remains
very limited, and more research e↵orts are required to tackle real-world protein
motion design problems.

An alternative exciting avenue lies in sequence-based generative Machine
Learning methods. These can be trained on sets of sequences sharing a com-
mon fold or function and used to generate new sequences that should behave
similarly. The Direct Coupling Analysis (DCA) used for contact map predic-
tion [42, 55] produces a generative probabilistic model over sequences from a
multiple sequence alignment. This probabilistic model can be sampled and the
resulting sequences have been experimentally shown to often produce functional
proteins, including enzymes [7, 52]. Deep Learning (DL) models with various
architectures have also been trained on sets of homologous sequences and used
to generate active peptides [22], or enzymes [51] (with success rates similar to
those of DCA [52]). The main limitation of these approaches, beyond the need
for training data and risks of over-fitting, is that they reproduce existing func-
tions/folds, which is rarely the sole aim of protein design. However, the latent
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space learned by an auto-encoder can be used to interpolate or extrapolate se-
quences [11] and more complex architecture have been designed to slowly force
generative models towards sequences of interest [23]. A promising direction for
future research is to extend the more sophisticated structure-aware DL-based
design approaches [3] to design for an ensemble of backbones.
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