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Abstract

pyGDM is a python toolkit for electro-dynamical simulations of individual nano-structures, based on the Green
Dyadic Method (GDM). pyGDM uses the concept of a generalized propagator, which allows to solve cost-efficiently
monochromatic problems with a large number of varying illumination conditions such as incident angle scans or focused
beam raster-scan simulations. We provide an overview of new features added since the initial publication [Wiecha,
Computer Physics Communications 233, pp.167-192 (2018)]. The updated version of pyGDM is implemented in pure
python, removing the former dependency on fortran-based binaries. In the course of this re-write, the toolkit’s internal
architecture has been completely redesigned to offer a much wider range of possibilities to the user such as the choice of the
dyadic Green’s functions describing the environment. A new class of dyads allows to perform 2D simulations of infinitely
long nanostructures. While the Green’s dyads in pyGDM are based on a quasistatic description for interfaces, we also
provide as new external python package “pyGDM2_retard” a module with retarded Green’s tensors for an environment
with two interfaces. We have furthermore added functionalities for simulations using fast-electron excitation, namely
electron energy loss spectroscopy and cathodoluminescence. Along with several further new tools and improvements,
the update includes also the possibility to calculate the magnetic field and the magnetic LDOS inside nanostructures,
field-gradients in- and outside a nanoparticle, optical forces or the chirality of nearfields. All new functionalities remain
compatible with the evolutionary optimization module of pyGDM for nano-photonics inverse design.

Keywords: electrodynamical simulations; green dyadic method; coupled dipoles approximation; nano-optics; photonic
nanostructures; nano plasmonics

PROGRAM SUMMARY
Program Title: pyGDM2
Licensing provisions: GPLv3
Programming language: python
Nature of problem:
Full-field electrodynamical simulations of photonic
nanostructures. This includes calculations of the optical
extinction, scattering and absorption, as well as the near-field
distribution or the interaction of quantum emitters with
nanostructures as well as fast electron beam simulations.
The toolkit includes a module for automated evolutionary
optimization of nanostructure geometries to obtain a
user-defined optical response.
Solution method:
The optical response of photonic nanostructures is calculated
using field susceptibilities (“Green Dyadic Method”, GDM) via
a volume discretization. The approach is formally similar to
the coupled dipole approximation.
Additional comments including Restrictions and Unusual
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features:
2D and 3D nanostructures. On typical office PCs (8-16GB
RAM) the discretization is limited to about 10000-15000
meshpoints, therefore it applies best to single, small
nanostructures.

Solving Maxwell’s equations [1] for arbitrary
nano-structure geometries in complex environments
is a key challenge in modern nano-optics. In such
nano-optics problems, effects of light-matter interaction
can be computed only numerically. Different methods can
be used to this end, which have distinct strengths and
drawbacks, depending on the respective configuration. To
name a few, popular methods are for example the finite
difference time domain method (FDTD) [2], the coupled
dipole approximation (CDA) [3, 4] or the boundary
element method (BEM, also called surface integral
equation method) [5, 6] or the finite element method
(FEM) [7, 8]. Detailed comparisons between the methods
can be found in literature [9, 10, 11].

We describe here pyGDM, a python toolkit
implementing a volume integral approach based
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on field-susceptibilities, namely the Green’s Dyadic
Method (GDM). It is well suited for the numerical
description of nano-particles deposited on a substrate.
The full optical response of both dielectric [12] or
plasmonic nanostructures is accessible [13, 14]. The
GDM can describe well nano-plasmonics in general
[15, 16], but in particular it is an almost ideal method
to describe “flat plasmonics”, hence large planar
nanostructures of thicknesses smaller than the skin
depth [17, 18, 19, 20, 21, 22]. Concerning dielectric
materials, low-index dielectric nanostructures can be
described very accurately [9], but also high-index
dielectric nanostructures are within the scope of the
GDM [23, 24, 25]. Beyond linear optics it is also capable
to describe non-linear effects such as multi-photon
photoluminescence or harmonics generation [25, 26, 27].

One of the major modifications in the new version is the
entirely rewritten internal API. While the initial version
was based on fortran routines for a fast computation of
Green’s tensors, the new pyGDM is fully written in python
and accelerated using the numba package [28]. In addition
to easier installation and better platform independence,
the python re-write offers an enormous gain in flexibility
and renders pyGDM fully modular, which means that
external packages can be easily written and fully integrate
in the toolkit without technical barriers. A huge advantage
is that the environment is no longer hard-coded with the
nano-structure class, but is now fully described through a
separate dyads class, in which the set of Green’s tensors
is implemented. This means that the environment can
be flexibly modified in the new pyGDM. With the new
version, we currently provide an alternative dyads class for
2D simulations based on a quasistatic approximation for a
layered environment. As an external package we provide
another dyads class offering a fully retarded description of
layered environments with one or two interfaces. In the
future we plan to implement further sets of Green’s dyads,
for instance for periodic structures.

Further new features, among others, are several
focused vectorbeams, the generalization of the plane
wave incident field, supporting arbitrary illumination
angles and polarizations in environments containing up
to 3 interfaces. We added the computation of optical
chirality, a fast electron illumination for electron energy
loss spectroscopy (EELS) and cathodoluminescence (CL)
within the new electron submodule, or routines for field
gradient calculations and optical forces. In the appendix
we provide a full description of the Green’s tensors used
in pyGDM for the different simulation functions. In a
further appendix section we also provide more technical
documentation as well as instructions for the installation
and the use of pyGDM.

1. Summary of pyGDM functionalities

We provide here a non-exhaustive list of the
functionalities available in the pyGDM toolkit:

• Easy to use, easy to install, open source. Depends
exclusively on open-source python libraries available
via pip (numpy, numba, scipy, matplotlib)

• Fast: Performance-critical parts are accelerated
by just-in-time compilation via numba and are
parallelized. Efficient and parallelized scipy libraries
are used whenever possible. An MPI-parallelized
routine for the calculation of spectra is available

• Electro-dynamical simulations including a substrate,
either in a computationally fast quasistatic
approximation, or computationally slower including
retardation

• 2D and 3D simulations

• Various illumination sources such as plane waves,
tightly focused beams with linear, radial or azimuthal
polarization, dipolar emitters

• Very efficient calculation of large monochromatic
problems (raster-scans, incident angle scans, ...)

• Fast electron simulations (EELS,
cathodoluminescence)

• Includes various tools to rapidly post-process the
simulations and derive physical quantities such as

– extinction, absorption and scattering
cross-sections

– optical near-field inside and around
nanostructures

– polarization- and spatially resolved far-field
scattering

– optical chirality of the near-field

– heat generation, temperature distribution
around nano-objects

– photonic local density of states (LDOS)

– field gradients and optical forces

– multi-photon photoluminescence

– electric / magnetic dipole decomposition of local
fields and the extinction cross section

• Evolutionary optimization of the nano-particle
geometry with regards to specific optical properties

• Easy to use visualization tools including animations
of the electro-magnetic fields

2. The Green’s Dyadic Method

2.1. From Maxwell’s equations to Lippmann-Schwinger
equation

We will first recapitulate the underlying theory behind
the Green’s Dyadic Method (GDM) [29]. Compared to the
initial pyGDM paper [30], we present here the formalism in
a more general way, including the self-consistent equations
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Figure 1: Different environment configurations, through which an
oblique incident plane wave passes. Angle of incidence θin = 30◦,
wavelength λ0 = 710 nm. (a-b) air (n2 = 1). (c-d) plane wave
incident from air (n2 = 1) onto a dielectric substrate (n1 = 1.5).
(e-f) same as in (c-d) with a nanostructure deposited on top of the
interface (silicon nano-cube of size 160 × 160 × 160nm3). (a,c,e)
illustration of the respective simulated configuration. (b,d,f) color
plot of the real part of Ex. Panels show 2 × 2 µm2 large areas.
In contrast to most other electrodynamics solvers, in (e-f) only the
silicon cube needs to be discretized.

describing both, electric and magnetic optical fields, since
one new feature of the toolkit is the calculation of the
magnetic field inside nanostructures.

The GDM allows to treat light-matter interaction
problems such as depicted in figure 1, where the
progressive increase in complexity of the scenario is
illustrated by the example of the perturbation of a plane
wave. Fig. 1a shows the field amplitude of a plane
wave passing through a homogeneous environment, in
1b an interface is added and in 1c an additional small
nano-structure. Problems such as the one shown in figure 1
require to solve Maxwell’s equations, the GDM does this
for monochromatic fields (fixed frequency ω). In cgs
units (centimeter, gram, second), the frequency domain
Maxwell’s equations are

∇×E(r, ω) = ik0[µenv(ω)H(r, ω) + 4πM(r, ω)] (1)

∇ ·H(r, ω) = − 4π

µenv(ω)
∇ ·M(r, ω) (2)

∇×H(r, ω) = −ik0[εenv(ω)E(r, ω) + 4πP(r, ω)] (3)

∇ ·E(r, ω) = − 4π

εenv(ω)
∇ ·P(r, ω) (4)

where E(r, ω) (respectively H(r, ω)) is the electric
(respectively magnetic) field at the position r. P(r, ω)
and M(r, ω) are the electric and magnetic polarizations,
εenv and µenv are respectively the dielectric constant and
the permeability of the surrounding medium and k0 = ω/c
is the wavenumber of the light in vacuum.

By applying the rotational operator to the
Maxwell-Faraday (Eq. (1)) and Maxwell-Ampere
(Eq. (3)) equations and by reorganizing the obtained
equations, we can define two wave-equations [31, 32]. One

for E(r, ω) and one for H(r, ω):

(∆ + k2)E(r, ω) = (5a)

− 4π
[ 1

εenv
(∇∇+ k2)P(r, ω) + ik0∇×M(r, ω)

]
(∆ + k2)H(r, ω) = (5b)

− 4π
[ 1

µenv
(∇∇+ k2)M(r, ω) + ik0∇×P(r, ω)

]
with k =

√
εenvµenvk0 the wavenumber of light in the

environment medium. In the approximation of a local
and linear optical response, the electric and magnetic
polarizations are proportional to the electric and magnetic
field as P = χe · E and M = χm · H. The
electric (respectively magnetic) susceptibility is a tensor
of rank 2, corresponding to the difference between the
relative permittivity (respectively permeability) of the
structure and the environment χe(r, ω) = (εr − εenv)/4π
(respectively χm(r, ω) = (µr − µenv)/4π).

If we replace P and M by their expressions in Eq. (5a)
and Eq. (5b), we obtain a system of coupled equations
relating E(r, ω) and H(r, ω). To lighten the notation, we
define the super vector F(r, ω) = {E(r, ω),H(r, ω)}. We
can then write the solution of Eq. (5), as a single vectorial
Lippman-Schwinger equation [33, 34, 4, 35]

F(r, ω) = F0(r, ω)+∫
V

GGG(r, r′, ω) · χ(r′, ω) · F(r′, ω)dr′.
(6)

This equation establishes a self-consistent relation between
the local fields F(r, ω) and the illumination fields F0(r, ω)
at the position r inside the structure. The integral is
performed over the nanostructure volume V . χ(r, ω) is
a (6 × 6) tensor comprising the electric and magnetic
susceptibilities:

χ(r, ω) =

(
χe(r, ω) 0

0 χm(r, ω)

)
. (7)

The (6 × 6) “super-propagator” GGG describes light
propagation in the environment:

GGG(r, r′, ω) =

(
GEE

tot(r, r
′, ω) GEH

tot (r, r′, ω)

GHE
tot (r, r′, ω) GHH

tot (r, r′, ω)

)
. (8)

It is composed of four Green’s dyads (called field
susceptibilities in the context of electrodynamics).
The two “direct” field susceptibilities GEE

tot(r, r
′, ω) and

GHH
tot (r, r′, ω) describe, respectively, electric-electric and

magnetic-magnetic coupling. The terms GEH
tot (r, r′, ω)

and GHE
tot (r, r′, ω) on the other hand are the mixed

field susceptibilities which describe coupling between the
electric and magnetic fields.

Since all materials in nature interact only marginally
with the optical magnetic field, the implementation in
pyGDM is so far limited to treat only non-magnetic media,
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hence χe 6= 0,χm = 0. In consequence, equation (6)
involves only the field susceptibilities GEE

tot(r, r
′, ω) and

GHE
tot (r, r′, ω). The local electric and magnetic fields are

then defined by the two following Lippmann-Schwinger
equations

E(r, ω) = E0(r, ω)+∫
GEE

tot(r, r
′, ω) · χe(r

′, ω) ·E(r′, ω)dr′

H(r, ω) = H0(r, ω)+∫
GHE

tot (r, r′, ω) · χe(r
′, ω) ·E(r′, ω)dr′

(9)

By default, pyGDM uses a Green’s tensor GEE
tot =

GEE
0 + G3-layer, composed of a field susceptibility for

the homogeneous medium GEE
0 and a field susceptibility

G3-layer associated with a substrate and/or cladding
layer [30] (for computational efficiency, the latter is
based on a quasi-static approximation). Setting µ =
1 everywhere, GHE

tot = GHE
0 (no contribution from the

layered environment), which writes explicitly [36]

GHE
0 (r, r′, ω) = −ik0∇×G0(r, r′, ω) (10)

with G0(r, r′, ω) = eik |r−r
′|/|r − r′| being the scalar

Green’s function.

3. Numerical resolution of the
Lippmann-Schwinger equation – Volume
discretization

In the following we will briefly describe how the above
theory can be numerically solved for structures of arbitrary
shape. In such case, the set of equations (9) can in general
not be solved analytically and needs to be approached with
numerical methods. Here, we solve Eqs. (9) via a volume
discretization of the structure on a regular mesh of N unit
cells centered at positions ri. Consequently, the integrals
become discrete sums over the ensemble of mesh-cells and
the differential term dr′ is replaced by the volume of the
unit cell Vcell. Note that we omit the dependency on ω in
the following for better readability.

E(ri) =E0(ri)

+

N∑
j=1

GEE
tot(ri, rj) · χe(rj) ·E(rj)Vcell

H(ri) =H0(ri)

+

N∑
j=1

GHE
tot (ri, rj) · χe(rj) ·E(rj)Vcell.

(11)

It is worth emphasizing that the incident electromagnetic
field (E0, H0) can be e.g. a plane wave, a highly focused
beam with linear, radial or azimuthal polarization, as
well as a dipolar field. A key advantage of the GDM is

that different excitation conditions can be considered by
computationally highly efficient post-processing, once the
Green’s dyadic tensor (also “field susceptibility tensor”) of
the full structure has been determined.

We now define 6N -dimensional super-vectors Fobj and
F0,obj, which are composed of the electromagnetic fields
at each unit cell’s position ri as

F0,obj. =
(
E0(r1),E0(r2), . . . , . . . ,E0(rN),

H0(r1),H0(r2), . . . , . . . ,H0(rN)
)

Fobj. =
(
E(r1),E(r2), . . . , . . . ,E(rN),

H(r1),H(r2), . . . , . . . ,H(rN)
)
.

Using those super-vectors, the system of equations
defined by Eq. (11) can be written in matrix form :

F0,obj =

(
MEE 0
MHE I3N

)
· Fobj =MMM · Fobj (12)

with the identity matrix I3N of size 3N . MEE and MHE

are (3N × 3N) matrices composed of N (3×3) matrices
defined by equation (11):

MEE
ij (ri, rj) = Iδij −

N∑
j=1

GEE
tot(ri, rj) · χe(rj) · Vcell

MHE
ij (ri, rj) = −

N∑
j=1

GHE
tot (ri, rj) · χe(rj) · Vcell.

(13)

I is the unitary tensor. Now, by inverting the matrix
MMM, we can deduce the local electromagnetic field Fobj
inside the structure from the incident fields F0,obj from
the inverse KKK =MMM−1 via a single matrix-vector product:

Fobj =KKK · F0,obj. (14)

3.1. Interfaces: near-field, far-field and retardation
The Lippmann-Schwinger equation (6) allows to

determine the electromagnetic field everywhere in space.
Indeed, as mentioned previously, we determine the
electromagnetic field inside the structure by solving
self-consistently the equation (6). Then, to determine
the electric field outside the structure, we reuse the same
equation to repropagate the local internal field. The
superpropagator GGG introduced in the last section (Eq.
(8)) contains the four field susceptibilities (GEE

tot(r, r
′, ω),

GEH
tot (r, r′, ω), GHE

tot (r, r′, ω), GHH
tot (r, r′, ω)) describing the

propagation of light emitted by an electric or a magnetic
dipole.

For a dipole in the vicinity of a plane interface
these susceptibilities can be written as a sum of a
free space contribution Gαβ

0 (r, r′, ω) and a surface dyad
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field created by: peff = Δ-
ij |p|

a) field in layer of emitter:
    sum of dipole and mirror dipoles

d

n3

n2

n1

z

y
x

p(ω)

|p23| = Δ+
23 |p|

r'

r'23

r'21

b) other layer than emitter:
    damping factor

n3

n2

n1

p(ω)r'

|p21| = Δ+
21 |p|

peff = Δ-
21 |p|

field created by: Σ p, p21, p23

peff = Δ-
23 |p|

Figure 2: Illustration of the image dipole approximation. Schematic
representation of an electric dipole p(ω) (red) at the position r′

in a layer of refractive index n2 and thickness d. The layer is
sandwiched between two semi-infinite layers of indices n1 (below)
and n3 (above). a) p21(ω) and p23(ω) are the image dipoles in
the lower and upper layers, used to approximate the field inside
the layer of the emitting physical dipole. Their orientation is along
p21 = p23 = (−px,−py ,+pz), their z-distance to p is twice the
distance between the physical dipole and the respective interface. b)
in order to calculate the fields in the layers where no physical emitter
is present, no mirror dipoles are required. The field corresponds to
the original dipole’s field, attenuated by a screening factor ∆−.

Gαβ
2-layer(r, r

′, ω). The superscript index α represents
the nature of the induced field at r (electric “E” or
magnetic “H”) and β represents the nature of the dipole
at position r′. The free space susceptibilities, solutions
of the wave-equations Eq. (5), are proportional to the
scalar Green’s function G0(r, r′, ω) (see appendix Eq. A.1).
These susceptibilities can be decomposed in a sum of
dyadic tensors representing the near field, intermediate
and far field contributions (Eq. (A.2)) [37, 38].

For a single plane interface, the susceptibilities
Gαβ

2-layer(r, r
′, ω), associated with the surface, can be

obtained by expanding the electric and magnetic fields
using plane waves while applying the boundary conditions
for the tangential component of the field at the interface
[31, 37, 39]. We summarize the main results of the
calculation in Appendix A.2.

3.1.1. Near-field in the electrostatic region: mirror-charge
approximation

In case of a low index dielectric layer or if the emitted
field is evaluated at distances to the dipole, significantly
smaller than the wavelength (i.e. in the electrostatic
limit with no retardation), we can use an approximation
based on the method of mirror charges to describe
the effect of the interface. As illustrated in figure 2a
for the presence of two interfaces, for an evaluation
inside the layer of the emitter dipole a virtual dipole is
added to the configuration, with an amplitude vector of
opposite sign and which is placed at identical distance
behind the interface. This ensures the continuity of
the electromagnetic field at the interface. Inside the
empty medium, the emitted field corresponds to the single
dipole, however attenuated by a screening factor (see
Fig. 2). This leads to the expressions (A.9) and (A.10)

for the electric-electric contribution. The magnetic-electric
susceptibility of the interface is zero (Eq. (A.11)). The
mirror dipole method provides a good approximation for
the contribution of the interface if retardation effects are
negligible [40].

In pyGDM the environment can consist of at most three
layers of refractive indexes n1, n2 and n3 for the bottom,
center and top layer, respectively. The lower and upper
layers in Fig. 2 are semi-infinite and the intermediate layer
has a thickness d (also called “spacing”). In the shown
example with an electric dipole p(ω) in the intermediate
layer, the two mirror dipoles are represented by the blue
arrows p21 and p23.

3.1.2. Asymptotic far-field approximation
Conversely if the evaluation position is at a large

distance from the emitting dipole, we are in the far-field
region. In this case the surface contributions above
and below the interface have also explicit analytical
expressions. They can be obtained using the asymptotic
limit, defined in equation (A.7). For the electric-electric
surface term GEE

2-layer(r, r
′, ω), the analytical asymptotic

expressions implemented in pyGDM are (A.12) and
(A.15). In the far-field the electromagnetic wave is
transverse, therefore it is possible to deduce the magnetic
field H via the cross product of k and E.

3.1.3. Intermediate region - retardation
If the field is to be evaluated at intermediate distances

to the dipole (roughly at distances of less than a few
wavelengths), no general approximation exists and the
integral in Eq. (A.5) must be performed numerically [41],
requiring integration in the complex plane to avoid the
singularities on the real axis. This can be interpreted as
an integration over propagating (real valued wavevectors)
and evanescent modes (complex valued wavevectors) [42].
Reference [43] provides a detailed discussion about how
to choose the best integration path in the complex plane,
and extends the procedure to layered media with arbitrary
numbers of interfaces. Due to the necessity of the complex
integration, the evaluation of the retarded Green’s tensors
is computationally relatively expensive. It is usually
necessary to include retardation effects when considering
large structures deposited on high index dielectric, thin
film or plasmonic substrates, in order to take into account
the effect of, for example, propagating modes or surface
plasmons.

A comparison between the mirror dipole approximation
and a fully retarded description of the substrate is given
in figure 3. Panels 3a-c show simulation results of a
gold nanosphere lying on a glass substrate (n1 = 1.5),
illuminated by a plane wave polarized along X. A
small nanosphere (R = 25 nm in Fig. 2b) can be very
accurately described in the quasistatic approximation, and
even for larger particles (Fig. 2c, R = 50 nm), only
small deviations occur in comparison with the retarded
simulation. Figure 3d-f show simulations of an identical
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quasistatic
with retard

R=25nm

R=50nm

a) on glass

b)

c)

d) on gold film

e)

f)

dgold
=50nmn1=1.5

R=25nm

R=50nm

k E

x
yz Au sphere

of radius R

Figure 3: Comparison between quasistatic mirror-dipole
approximation (dashed blue lines) and Green’s dyads with
retardation (solid orange lines) to describe the substrate. (a-c)
Extinction simulations of a gold nanosphere on a semi-infinite
dielectric substrate (n1 = 1.5) as depicted in (a). The sphere is
illuminated by a plane wave from the top, with linear polarization
along X. (b) extinction efficiency for a gold sphere of radius
R = 25nm and (c) for R = 50nm. (d-f) same as (a-c) but the
substrate is composed of an additional dgold = 50 nm thin gold layer
on top of the dielectric substrate.

gold sphere as in 3a-c, but now lying on a thin gold
film (dgold = 50nm). Even in this case, small particles
(R = 25nm, Fig. 3e) can be described accurately using
quasistatic Green’s dyads. But when the radius of the
sphere is increased (R = 50 nm, Fig. 3f), significant
deviations occur between the non-retarded and retarded
descriptions. For a script to reproduce the results in
figure 3 see this link.

Because of poor performance of pure python code and
to avoid a dependency of pyGDM on external binaries,
the retarded Green’s tensors are not implemented in the
main pyGDM module. However, we provide a separate
python module based on a fortran implementation of the
retarded Green’s tensors for the 2-interface environment,
used in pyGDM. Please note that this extension of pyGDM
is still in a development version, and not all aspects have
been implemented yet. The “pyGDM2_retard” module
requires compilation of the fortran part. Via the python
package index pypi, we provide pre-compiled binaries
for windows, on other platforms the module needs to
be compiled from the source code (see Appendix D.2).

For technical details on the numerical calculation of the
retarded Green’s tensors, we refer the interested reader
to Ref. [43]. We note that the “pyGDM2_retard” package
requires the nanostructure to be placed in the top-most
layer (layer “3” in figure 2). Moreover, field calculations
are only possible in the layer of the nanostructure. We
plan to extend the retarded module in the future.

If for reasons of computation speed, the mirror dipole
approximation is used to take into account a layered
environment, the above described limitations should be
kept in mind.

3.2. Mesh-type, self-terms

We will recall here briefly the meshing in pyGDM. For
details, please refer to Ref. [30]. pyGDM can currently
handle discretizations on regular cubic and hexagonal
compact meshes in 3D and on square meshes in 2D.
The divergence of the Green’s function at ri = rj
needs to be accounted for by analytically evaluating the
so-called “self-term” at that location, which depends on
the geometry of the mesh-cells.

For the cubic, respectively hexagonal mesh, in 3D, we
find (see [17], section 3.1)

GEE
0,cube(ri, ri) = − 4π

3εenvd3
I (15)

GEE
0,hex(ri, ri) = − 4π

√
2

3εenvd3
I . (16)

For the self-terms of a 2D square mesh, see Appendix B.
Self-terms for more complex mesh-cell geometries like

cuboids or tetrahedrons can be calculated numerically [44,
20, 45]. This is currently not implemented but might be
added in a future version of pyGDM.

We note here that the structure needs to be discretized
with a sufficiently small step to resolve all fields and their
gradients inside the nanostructure. For best convergence
the step should be in the order of d . λ0/10nstruct,
but significantly finer meshes may be required for certain
configurations, for instance in cases of strong field
gradients.

3.3. Outlook: Magnetic media

As mentioned before, the current version of pyGDM
assumes media with no direct magnetic response (χm =
0), but it might be implemented in a future version of
pyGDM. It is technically straightforward to include the
χm 6= 0 terms in the calculation. While natural materials
don’t interact with the optical magnetic field, this may be
interesting to model meta-materials with a macroscopic
effective magnetic response [46]. Every mesh-cell would
correspond to a meta-atom of the meta-material. In such
case the upper and lower right sub-matrices in MMM would
be filled with electric-magnetic and magnetic-magnetic
coupling terms MEH

ij and MHH
ij [4].
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Figure 4: Structure of a simulation in pyGDM and the typical
workflow. The geometry and material(s) of the nano-object are
defined in the struct-class, the illumination field by the efield-class
and the simulation environment (environment refractive index,
substrate, 2D/3D, ...) is configured in a dyads object. The
simulation class bundles all information and serves also as a
container for the simulation results, which is then used for further
evaluation and post-processing or visualizations.

3.4. pyGDM simulation description
A pyGDM simulation is organized as depicted in

figure 4. A first class describes the geometry and
material(s) of the nanostructure (class struct). A second
class describes the incident field (class efield), and a
third one the environment and simulation type (new class
dyads). These three objects are assembled in a simulation
class, which also serves as a container to store the results
of the GDM simulation. The simulation object is also used
by all further post-processing and visualization functions
provided by pyGDM.

4. New functionalities

4.1. Decomposition in electric and magnetic dipole modes
We have implemented in the updated version the

decomposition of the internal field in electric and magnetic
multipoles, following the work of Evlyukhin et al. [47].
By default, the new functions linear.multipole_decomp and
linear.multipole_decomp_extinct return only the electric
dipole (ED) and magnetic dipole (MD) contributions,
those are stable and extensively tested. The quadrupoles
can be returned by passing the optional keyword argument
quadrupoles=True, but those are still experimental and
have not been sufficiently tested. The effective dipole
moments ptot (ED) and mtot (MD) are obtained from the
internal field distribution as

ptot =

N∑
i

pi =

N∑
i

Vcell χe(ri) ·E(ri) (17)

and

mtot = − ik0
2

N∑
i

(
ri − r0

)
× pi . (18)
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Figure 5: Influence of a hole inside a silicon nanodisc on the electric
and magnetic dipole resonances. (a-c) Full nanodisc of diameter
D = 120 nm and height H = 120 nm. (a) Field vectors inside (real
part) and (b) near-field intensity inside and around the disc at the
magnetic resonance position λ0 = 554 nm. (c) Total extinction cross
section (blue line) as well as the electric (orange line) and magnetic
(green line) dipole contributions. The illumination is a plane wave
traveling along Z, polarized along X, the environment is vacuum
(nenv = 1). (d-f) The same nanodisc but with a hole of diameter
Dhole = 50nm along the (Oy) direction, cutting through the field
vortex which induces the magnetic dipole moment. (d-e) show the
near-field as in (a-b), here at the resonance wavelength λ0 = 486nm.
(f) extinction cross sections similar to (c).

We note that the choice of the position r0 of the total
dipole moment is crucial in the calculation of the MD
moment. By default, pyGDM uses the center of mass of
the nanostructure, but r0 can be specified manually using
the optional keyword argument “r0”.

The respective contributions to the extinction cross
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section can be calculated as [47]

σext,ED =
4πk0

|E0|2 nenv
Im
(∑

E∗0 · ptot

)
σext,MD =

4πk0
|E0|2 nenv

Im
(∑

H∗0 ·mtot

)
,

(19)

where nenv is the refractive index of the environment.
We demonstrate the decomposition of the extinction

cross section on a silicon nano-disc, as illustrated in
figure 5. Fig. 5a-c show the case of a full cylinder in
vacuum, illuminated from the top by a plane wave of linear
polarization along X. The internal field vectors and the
field intensity in and around the nano-disc are shown in
Fig. 5a-b for the MD resonance at λ0 = 554nm, which
can be easily identified in the extinction spectra shown
in Fig. 5c. The electric field vectors inside the nano-disc
form a vortex in the XZ plane, which induces an effective
magnetic dipole moment along Y . We now cut a hole in
the silicon, through the vortex, as illustrated in figure 5d
(hole at the right side of the disc, parallel to Y , with
a diameter of Dhole = 50nm). We see that the vortex
at the magnetic resonance wavelength is now strongly
perturbed (see in particular Fig. 5e). This results in a
significant reduction of the magnetic dipole contribution to
the extinction, as can be seen in the spectra of figure 5f.
Simultaneously, an electric near-field hotspot is induced
around the hole. The shift of the resonances to shorter
wavelengths can be attributed to the reduced amount of
material in comparison with the full disc.

The pyGDM-script to reproduce the results shown in
figure 5 can be found in the online documentation at this
link.

4.2. Magnetic field inside the nanostructure

Calculating only the electric response can be done
by inversion of MEE in equation (13). However, if
the magnetic field inside a nanostructure needs to be
known, we require the inverse of matrix M in equation
(12). Standard matrix inversion techniques scale with the
third power. In consequence, doubling the size of the
matrix means the inversion takes 8 times longer (while the
matrix occupies four times the memory). Fortunately, a
block-matrix can be efficiently inverted block-wise using
the Hans Boltz method [48]. In our case, assuming
non-magnetic media (χm = 0), we obtain the inverse of
M in equation (12) as

KKK =

(
KEE 0

−MHE ·KEE I3N

)
(20)

with KEE the electric-electric generalized field propagator
[29]. Hence, the 6N×6N problem reduces to the inversion
of a 3N × 3N matrix and an additional product of two
matrices of the same size. It is therefore of comparable
computational cost as the resolution of the electric-electric
problem alone [30]. However, calculating the internal

magnetic field in addition to the electric field requires
around twice as much memory, in order to store the
additional 3N × 3N block at the lower left of Eq. (20).
Therefore the H-field calculation is by default deactivated
in pyGDM but can be enabled by passing calc_H=True as
parameter to the core.scatter function.

As an example we reproduce in Fig. 6 the internal
magnetic field in a silicon disc and in silicon disc-dimers
as reported earlier by Wang et al. [49]. The silicon
cylinders are placed on a silica substrate (n1 = 1.45) and
are embedded in air (n2 = 1). The silicon cylinders have
a diameter D = 140nm and a height H = 160nm. In case
of the disc-dimer both cylinders are separated by a gap of
G = 30 nm. We discretize the cylinders on a hexagonal
compact lattice (with N = 1490 mesh cells). We use
plane wave illumination at normal incidence from inside
the substrate, polarized along the Ox-axis (Fig. 6a, 6d
and 6b, 6e) or along the Oy-axis (Fig. 6c and 6f).

Figure 6a-c show the total extinction curves (blue
spectra), and additionally the contributions due to the
effective electric and magnetic dipole moments (orange
and green curves, respectively). This allows us to
determine where the structures have electric dipole (ED)
and magnetic dipole (MD) resonances.

While the X-polarized dimer has a totally different
optical response, the dimer illuminated by Y -polarized
light yields similar optical spectra as the isolated cylinder.
The reason is that under Y -polarization, the electric field
is perpendicular to the axis of the dimer, which reduces
coupling. At the respective electric and magnetic dipole
resonances we computed the normalized amplitudes of the
electric and magnetic fields, shown in the bottom subplots
of figure 6. The spectra and field amplitude maps are in
good agreement with results obtained by Finite Difference
Time Domain (FDTD) simulations [50, 51, 49].

The pyGDM-script to reproduce the results shown in
figure 6 can be found in the online documentation under
this link.

4.3. 2D simulations
pyGDM was entirely rewritten in pure python. In

this process, the definitions of the Green’s dyads used
to describe the environment was implemented in a new
class. This allows to flexibly use different sets of field
susceptibilities. So far this comprises the original set of
tensors for 3D simulations in an environment with up to
3 layers in the quasistatic near-field approximation. New
in pyGDM is now a class providing field susceptibilities
for 2D simulations, hence with one axis being infinitely
long. In this case the nano-structure is discretized on a
2D square mesh using “line-dipoles” and light-emission is
described by cylindrical waves. The according vacuum
Green’s dyads can be derived by an integration of the
3D Green’s dyad along the infinite axis (for details see
Appendix B). Like the 3D dyads, we provide a quasi-static
approximation for a layered environment with up to
three layers based on the method of mirror dipoles.
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Figure 6: Simulated extinction spectra and near-field amplitude maps for a single silicon cylinder and a cylinder dimer lying on a silica
substrate (n1 = 1.45) surrounded by air (n2 = 1). Each cylinder, discretized by N = 1490 unit cells on a hexagonal compact grid, has a
diameter D = 140nm, a height H = 160nm and, for the dimer, a gap G = 30nm. The structures are illuminated by a plane wave from
below (through the substrate). (a) total extinction cross section (blue curve), as well as the electric (orange) and magnetic (green) dipole
contributions are calculated. Linear polarization along X (see inset of (a)). (d) Normalized amplitude maps of the electric and magnetic fields
inside and around the structures (in the XZ plane) at the electric and magnetic resonances. The positions of the resonances are highlighted
by the vertical dashed lines in (a). (b), (e) and (c), (f): Same as (a),(d) but for a dimer illuminated by a parallel (b), (e) or a perpendicular
linear polarization (c), (f). The maps show areas of 450 × 425nm2. The outline of the respective structure is indicated by a dashed white
line, the air-silica interface with a black solid line.

Consequently the same limitations hold as in the case of
the quasistatic 3D tensors.

In pyGDM the usage of 2D tensors is very simple
and is basically nothing more than replacing the 3D
dyads class by the equivalent class for 2D. An example
of the simulation of silicon nanowires of different shapes
is depicted in figure 7. The simulations show silicon
nanowires (SiNWs) of circular (7a), square (7b) and
triangular (7c) cross section. The SiNWs are illuminated
from above by a plane wave of wavelength λ0 = 550 nm,
linearly polarized along the NW axis (transverse magnetic,
TM). Fig. 7d-f show the electric (top panels) and magnetic
(bottom panels) field intensity distributions inside the
nanowire. The nanowire dimensions are chosen such
that the magnetic dipole mode is excited. We note that
the results agree qualitatively and quantitatively with
FDTD simulations [24]. We emphasize that the full 3D
optical response of infinitely long nanowires is completely
described considering 2D simulations, which is of strong
interest for investigating e.g. propagating modes [52, 53].

The pyGDM-script to reproduce the results shown in
figure 7 can be found in the online documentation under
this link.

4.4. EELS / CL

Another new feature is the support of fast-electron
illumination and the implementation of corresponding
evaluation functions throught the new electron
submodule. These new functionalities are based on prior
theoretical work [55]. They allow to simulate electron
energy loss spectroscopy (EELS) and cathodoluminescence
(CL) experiments. A brief recapitulation of the formalism
can be found in Appendix C.

Figure 8 shows an example in which we reproduce
results from Ref. [54]. A flat (thickness of 40 nm),
regular prism made of aluminum with a side length of
700 nm lies on a Si3N4 membrane (n1 = 2), typically
used in electron microscopy. It is surrounded by vacuum
(n2 = 1). A normally incident beam of fast electrons (of
100 keV energy) passes through the sample, as illustrated
in figure 8a by a red dashed line. In a first simulation we
focus the electron beam on two positions: either on the tip
(blue marker) or on the center of one side (orange marker).
At those positions we calculate the cathodoluminescence
(Fig. 8b) and EELS spectra (Fig. 8c). In a second
step we fix the energy loss to 1.45 eV and perform a
raster-scan simulation, in which the electron beam scans
across the entire structure, as shown in figure 8d. We note
that when the beam is moving over the structure, it is
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Figure 7: 2D GDM simulations of the field intensity distribution
inside infinitely long silicon nanowires (SiNWs) of different shapes:
circular (a), square (b) and triangular (c). The sizes are chosen in
order to excite the magnetic dipole Mie resonance at λ0 = 550 nm
(normal incidence plane wave illumination with linear polarization
along the NW axis). The corresponding electric and magnetic field
intensity maps inside the SiNWs are shown in (d-f) in the upper,
respectively lower subplots. The SiNWs are in vacuum. Note that for
illustrative purposes the sketches (a-c) depict a significantly coarser
discretization as used for the actual simulations.

important to keep a constant distance between the electron
beam and the meshcells’ centers, in order to obtain a
smooth mapping. To this end we implemented a tool
tools.adapt_map_to_structure_mesh, which re-maps
positions close to a meshcell exactly onto the respective
closest discretization dipole.

Finally, we combine both types of simulations. With the
fast electron beam we perform a line-scan along one side
of the Al triangle. At each position we calculate an EELS
spectrum, which allows to visualize the spatial dispersion
of the plasmonic edge modes in the prism (Fig. 8e).

pyGDM-scripts to reproduce the results shown in
figure 8 can be found in the online documentation under
link to example 1, link to example 2 and link to example
3.

250nm

z
y

x

e-

Al

Si3N4

b) CL spectrum c) EELS spectrum

e) EELS dispersiond) EELS mapping

a)

700nm

Figure 8: Example of electron energy loss spectroscopy (EELS)
and cathodoluminescence (CL) simulations, reproducing results from
Ref. [54]. A regular aluminum prism of 700nm side length lies on
an Si3N4 membrane (n1 = 2). A normally incident, focused beam
of 100 keV electrons is raster-scanned along the sample. From the
interaction with the plasmonic structure we calculate (b) the CL
spectrum at the tip (blue) respectively side center (orange), (c) the
EELS spectrum (again at the tip and side center), (d) the spatially
resolved EELS probability for an energy loss of 1.45 eV (indicated
by a horizontal white dotted line in (e)), as well as (e) the spatial
dispersion of the EELS signal for various energies along the bottom
side (indicated by a horizontal white dotted line in (d)). The colorbar
scales in (d-e) represent the energy loss probability per electron and
per eV.

4.5. Optical chirality
Another new function in pyGDM is the calculation of

optical near-field chirality. The optical chirality is a scalar
quantity which can be interpreted as a measure of the
asymmetry in the coupling of left and right handed chiral
emitters with the available photonic modes [57, 58]. It is
defined as [59]

C

CLCP
= −Im

(
E∗ ·H

)
, (21)

where the superscript asterisk stands for complex
conjugation. pyGDM follows the convention to normalize
the chirality C to the value of a left circularly polarized
plane wave (CLCP). Consequently, left circularly polarized
(LCP), respectively right circularly polarized (RCP) plane

10

https://wiechapeter.gitlab.io/pyGDM2-doc/examples/exampleFastElec_fast_electrons_ex1.html
https://wiechapeter.gitlab.io/pyGDM2-doc/examples/exampleFastElec_fast_electrons_ex2.html
https://wiechapeter.gitlab.io/pyGDM2-doc/examples/exampleFastElec_fast_electrons_ex3.html
https://wiechapeter.gitlab.io/pyGDM2-doc/examples/exampleFastElec_fast_electrons_ex3.html


a) gold nanosphere

k
E

k
E

k
E

k
E

150nm50nm

k
E

k
E

L-dimer
R-dimer

k
E

200nm

80nm

20
nm

24nm

λ0=500nm
λ0=1100nm

b) gold nanorod c) silver nanorod dimer

k
E

k
E

160nm

30nm

gap:
40nm

60nm

maps: λ0=770nm

Figure 9: Examples of calculations of the chirality of the optical near-field. (a-b) Reproduction of results from [56]. (a) Plane wave
illuminated gold nano-sphere as a model for a point dipole response, resulting in a symmetric pattern of the optical chirality close to the
structure (here calculated at ±25 nm above and below the nanosphere). The illumination wavelength (here λ0 = 500nm) does not have a
significant impact on the chirality pattern. (b) Gold nanorod illuminated by a plane wave at the wavelength of the dipolar plasmon resonance
(λ0 = 1100 nm), linearly polarized along the rod’s long axis. The chirality is calculated at ±25nm above and below the surface of the nanorod.
(c) Reproduction of results from [57]. Chirality spectra calculated at a distance of 15nm above the top surface in the center between the
two silver nanorods. The colormaps show spatial mappings of the chirality in the L-dimer and R-dimer case at the wavelength of maximum
chirality (λ0 = 770nm, indicated by a vertical dashed line in the bottom plot). For simplicity all structures in (a-c) are placed in vacuum,
yet the qualitative trends are very well reproduced, in comparison with the original publications [56, 57].

waves have a chirality of CLCP = +1, respectively CRCP =
−1. Nanostructures inducing an optical chirality larger
than that of a circularly polarized plane wave (|C| > 1)
are often referred to as super-chiral.

To demonstrate the new function, we reproduce in
figure 9 selected examples of chiral near-fields from
literature. Figure 9a reproduces the chirality around a
point dipole excited by a linearly polarized plane wave.
This is illustrated by a small gold nanosphere in vacuum.
The calculated optical chirality is in very good agreement
with literature [56]. Figure 9b illustrates the chirality
above and below a gold nanorod, illuminated by a linearly
polarized plane wave at the fundamental localized plasmon
resonance, again reproducing results from literature with
high fidelity [56]. In a third example shown in Fig. 9c, we
calculate the chirality at the center of a silver nanorod
dimer, which is either in a left-handed (“L-dimer”) or
right-handed (“R-dimer”) configuration. The bottom plot
shows the spectrum of the respective chiralities (black line:
L-dimer, green dashed line: R-dimer). In the insets above
the spectra, we show the spatial mapping of C calculated
15 nm above the nanorod’s top surface. The L-handed (left
plot) and R-handed (right plot) dimers are illuminated at
the wavelength λ0 = 770 nm, leading to a peak of the
chirality. The results agree well with literature [57].

pyGDM-scripts to reproduce the results shown in
figure 9 can be found in the online documentation under
link to example 1, link to example 2 and link to example
3.

4.6. Field gradients and optical forces
A further new feature in pyGDM is a function to

calculate the gradients of near-fields in- and outside the
nanostructure. These gradients are required for instance
to calculate the charge distribution inside plasmonic
nanostructures [61] or to compute optical forces [62, 60].
In pyGDM, we implement a simple numerical center
differentiation, which approximates the derivative with
second order accuracy [63]:

∂f(x)

∂x
≈ f(x+ ∆)− f(x−∆)

2∆
(22)

By default, the discretization stepsize is used as value
for ∆, so inside a structure the fields are taken at
each meshpoint. Outside the structure the field can be
evaluated at arbitrary positions around the evaluation
location. Here the user may optionally choose a
value smaller than the stepsize for ∆. Note that the
gradients inside the structure can be obtained also using
a self-consistent formulation, which would however require
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Figure 10: Calculation of field gradients to deduce optical forces. (a)
illustration of the problem. Two dielectric nano-cubes (ncube = 2) in
vacuum are aligned on the z-axis with an inter-cube distance d. The
cubes are illuminated from below with a plane wave of wavelength
λ0 = 633 nm, with linear polarization along X. We seek to calculate
the optical force Fz acting in z-direction on the upper cube. (b-e)
real part of the optical fields Ex (b) and Ez (d) as well as their spatial
derivatives in z-direction ∂Ex/∂z (c) and ∂Ez/∂z (e). Shown areas
are 500 × 1000nm2 in the y = 0 plane, cutting through the center
of the dielectric cubes. The nano-cube outlines are indicated by
white/black dotted lines. All fieldmaps are in units of the incident
field amplitude E0. (f) optical force on the upper nano-cube as
function of the distance d between the two cubes, normalized to the
force at large distance.

a coupled system of size 12N × 12N , involving the second
derivative of the field susceptibilities (3×3×3×3 tensors)
[60].

Being able to compute the field gradients at the position
of a dipole, the optical force acting on this dipole of
moment p(ω) can be obtained through [60]

Fi =
1

2
Re

 3∑
j=1

pj(ω)
∂E∗j (ω)

∂ei

 , (23)

where the superscript asterisk ∗ indicates complex
conjugation, i, j ∈ {1, 2, 3} stand for the Cartesian
directions (x, y and z), and ei corresponds to the
Cartesian direction of the force vector, along which we also
differentiate the electric field at the position of the dipole.
The force acting on a larger nanostructure can be obtained
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Figure 11: Calculation of the optical force of a dielectric cube
above a substrate. (a) illustration of the configuration. A dielectric
nano-cube (side length a = 200 nm, ncube = 1.5) is placed in
vacuum (n2 = 1) at a small distance d above a dielectric substrate
of same index (n1 = 1.5). The system is illuminated from below
with a plane wave of linear polarization along X and vacuum
wavelength λ0 = 633nm. We calculate the optical force Fz on
the cube. (b) optical force Fz on the nano-cube as function of
the distance d to the dielectric interface, normalized to the force at
large distance to the surface. The optical force is calculated either
using the quasistatic mirror-charge approximation for the interface
(blue dashed line) or with a Green’s tensor for the surface including
retardation (orange solid line). The results are in good agreement
with similar simulations for a nano-sphere [60].

by summation of the forces on each individual mesh cell.
Note that the force on a nanoparticle can also be obtained
through the Maxwell stress tensor by integration of the
electromagnetic fields on a surface enclosing the particle
[60]. However, in the GDM the gradients method can
take advantage of the pre-calculated internal fields and is
therefore usually faster.

In figure 10a we illustrate a system of two dielectric
nano-cubes of refractive index n = 2, 165 nm side length
and variable distance d between each other. The cubes
are placed in vacuum and illuminated by a plane wave
from below, polarized along x. Due to symmetry the
Ey component is always zero. In figure 10b and 10d we
show the real part of the non-zero field components Ex,
respectively Ez. Fig. 10c and 10e show the according
spatial derivative along z, required to calculate the z
component of the optical force. Figure 10f shows the force
Fz on the upper of the two dielectric cubes.

A second example is illustrated in figure 11a. A
dielectric cube of index ncube = 1.5 and side length
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Figure 12: Radiation pattern of a Yagi Uda antenna in vacuum
(n2 = 1) lying on a substrate of refractive index n1 = 1.5. (a) Top
view of the structure. The structure consists in five nanorods of
radius R = 30 nm, the lengths are respectively L1 = 170 nm for
the reflector rod (left most), L2 = 145 nm for the feed rod (closest
to the electric dipole) and L3 = 115 nm for the guide rods (three
others). The dipole is oriented along the Oy axis and emits light
at λ0 = 820 nm. (b) Top view of the radiation pattern intensity
distribution in the substrate. (c) Angular radiation pattern in the
plane XZ, the maximum of emission is centered around the critical
angle θc = 222°.

a = 200nm is kept at short distance d above a dielectric
substrate of same refractive index (n1 = 1.5) and
illuminated from below with a plane wave (λ0 = 633nm,
polarization along X). In Fig. 11b the force along z is
shown for increasing distance d, either calculated with the
mirror-charge approximation (blue dashed line) or using
the retarded propagator for the dielectric interface via
the pyGDM2_retard package. The results are in excellent
agreement with a similar configuration from literature,
using a sphere instead of a cube [60]. The force between
the two cubes (Fig. 10) behaves actually very similarly
to the optical force acting on the nano-cube close to a
substrate (Fig. 11), with the difference of an additional
decreasing component in the former case. This can be
explained by the small size of the second nano-cube in
comparison with the infinite extension of the surface.

We note, that the gradients inside plasmonic
nanostructures can also be used to calculate the charge
distribution [61]. Due to the very short skin depth in
metals, the field gradients can be very strong which poses
difficulties together with the usually relatively coarse
volume discretization in the GDM. While this often
does not affect the accuracy of results that average the
internal fields (like the optical forces, far-fields or also
near-fields outside the structure), the internal fields and
their gradients can appear noisy which may pose problems
for computations of quantities inside the nanostructure
on a small scale, such as the charge density, in which
cases fine meshings need to be used.

The pyGDM-script to reproduce the results shown in
figure 10 can be found in the online documentation under
this link. For a script to reproduce figure 11 see this link.

4.7. Scattering into a substrate

By calculating the scattered intensity in the far-field
region on a spherical surface around the nanostructure,
the radiation pattern of a nanostructure can be deduced.
In the new version of pyGDM the asymptotic far-field

propagators are fully implemented for a single interface
(see Appendix A.2), hence far-field patterns of scattering
into a substrate can now be calculated.

In Figure 12, we present a simulation of the radiation
pattern of a gold Yagi-Uda antenna in vacuum (n2 = 1)
laying on a silica substrate (n1 = 1.5), similar to the
configuration described in the reference [64]. It consists
of 5 nanorods of radius R = 30 nm. From left to right,
we have the reflector rod of length L1 = 170 nm, the feed
rod of length L2 = 145 nm and the last three, of length
L3 = 115nm, are parasitic elements serving as directors
(see Fig. 12a). An electric dipole p, of emission wavelength
λ0 = 820nm, is positioned in the vicinity of the feed. The
rods are discretized on cubic mesh with a discretization
step of 10 nm.

We obtain results in agreement with literature [64, 65,
66], as we find that the emission of the emitter-antenna
system points unidirectionally towards the positive X axis
(see Fig. 12b). Additionally, the change in refractive index
between the vacuum and the substrate bends the direction
of radiation to the critical angle at θc = arcsin(n1/n2) =
222° (Fig. 12c). The nano Yagi-Uda antenna makes
it possible to emit predominantly in the direction of
the positive X axis. The dipole emitter couples to
the feed rod, which strongly enhances the signal due to
the Purcell effect. Then, as a result of the specifically
tailored inter-rods distances, the other elements impose
the directivity of emission due to constructive interference
only towards the positive X direction.

The pyGDM-script to reproduce the results shown in
figure 12 can be found in the online documentation under
this link.

Please note that pyGDM includes a module for
evolutionary optimization of photonic nanostructures.
Using this functionality we have demonstrated inverse
design of directional nano-antennas [66]. The analysis of
the near-field amplitude and phase clearly reveals the role
of the antenna elements even for the complex optimized
nanostructure that we obtained.

4.8. Quantum emitter decay rate inside nanostructures

Like the rest of the code, in the new version of pyGDM
the core.decay_rate function has been entirely rewritten
in pure python. A first noteworthy improvement is a
significant optimization of the algorithm, in which now
the required field susceptibilties are pre-calculated, which
hugely accelerates the numerical evaluation of the volume
integral. Furthermore, like all other pyGDM functions,
the decay-rate calculation is now capable to handle
multi-material structures and materials with non-isotropic
permittivity. Finally, it is now possible to calculate
both, the electric and magnetic decay rates also inside
nanostructures. pyGDM uses a formalism based on
field-susceptibilities for the derivation of the photonic local
density of states (LDOS), as detailed in references [30, 67,
68, 69].
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Figure 13: Decay rate inside a dielectric sphere (refractive index
n = 3.5) of radius R = 80 nm, placed in vacuum. Spectrally resolved
decay rate ρ, averaged over the entire volume of the sphere for
(a) electric dipole (ED) transitions and (b) magnetic dipole (MD)
transitions. Solid lines correspond to the GDM simulation, dashed
lines are values obtained by Mie theory. (c-d) show the decay rate
modification along a line parallel to the X axis through the center
of the sphere. Blue lines indicate an x-oriented, orange lines a
y-oriented dipole transition, values from Mie theory are again shown
by dashed lines. (c) electric, and (d) magnetic dipole transition,
calculated at the respective maximum decay rate enhancement.

We demonstrate the possibility to calculate magnetic
decay rates inside nanostructures by a comparison to Mie
theory [70, 71]. We calculate the normalized electric and
magnetic LDOS ρ/ρ0 averaged over the particle volume of
a dielectric sphere of refractive index n = 3.5 and radius
R = 80nm in air. This models the decay rate of a dielectric
particle doped with electric or magnetic emitters.

We note that the sphere is discretized by around 7000
meshpoints, which would have resulted in many days
of simulation time with the former code for numerical
integration. It becomes feasible with the optimized
implementation, which runs fully parallelized and for
the described problem takes in the order of 15 minutes
per wavelength running on 8 CPU cores (3rd generation

AMD Ryzen). The corresponding spectra are shown in
figure 13a, respectively 13b. Despite a slight resonance
shift the agreement is very good for the electric LDOS,
and of the correct order of magnitude for the magnetic
case. To investigate the origin of the discrepancy in the
magnetic case, we calculate the E- and H-LDOS along a
line parallel to OX through the center of the nanosphere
(figures 13c-d). The pyGDM-simulated electric LDOS
reproduces well Mie theory (Fig. 13c), but more than 20%
error is found for the magnetic contribution (Fig. 13d).
On the one hand we attribute this discrepancy to the
non-perfect spherical shape of the particle that is meshed
using cells with a stepsize of 8 nm, because the resonance
position strongly depends on the shape. On the other
hand, the magnetic LDOS is deduced by repropagating the
electric Green’s tensor [67], which can explain the larger
error in the interior of the structure. In conclusion, the
LDOS can be calculated with a good qualitative accuracy.
However, in demanding situations especially like spheres,
which are a challenging geometry for the GDM’s volume
discretization, the associated limitations of pyGDM should
be kept in mind.

The pyGDM-script to reproduce the results shown in
figure 13 can be found in the online documentation under
this link.

4.9. Plasmonic properties of doped dielectric
nanostructures

Doped semi-conductors nanostructure has open the
way towards tunable plasmonic [72]. Doping consists
of introducing impurities into a pure material in order
to modify its electronic and optical properties. The
impurities provide free carriers which form a free electron
cloud, that enables a plasmonic response of the material.
A new class of such doped dielectric materials has been
added to pyGDM, which adds a supplemental Drude term
to the permittivity of the undoped material, based on a
Drude-Lorentz model [73]

ε(ω) = εint(ω)−
ω2

p

ω2 + iγω
, (24)

where εint(ω) is the dielectric constant of the intrinsic
dielectric, γ is the damping rate due to the collisions, and
the plasma frequency ωp is related to the concentration of
free carriers Ndop according to

ωp =

√
4πNdope2

m∗
, (25)

where e andm∗ are respectively the elementary charge and
the effective mass of the carriers.

We added three material-classes
materials.hyperdoped_xxx to pyGDM. One adds
the doping-induced plasmonic response to a tabulated
dielectric permittivity which is loaded from an external
user-defined text file. The other two are specific cases,
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Figure 14: Evolution of the near-field pattern when progressively
doping five silicon pads until a carrier density of Ndop = 5 ×
1020 cm−3 is reached (window size: 1000×1000nm2). (a) Geometry
consisting of five undoped silicon blocks of size 100 × 100 × 50nm3

in an environment n2 = 1.65 and lying on a substrate n1 = 1.5,
illuminated by a descending plane wave. The electric near-field
intensity map computed 10 nm above the top surface of the pads
at λ0 = 2754nm is shown on the right. (b) same simulation as (a),
but with various different doping concentrations. Each pad’s dopant
concentration relative to Ndop is indicated by a blue label. (c) same
as (a), but each silicon pad is doped with the concentration Ndop,
leading to minimum near-field contrast.

namely silicon as well as a dielectric material of constant
refractive index.

In figure 14a, we show a simulation of the electric
near-field intensity maps 10 nm above the top surface of
an array of five undoped silicon pads. The structures are
embedded in an environment of refractive index n2 = 1.65,
laying on a substrate with n1 = 1.5, all illuminated by a
descending plane wave of wavelength λ0 = 2754 nm. In
figure 14b, we observe a strong change in the near-field
pattern as we gradually increase the doping of the pads.
The optical contrast decreases as the doping approaches
Ndop = 5 × 1020 cm−3. When the doping is further
increased, the near-field contrast increases again, yet with
an opposite sign. The fact that the nanostructures with
a doping of Ndop = 5 × 1020 cm−3 seem to disappear
(Fig. 14c) is due to an index matching of the real part
of the refractive index of the object with that of the
environment at a specific doping concentration [74].

The pyGDM-script to reproduce the results shown in
figure 14 can be found in the online documentation under
this link.

4.10. New illuminations: Vectorbeams

In the pyGDM update we implemented a few additional
focused vectorbeams, following chapter 3.6 of the textbook
of Novotny and Hecht [39]. We now provide generator
functions for doughnut beams with azimuthal and radial
polarization as well as linearly polarized Hermite-Gauss
beams for the orders HG00, HG01 and HG10. Focusing
through a numerical aperture of NA = 1.4 is shown
in figure 15. We note that pyGDM implements a full
tight focus model of these beams, including the correct
Ez component. So far the vector-beams are limited
to homogeneous environments, but we are developing
an implementation of taking into account transmission
and reflection at an interface, for which an experimental
version is already available, which currently undergoes
extensive testing.

To demonstrate the focused vectorbeam illuminations,
we show in figure 16 scattering spectra of a silicon
nanosphere of diameter D = 170nm in a homogeneous
oil environment (noil = 1.48). The sphere is illuminated
by either a Gaussian beam of HG00 mode and linear
polarization (blue line), or by a doughnut mode of either
azimuthal (orange line) or radial (green line) polarization.
The pyGDM simulations reproduce well recently reported
experimental results [75].

A pyGDM-script to reproduce the results shown in
figures 15 and 16 can be found in the online documentation
under this link.

4.11. Tools for the analysis of optical interaction effects

Several tools have been added to pyGDM in
the past 3 years. Along with tools to rotate
and shift structures (structures.rotate and
structures.shift), we added a tool to combine
simulations (tools.combine_simulations, assuming
identical configurations for each simulation), as
well as to split the geometry of a simulation
(tools.split_simulation). These tools allow in
particular to manipulate simulation objects with already
calculated fields, splitting or combining geometries whilst
preserving the formerly calculated optical response. This
allows to analyze the impact of optical interactions
and near-field coupling in an ensemble of several
nanostructures.

We demonstrate a possible use scenario of the new
function tools.split_simulation in figure 17. On
the left we show the real part of the electric field
inside an isolated silicon cube under X polarized plane
wave illumination at λ0 = 620 nm. On the right
we show a second simulation with the same silicon
object but including a second, smaller silicon block
close to the original one. This additional nanostructure
perturbs the optical response of the larger block. Using
tools.split_simulation we can remove the small block
from the simulation once the internal fields are calculated,
and calculate further observables from the perturbed
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Figure 15: Electric field intensity plots of the new added focused vectorbeams. From left to right: Doughnut modes (azimuthal and radial
polarizations) and Hermite-Gauss modes of the first orders, all calculated for focus by a numerical aperture NA = 1.4 and incidence from
positive towards negative z. Top panels show the plane y = 0, bottom plots show the focal plane at z = 0, which is indicated by a dotted
black line in the top panels. The real part of the electric field vectors is indicated by small arrows.
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Figure 16: Scattering from a silicon nanosphere of diameter
D = 170 nm in oil (noil = 1.48), illuminated by different polarized
vectorbeams through a numerical aperture of NA = 1.2. The blue
line corresponds to a linear polarized TEM00 beam, the orange line
to azimuthal polarization and the green line to radial polarization.

internal fields, that have been modified by the optical
interactions. The bottom plot in figure 17 shows the
norm of the electric (blue) and magnetic (orange) dipole
moments of the unperturbed (solid lines) as well as of
the perturbed block (dashed lines). We find that the
small perturbation has mainly a quantitative effect on
the electric dipole resonance, whereas the magnetic dipole
resonance is also strongly modified in qualitative sense.
The resonance is redshifted and a few side-modes appear
in the short wavelength region as a result of the presence
of the small neighbor silicon block.

In a reciprocal approach to splitting simulations,
it is possible to combine several simulations using

tools.combine_simulations. Those simulations can
contain the already calculated optical response of their
respective nanostructures, which will be all combined
in a new simulation object. The fields in such a
combined simulation represent then an approximation
without optical interactions between the constituents.
This is illustrated in figure 18 by the example of an array
of 5 × 5 silicon nano-cubes. As depicted in Fig. 18a,
the cubes of 100 nm side length and with a mutual
spacing of 50 nm are deposited on a glass substrate,
surrounded by air. A plane wave of λ0 = 600nm and
linear polarization along Y illuminates the structure from
below. First, each cube is described by a separate pyGDM
simulation object. After calculating the individual
cubes’ optical responses, these 25 simulation objects
are combined via tools.combine_simulations. The
resulting simulation contains the optical response in the
Born approximation, hence without multiple scattering
or near-field coupling between the cubes. This combined
simulation can subsequently be used in pyGDM to derive
further quantities. Figure 18b shows intensity maps of the
electric (left) and magnetic (right) near-field, calculated
50 nm above the top surface of the (non-interacting)
blocks. By running scatter() on the combined simulation
object, we can then compute the self-consistent response of
the full structure, hence including all optical interactions
between the cubes. The resulting intensity maps are shown
in figure 18c. The comparison with 18b demonstrates that
near-field interactions can play a crucial role in the optical
excitation of dense assemblies of nano-structures.

Figure 18d-f shows the exact same simulations as 18a-c,
with the difference of a significantly larger pitch between
the silicon nano-cubes (500 nm distance instead of 50 nm).
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Figure 17: Electric (ED) and magnetic dipole moment (MD)
analysis of a silicon nano-block. The block is either isolated (top
left sketch), or perturbed by a second, smaller silicon nanoblock (top
right illustration). The simulations are performed in vacuum with X
polarized plane wave illumination from the top. To assess the impact
of the perturbation on the electric and magnetic dipole moments
(MD) inside the larger Si block, the tool “tools.split_simulation”
is used to split off a sub-part of the structure after simulating the
coupled system of two blocks (dashed box in top right sketch) in
order to analyze the effect of the perturbation. The bottom plot
compares the dipole moment magnitudes of the isolated case (solid
lines) with the perturbed silicon nanoblock (dashed lines). This
analysis reveals a shift of the magnetic dipole resonance, some new
emerging magnetic contributions (between 500nm and 600nm) as
well as a significant increase in the induced electric dipole moment
as result of the perturbation by a second silicon nanostructure. A
vertical dashed line indicates the wavelength λ0 = 620 nm of the field
distributions shown in the top figures.

The comparison of simulations without and with optical
interactions in figure 18e and 18f indicates a very weak
optical interaction between the distant cubes, since the
near-field maps are almost identical in this case. In such
a de-coupled scenario, the tools.combine_simulations
function can also be used to cost-efficiently calculate large
arrays of non-interacting particles to evaluate interference
effects, for instance in gratings.

The pyGDM-script to reproduce the results shown in
figure 17 can be found in the online documentation under
this link. For figure 18, see this link.

5. All changes and bugfixes since version 1.0

All new features and improvements are summarized in
table 1. Important bugfixes concerning the physics are
listed in table 2.

New Functionalities Improvements

2D simulations;
substrates with retardation

Automatic mesh-type
recognition

fast electrons:
EELS and CL

Multi-materials
nanostructure

Internal H-field Distinct in/out object
in NF calculation

Fields gradients,
optical forces

Structure in any layer
of the environment

Decay-rate for
multi-material structures

Dispersive environments
nenv(ω)

Magnetic decay-rate
inside structures [67] New materials: SiO2,

TiO2, doped dielectrics

ED / MD
decomposition [47] Optimized decay rate/LDOS

calculation

Doped dielectric
materials model [73] Consistency test

at initialization

Combine and
split simulations Support for GPU simulations

pyGDM-UI
(Graphical user interface)

Avoid unnecessary calculations
in nearfield / farfield

Table 1: Summary of new functionalities and improvements
implemented in pyGDM.

extinct Prefactor for environments ε 6= 1

farfield Asymptotic propagator
for environments ε 6= 1

heat Correct equations implementation

Tensorial alpha support

material Correct ε for Ag

visu Correct field-intensity
calculation

Non-cubic mesh
in visu.visu_contour

fields Correct H-field phase
in plane wave and gaussian

arbitrary incident
angles for plane wave

correct 3-layer environments
in plane wave

arbitrary polarization states

Table 2: Summary of major bug fixes made to different pyGDM
functions.
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Figure 18: Impact of optical interactions on an array of silicon nano-blocks. (a) shows the considered geometry, consisting of a square array
of 25 silicon nano-cubes of 100nm side length, lying on a glass substrate (n1 = 1.45). The spacing between the cubes is 50nm. The array
is illuminated from below by a λ0 = 600 nm plane wave, linearly polarized along y. (b-c) show electric (left) and magnetic (right) near-field
intensity maps, calculated 50 nm above the top-surface of the blocks, on 1.2× 1.2 µm2 large areas. (b) simulation without optical interactions
at the excitation, using the new “tools.combine_simulations” function. (c) full simulation with all optical interactions. (d-f) same as (a-c)
but with a larger pitch of 500nm. Maps in (e-f) are 3 × 3 µm2 large.

6. Outlook

In the future, from the physical modeling point of
view we plan to implement Green’s tensors for periodic
structures [76], retarded tensors for 2D simulations in
layered environments and possibly for 3D systems with
arbitrary numbers of interfaces [43, 77], functions to
calculate the non-radiative part of the LDOS [78, 22]
and the possibility to model femto-second laser pulses
for ultrafast optics applications [79]. We also plan to
implement nonlinear nano-optics functions from earlier
work into pyGDM [26, 25]. On the long term we
want to add support for meta-material unit-cells having
a direct magnetic response [4]. We are constantly
implementing further improvements. For instance we
work on including transmission and reflection coefficients
at an interface for the new focused vector-beams. In
the pyGDM2_retard module for the retarded description
of a layered environment we are working on including
field calculations in other zones than the one hosting the
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nanostructure.
From the technical side, we plan to implement a

conjugate gradients solver to avoid full inversion of systems
with large amounts of mesh-cells [3]. More flexible
meshing is also a feature that we plan to implement in
the future [44, 20, 45]. Furthermore, we are beginning
to conceptualize a module to evaluate complex problems
with pre-trained deep learning models, and we think
about how to construct an interface which allows the
easy creation of such deep learning accelerated models for
specific applications [80].
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Appendix A. Expressions of the field
susceptibilities used in pyGDM

Appendix A.1. Cartesian representation of the free space
field susceptibilities

The solutions of the wave equations (5) are [33, 38, 67]

GEE
0 (r, r′, ω) =

[
∇∇
εenv

+ µenvk
2
0I

]
eik|r−r

′|

|r− r′|
(A.1a)

GEH
0 (r, r′, ω) = ik0∇×

eik|r−r
′|

|r− r′|
(A.1b)

GHH
0 (r, r′, ω) =

[
∇∇
µenv

+ εenvk
2
0I

]
eik|r−r

′|

|r− r′|
(A.1c)

GHE
0 (r, r′, ω) = −ik0∇×

eik|r−r
′|

|r− r′|
(A.1d)

with r = (x, y, z), r′ = (x′, y′, z′), k0 is the wave vector
in the vacuum and k =

√
µenvεenvk0 the wave vector in

the environment. As mentionned in the main document,
all materials (gases or solids) encountered in nature have
no intrinsic response to the magnetic field at optical
frequencies. That means µenv = 1, which leads to a wave
vector in the environment k =

√
εenvk0 = nenvk0. In

Eq. (A.1), if we apply the different nabla operators to the
scalar Green’s function, we obtain the field susceptibilities
as a sum of tensors

GEE
0 (r, r′, ω) =[
−k2TEE

1 (R)− ikTEE
2 (R) + TEE

3 (R)
] eikR
εenv

(A.2a)

GHH
0 (r, r′, ω) = εenvG

EE
0 (r, r′, ω) (A.2b)

GHE
0 (r, r′, ω) =[

nenvk
2
0T

HE
1 (R) + ik0T

HE
2 (R)

]
eikR (A.2c)

GEH
0 (r, r′, ω) = −GHE

0 (r, r′, ω) (A.2d)

with R = r − r′ = (∆x,∆y,∆z) the relative
distance between the source at the position r′ and the
evaluation point r. The different dyadic tensors give
the electromagnetic field contributions in the far field
(TEE

1 (R), THE
1 (R) ∝ 1/R), the intermediate (TEE

2 (R),
THE

2 (R) ∝ 1/R2) and near field (TEE
3 (R) ∝ 1/R3)

regions. They are defined as [38, 39]

TEE
1 (R) =

RR− IR2

R3
, (A.3a)

TEE
2 (R) =

3RR− IR2

R4
, (A.3b)

TEE
3 (R) =

3RR− IR2

R5
, (A.3c)

and

THE
1 (R) =

1

R2

 0 −∆z ∆y

∆z 0 −∆x

−∆y ∆x 0

 , (A.4a)

THE
2 (R) =

1

R3

 0 −∆z ∆y

∆z 0 −∆x

−∆y ∆x 0

 . (A.4b)

Appendix A.2. Weyl representation of the field
susceptibilities of a flat surface

We consider in the following a single, flat interface at
z = 0, separating the dipole environment (of refractive
index n2) and a substrate (of refractive index n1).
For the description of radiation from oscillating dipoles
across planar interfaces, the Cartesian forms of the free
space susceptibilities are exact but not well suited for
this boundary conditions problem. It is easier to use
electromagnetic fields with wavefronts parallel to the
interface (plane wave for a flat interface; spherical wave
for a spherical particle interface). Due to the broken
symmetry along the z-axis, a plane wave expansion of
the surface wave vector k‖ = (kx,ky) is performed.
Thus the susceptibilities associated with the surface are,
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as presented in the references [31, 39], developed in
2D-integrals of the shape

Gαβ+/−

2-layer (r, r′, ω) =

i

2π

∫
dk‖ F

+/−(r, r′, ω)N
+/−
αβ (k‖, ω). (A.5)

For all the terms, the “+” superscript means that
we consider the case above the interface (in the
medium containing the structure) and “-” under it (in
the substrate). The N

+/−
αβ (k‖, ω) terms are (3 × 3)

matrices, k−z =
√
ε1k20 − k2‖ and k+z =

√
ε2k20 − k2‖,

with ε1 = n21. For the electric-electric coupling
term, the definition of the matrices N

+/−
αβ (k‖, ω) are

mentionned in the references [38] (N+
αβ , see Eq. (51)

in [38]) and [81] (N−αβ , Eq. (A5) in [81]). The spatial

term F+(r, r′, ω) = ei[k‖·(l−l
′)+k+z (z+z′)] (respectively

F−(r, r′, ω) = ei[k‖·(l−l
′)−(k−z z−k

+
z z
′)]) depend on the

position of the dipole r′ above the interface, and the
evaluation position r above (respectively below) the
surface.

The equation (A.5) gives the electric field everywhere
in space, nevertheless that requires numerical integrations
in the complex plane to deduce the nine elements of the
matrix. In the reference [43], all the details on how to
perform the calculation efficiently are described. The
expression (A.5) is an integral of the shape:

Gs(r, r
′, ω) =

i

2π

∫ +∞

0

dk‖

∫ 2π

0

g(k‖, α)eirf(k‖,α) dα

(A.6)
where the vector k‖ is expressed in cylindrical coordinates
(k‖, α). This integration can be avoided in the near-field
and far-field regions. In the near-field region (small values
of r) we use the electrostatic limit (c → ∞) and in the
far-field region (large values of r) we use the retarded
asymptotic limit defined in the references [82]:

Gs(r, r
′, ω) ∼∞

1

| tan θ|
g(k̃‖, α̃)

eink0r

r
. (A.7)

In the previous equation, r and θ are the spherical
components of the evaluation position r = (r, θ, ϕ), n is
the refractive index of the medium considered and (k̃‖, α̃)
defined the saddle point of the function f(k‖, α)

∂f

∂k‖
(k̃‖, α̃) = 0 and

∂f

∂α
(k̃‖, α̃) = 0. (A.8)

The calculus is fully explained in Ref. [37], here we present
only the electrostatic and asymptotic expressions of the
surface Green’s dyadic tensor, which are implemented in
pyGDM. As previously, due to the non-magnetic response
of the environment, we get interest only to the “EE” and
“HE” surface dyadic tensors.

Appendix A.2.1. Non-retarded form and electrostatic limit
In the electrostatic limit we suppose c → ∞, hence

k0 → 0, which simplifies the problem drastically. For
the electric-electric tensors that leads to the following
expressions

GEE+,stat

2-layer (r, r′, ω) = ∆+
surf

T3(R)

εenv
·

−1 0 0
0 −1 0
0 0 1

 , (A.9)

GEE-,stat

2-layer (r, r′, ω) = ∆−surfT3(R), (A.10)

with ∆+
surf = (ε1 − ε2)/(ε1 + ε2) and ∆−surf = 2/(ε1 + ε2).

The magnetic-electric case vanishes in the electrostatic
limit

GHE+,stat

2-layer (r, r′, ω) = 0

GHE-,stat

2-layer (r, r′, ω) = 0.
(A.11)

These results can be obtained equally with the image
dipole theory [32].

Appendix A.2.2. Retarded asymptotic form
The retarded expressions of the electric-electric Green’s

dyad, above and below the surface, are obtained by using
the equation (A.7). These tensors make it possible to
easily obtain the electric field emitted by an electric dipole,
in the vicinity of an interface, far from it. The tensors
depend mainly of the spherical components (r, θ, ϕ) of the
evaluation position, above the surface it is expressed as

GEE+∞

2-layer,xx = F0(rp cos2 θ cos2 ϕ− rs sin2 ϕ) (A.12a)

GEE+∞

2-layer,xy = F0(rp cos2 θ + rs) cosϕ sinϕ (A.12b)

GEE+∞

2-layer,xz = F0rp sin θ cos θ cosϕ (A.12c)

GEE+∞

2-layer,yx = GEE+∞

2-layer,xy (A.12d)

GEE+∞

2-layer,yy = F0(rp cos2 θ sin2 ϕ− rs cos2 ϕ) (A.12e)

GEE+∞

2-layer,yz = F0rp sin θ cos θ sinϕ (A.12f)

GEE−∞
2-layer,zx = −GEE+∞

2-layer,xz (A.12g)

GEE+∞

2-layer,zy = −GEE+∞

2-layer,yz (A.12h)

GEE+∞

2-layer,zz = −F0rp sin2 θ (A.12i)

with

F0 = −k20
ein2k0r

r
e−in2k0 sin θ(x′ cosϕ+y′ sinϕ)×

ein2k0 cos θz′
(A.13)

rp and rs are the reflection coefficients, depending on
the refractive index of the media from either side of the
interface, given by [39, 37]

rp =
ε1n2 cos θ − ε2(ε1 − ε2 sin2 θ)1/2

ε1n2 cos θ + ε2(ε1 − ε2 sin2 θ)1/2
,

rs =
n2 cos θ − (ε1 − ε2 sin2 θ)1/2

n2 cos θ + (ε1 − ε2 sin2 θ)1/2
.

(A.14)
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A completely similar form is obtained for the
electric-electric surface susceptibility below the interface

GEE−∞
2-layer,xx = F1(

Φp

ε2
cos2 ϕ+ Φs sin2 ϕ) cos θ (A.15a)

GEE−∞
2-layer,xy = F1(

Φp

ε2
− Φs) cos θ sinϕ cosϕ (A.15b)

GEE−∞
2-layer,xz = F1τp

ε1
ε2

sin θ cos θ cosϕ (A.15c)

GEE−∞
2-layer,yx = GEE−∞

2-layer,xy (A.15d)

GEE−∞
2-layer,yy = F1(

Φp

ε2
sin2 ϕ+ Φs cos2 ϕ) cos θ (A.15e)

GEE−∞
2-layer,yz = F1τp

ε1
ε2

sin θ cos θ sinϕ (A.15f)

GEE−∞
2-layer,zx = −F1

Φp

ε2
sin θ cosϕ (A.15g)

GEE−∞
2-layer,zy = −F1

Φp

ε2
sin θ sinϕ (A.15h)

GEE−∞
2-layer,zz = −F1τp

ε1
ε2

sin2 θ (A.15i)

with

F1 = k20
ein1k0r

r
e−in1k0 sin θ(x′ cosϕ+y′ sinϕ)×

eik0(ε2−ε1 sin2 θ)1/2z′
(A.16)

and

Φs =
n1τs

(ε2 − ε1 sin2 θ)1/2
, τs = 1−∆s,

Φp = n1τp(ε2 − ε1 sin2 θ)1/2, τp = ∆p + 1

(A.17)

where

∆p =
−n1ε2 cos θ − ε1(ε2 − ε1 sin2 θ)1/2

−n1ε2 cos θ + ε1(ε2 − ε1 sin2 θ)1/2

∆s =
−n1 cos θ − (ε2 − ε1 sin2 θ)1/2

−n1 cos θ + (ε2 − ε1 sin2 θ)1/2
.

(A.18)

In the far region, or propagating region, the wave vector,
the electric field and magnetic field respect the right-hand
rule. Therefore, we easily calculate the magnetic field in
this region by using the well-known equation

H = k×E. (A.19)

Appendix B. 2D field susceptibilities

A further new feature in pyGDM is the possibility to
simulate two-dimensional nanostructures like nanowires,
which are infinitely long along one dimension. In this
case, the geometry is disretized using “line-dipoles”, and
light-emission is described by cylindrical waves.

We assume a nanostructure geometry which is “infinitely
long”, hence is invariant along one axis. We will use the

y axis in the following. In this case, all dependences
along this axis are identical to the time-harmonicity of
the incident field and are therefore explicit. With r2D =
xêx + zêz the two-dimensional electric polarization at a
“3D” location r can be written:

P2D(r) = P2D(r2D) exp(iky,0y) (B.1)

where ky,0 is the wavevector component along the infinite
axis. In the 2D field calculations, we discretize the
nanostructure into lines of identical dipoles, infinitely
extending along the y-axis. Hence an integration along
these dipole lines needs to be performed. This integration
can be included in the 2D Green’s Dyads. Using the Dyad
GEE

0 from equation (A.1), gives:

G2D,EE
0 (r2D, r′,2D) =

=

∞∫
−∞

GEE
0 (r, r′)eiky,0y

′
dy′

=
1

εenv

(
k2I +∇∇

) ∞∫
−∞

G0(r, r′)eiky,0y
′
dy′

(B.2)

where r2D and r′,2D are the 2D positions of the observer
and the emitting dipole-line, respectively.

The y′-integral over the vacuum Green’s function can
be expressed by the following identity via the zero-order
Hankel function of the first kind H(1)

0 [83, 84]:

∞∫
−∞

eik
√
R2+(y−y′)2√

R2 + (y − y′)2
eiky,0y

′
dy′ =

iπH(1)
0

(
kr R

)
eiky,0y (B.3)

where we define the in-plane distance as R = |R2D| =
|r2D − r′,2D|, and

kr =
√
k2 − k2y,0 . (B.4)

Now, by including the explicit y-dependence in the
differential operator for the 2D problem

∇ = ∂êx/∂x+ ∂êz/∂z + iky,0êy
= ∇ρ + iky,0êy

(B.5)

we obtain

G2D,EE
0 (r2D, r′,2D) =

iπ
εenv

k2 + ∂2

∂x2 iky,0 ∂
∂x

∂2

∂x∂z

iky,0 ∂
∂x k2 − k2y,0 iky,0 ∂

∂z
∂2

∂z∂x iky,0 ∂
∂z k2 + ∂2

∂z2


×H(1)

0

(
krR

)
eiky,0y . (B.6)
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With the derivatives of the n-th order Hankel functions of
the first kind

d
da
H(1)
n (a) =

nH
(1)
n (a)

a
−H(1)

n+1(a) , (B.7)

and the recurrence relation

H(1)
n (a) =

a

2n

(
H

(1)
(n−1) (a) +H

(1)
(n+1) (a)

)
, (B.8)

we arrive finally at the following set of components for the
2D Green’s dyad, where we assume that the observer is
located in the plane y = 0:

G2D,EE
0,xx = iπ

(
k20 − k2r/(2εenv)

)
H

(1)
0 (kr R)

+ iπ
k2r
(
2(∆x/R)2 − 1

)
2εenv

H
(1)
2 (kr R) (B.9)

G2D,EE
0,xy = π

kr ky,0 ∆x/R

εenv
H

(1)
1 (kr R) (B.10)

G2D,EE
0,xz = iπ

k2r ∆x∆z/R2

εenv
H

(1)
2 (kr R) (B.11)

G2D,EE
0,yy = iπ

(
k20 − k2y,0/εenv

)
H

(1)
0 (kr R) (B.12)

G2D,EE
0,yz = π

kr ky,0∆z/R

εenv
H

(1)
1 (kr R) (B.13)

G2D,EE
0,zz = iπ

(
k20 − k2r/(2εenv)

)
H

(1)
0 (kr R)

+ iπ
k2r
(
2(∆z/R)2 − 1

)
2εenv

H
(1)
2 (kr R) (B.14)

G2D,EE
0,yx = G2D,EE

0,xy

G2D,EE
0,zx = G2D,EE

0,xz

G2D,EE
0,zy = G2D,EE

0,yz

(B.15)

with ∆x = x− x′ and ∆z = z − z′.
Analogously, for the mixed electric-magnetic Green’s

tensor we obtain:

G2D,HE
0 (r2D, r′,2D) =

=

∞∫
−∞

GHE
0 (r, r′)eiky,0y

′
dy′

=− ik0∇×
∞∫
−∞

G0(r, r′)eiky,0y
′
dy′

=k0π

 0 −∂
∂z

∂
∂y

∂
∂z 0 −∂

∂x
−∂
∂y

∂
∂x 0

H
(1)
0

(
krR

)
eiky,0y

(B.16)

which explicitly gives

G2D,HE
0,xy = π

k0kr∆z

R
H

(1)
1 (kr R) (B.17a)

G2D,HE
0,xz = iπk0ky,0H

(1)
0 (kr R) (B.17b)

G2D,HE
0,yz = π

k0kr∆x

R
H

(1)
1 (kr R) (B.17c)

G2D,HE
0,yx = −G2D,HE

0,xy (B.17d)

G2D,HE
0,zx = −G2D,HE

0,xz (B.17e)

G2D,HE
0,zy = −G2D,HE

0,yz (B.17f)

G2D,HE
0,xx = G2D,HE

0,yy = G2D,HE
0,zz = 0 . (B.17g)

Without loss of generality, 2D simulations in pyGDM
are restricted to the y = 0 plane. For the evaluation of
the fields at positions y 6= 0, the tensors simply need to be
multiplied by the y-dependent phase factor of the incident
field.

2D self-terms
The electric-electric self-term components write [83]:

normx = normz =
−4π

2εenvScell
+

4iπ2

(
2k20 −

k2r
εenv

)
H

(1)
1 (krd/

√
π) + 2i/(πkr)

4Scellkr
(B.18)

and

normy = 4iπ2

(
k20 −

k2y,0
εenv

)
H

(1)
1 (krd/

√
π) + 2i/(πkr)

2Scellkr
(B.19)

where Scell = d2 is the surface covered by a square
mesh-cell with side length d. Similar to the 3D Green’s
tensors, the magnetic-electric self-terms equal zero. Note
that in the current version of pyGDM, 2D simulations are
only possible on a square mesh.

Appendix C. Fast electron illumination:
Computation of electron energy
losses and cathodoluminescence

The pyGDM toolbox now provides built-in routines to
simulate the results of Electron Energy Loss Spectroscopy
(EELS) or Cathodoluminescence (CL) experiments.

We consider in the following the situation represented in
Figure C.19. A fast electron with charge (−e) is traveling
along the (OZ) axis towards positive z i.e v = +vez.
The electron passes in the vicinity of a nanostructure. It
is incident normally on the sample plane at coordinates
R⊥ = (xe, ye).

Classically, the energy losses experienced by a fast
electron are interpreted as follows : (i) A moving charge is
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Figure C.19: A fast electron is incident on a nanostructure and
crosses the (OXY) plane at R⊥ = (xe, ye). We compute the electron
energy losses experienced by the swift particle in the framework of
the Green Dyadic Method.

the source of an electromagnetic field which polarizes the
neighbouring nano-objects. (ii) In return, the polarized
nano-objects radiate an electric field which acts on the
electron movement. The energy losses are a due to the
work of the Lorentz force on the moving charge. The
loss probability per incident electron per unit angular
frequency is given by the following formula [6]:

Γ(ω) =
e

~πω

∫
Re
(
e−iωtv.Eind(r(t), ω)

)
dt (C.1)

Γ(ω) can be directly computed by (i) repropagating
the electric field at each point of the electron trajectory
and (ii) summing up the different contributions to the
energy losses along the trajectory. In a previous version
of our simulation tools, this was done using adaptative
discretization of the trajectory of the electron [55]. In the
following, we derive a concise expression for the energy
losses in the framework of the Green Dyadic Method. This
expression is now used in the EELS function of the pyGDM
toolbox enabling rapid computations of EELS spectra and
maps.

Appendix C.1. Electron Energy Losses using the Green
Dyadic Method

The following alternative strategy can be adopted
to obtain Γ(ω). The induced electric field can be
expressed as a function of the vacuum propagator S0

and the polarization distribution inside the nanoparticle
p(r′, ω) [38]:

Γ(ω) =
e

~πω

∫
Re
(
e−iωtv.Eind(r(t), ω)

)
dt

=
e

~πω

∫ +∞

−∞
Re

{
e−iωtv.

(∫
V ′
S0(r(t), r′, ω).p(r′, ω)dr′

)}
dt

In the latter, V ′ is the volume of the nanoparticle. We can
then exchange the integration on time and r′. Taking into
account the fact that z = vt we have:

Γ(ω) =
ev

~πω
Re

{∫
V ′

ez.(∫
t

e−iωz(t)/vS0((R, z(t)), r′, ω)dt

)
.p(r′, ω)dr′

}

The electric-electric vacuum Green’s tensor is given by
(Eq. (A.1)):

S0(r, r′, ω) = GEE
0 (r, r′, ω) ={

k20I +
1

ε
∇∇

}
eik|r−r

′|

|r− r′|
(C.2)

which leads to:

Γ(ω) =
e

~πω
Re

{∫
V ′

ez.(∫
z

e−iωz/v
{
k20I +

1

ε
∇∇

}
eik|r−r

′|

|r− r′|
|dz

)
.

p(r′, ω)dr′

}

or more explicitly:

Γ(ω) =
e

~πω
Re

{∫
V ′

(∫
z

e−iωz/vez.k
2
0 + 1

ε
∂2

∂x2
1
ε

∂2

∂x∂y
1
ε

∂2

∂x∂z
1
ε

∂2

∂y∂x k20 + 1
ε
∂2

∂y2
1
ε

∂2

∂y∂z
1
ε

∂2

∂z∂x
1
ε

∂2

∂z∂y k20 + 1
ε
∂2

∂z2


eik|r−r

′|

|r− r′|
dz.

px(r′, ω)
py(r′, ω)
pz(r

′, ω)

)dr′}
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The term between parenthesis can be expressed as:

A = A1 +A2 +A3 +A4

=
1

ε
px

∫ +∞

−∞
e−iωz/v ∂2

∂z∂x

(
eikR

R

)
dz

+
1

ε
py

∫ +∞

−∞
e−iωz/v ∂2

∂z∂y

(
eikR

R

)
dz

+ k20pz

∫ +∞

−∞
e−iωz/v e

ikR

R
dz

+
1

ε
pz

∫ +∞

−∞
e−iωz/v ∂

2

∂z2

(
eikR

R

)
dz

Each of these 4 terms Ai can be calculated by integration
by parts and connected to the following integral:

I =

∫ +∞

−∞
e−iωz/v e

ikR

R
dz

which gives

I = 2e−iωz′/vK0

(√(ω
v

)2
− k2 |R−R′|

)
(C.3)

withR = |r−r′| andKn the modified Bessel function of the
second kind and order n. We get the following expressions
for the Ai terms:

A1 = − 2 i e−iωz′/v ω2

εγv2
x− x′

|R−R′|
K1(kρ |R−R′|) px

(C.4)

A2 = − 2 i e−iωz′/v ω2

εγv2
y − y′

|R−R′|
K1(kρ |R−R′|) py

(C.5)

A3 = 2k20e
−iωz′/vK0(kρ |R−R′|) pz (C.6)

A4 = −2

(
ω2

εv2

)
e−iωz′/vK0(kρ |R−R′|) pz (C.7)

with kz = ω/v, kρ =
√
k2z − k2, k = k0

√
ε, γ =

1/
√

1− εv2/c2 and kρ = ω/vγ .
After some algebra we obtain finally the following

expression for the energy losses:

Γ(ω) =
2e

~πω
Re

{∫
V ′
e−iωz′/v

[

−
( ω2

εγ2v2

)
K0(kρ |R−R′|)pz

− i
ω2

εγv2
px(x− x′) + py(y − y′)

|R−R′|

K1(kρ |R−R′|)

]
dr′

}
In GDM, the used Fourier transform is defined with a 2π
factor difference from the convention used for instance by

J. Garcia de Abajo (see [55] for more information). The
latter defines the Fourier transform as:

E(r, t) =

∫
dω

2π
E(r, ω)e−iωt

E(r, ω) =

∫
dtE(r, t)eiωt

whereas in the GDM it is defined as:

E(r, t) =

∫
dωE(r, ω)e−iωt

E(r, ω) =
1

2π

∫
dtE(r, t)eiωt

The formula for the loss probability per unit frequency
that is implemented in pyGDM is therefore:

Γ(ω) =
4e

~ω
Re

{∫
V ′
e−iωz′/v

[

−
(

ω2

εγ2v2

)
K0(kρ |R−R′|)pz

− i
ω2

εγv2
px(x− x′) + py(y − y′)

|R−R′|

K1(kρ |R−R′|)

]
dr′

}
(C.8)

It connects the electron energy losses to the three
components of the polarization induced inside the
nanostructure by the moving charge. In the next section
we give a simpler expression of this result for a dipolar
particle.

Appendix C.2. Case of a very small particle

In the case of a small nanoparticle that can be
approximated by a polarizability α located at the origin,
we can write the components of the polarization induced
inside the nano-object by an electron beam crossing the
(OXY) plane at location (d, 0) as:

p = αEel .

The electric field Eel created at the location of the
nano-object by a swift electron travelling along (OZ)
towards positive z is:

px =
eω

πv2γε
αK1

(
ωd

γv

)
py = 0

pz = i
eω

πv2γ2ε
αK0

(
ωd

γv

)
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Inserting these expressions in formula (C.8) yields:

Γ(ω) =
4e

~ω
Re

{[
−
(

ω2

εγ2v2

)
K0(kρ d)pz

−i ω
2

εγv2
(pxK1(kρ d))

]}

=
4e

~ω
Re

{[
− i

eω

πv2γ2ε
α

(
ω2

εγ2v2

)
K2

0 (kρ d)

−i eω

πv2γε
α
ω2

εγv2
K2

1 (kρ d)

]}

Γ(ω) =
1

π~

(
2eω

v2γε

)2
K2

0 (kρ d)

γ2
Im(α)

+
1

π~

(
2eω

v2γε

)2

K2
1 (kρ d)Im(α)

Which finally leads to

Γ(ω) =
1

π~

(
2eω

v2γε

)2

Im(α)

{
K2

1 (kρ d)+

K2
0 (kρ d)

γ2

}
(C.9)

We see here that assuming a dipolar response for the
nanoparticle in formula (C.8) yields identical results as
formulas (34) and (35) of reference [6].

The computation of cathodoluminescence spectra and
maps follows the same lines as detailed in reference [55].
In short, pyGDM computes the power radiated by the
polarization distribution, induced inside the sample by the
moving charge from the integral of the Poynting vector on
a sphere, centered on the sample.

Appendix D. Technical details

Appendix D.1. Simulation size
The maximum number of discretization cells depends

on the available RAM. The memory requirement scales
with the square of the discretization points. 8GB of
RAM are enough to treat around 6000 meshpoints. The
computation time scales with the cube of the number
of cells, therefore for larger structures the simulation
time will become the bottleneck in systems with enough
memory. Practically the number of meshpoints for typical
simulations is limited to ≈ 10000− 15000.

Appendix D.1.1. Dependencies
pyGDM is written in pure python. It uses several

third-party tools and libraries for acceleration, processing
and visualization. All dependencies are exclusively
open-source and can be installed via “pip”:

Required third party python packages.

• “numba” (just-in-time compiler for acceleration)

• “numpy” (numerical stack)

• “scipy” (various efficient scientific algorithm)

Optional python packages.

• “matplotlib” (for 2D visualizations)

• “mayavi” (for 3D visualizations)

• “cupy” (CUDA-based GPU solver)

• “pytables” (to save simulations results in the efficient
hdf5 data format)

• “cupy” (CUDA-based GPU solver)

• “mpi4py” (for MPI parallelized spectra calculation)

• “pyGMO” (required by the evolutionary optimization
submodule)

• “PIL” (required by some image processing tools)

Appendix D.2. Compiling, installation

We provide the latest stable version via the pypi
repository, installation is therefore easiest via “pip”:

pip install -U pygdm2
To install the latest development version, download

the source code from the gitlab repository and run in a
terminal in the pyGDM sources root directory

pip install -U .

Attention, the trailing point "." is significant in the
command, pointing to the current working directory. For
a local installation, add “--user”.

Compiling, installation of the retarded Green’s dyads
module

The retarded dyads module pyGDM2-retard depends on
fortran based binaries and is available as an external
python package in order to avoid a binary dependency
in the main pyGDM package. For windows we provide
pre-compiled packages of the latest stable version. On
other operating systems like linux the package needs to
be compiled. Installation is easiest via “pip”:

pip install -U pyGDM2-retard

If no binaries are available on your platform, the code must
be locally compiled. If the gfortran compiler is correctly
installed this should be done automatically by pip and
installation should be possible with the above command.
Details and tips concerning the installation can be found
in the pyGDM online documentation.

25

https://pypi.org/project/pyGDM2-retard/0.2/
https://wiechapeter.gitlab.io/pyGDM2-doc/readme.html


Figure D.20: Graphical output of the example script given in
listing 1. A dielectric sphere (n = 2, r = 160nm) in vacuum
is illuminated from below by a plane wave of linear polarization
along X and wavelength λ0 = 400 nm. Each plot shows the E-field
intensity inside the sphere on a slice through its center on an area of
400 × 400nm2.

Installation of the graphical user interface pyGDM-UI

We currently work on a graphical user interface
for pyGDM based on Qt, it therefore requires pyqt5.
Currently, also mayavi is required, as it is used for several
visualizations. pyGDM-UI is still under development but
we provide a working beta-version. It can be installed from
pypi via pip

pip install -U pygdmUI

Appendix D.3. Minimum working example script

1 from pyGDM2 import structures
2 from pyGDM2 import materials
3 from pyGDM2 import fields
4 from pyGDM2 import propagators
5 from pyGDM2 import core
6 from pyGDM2 import visu
7
8 ## --- simulation setup ---
9 ## structure: sphere of 160nm radius ,

10 ## constant dielectric function (n=2),
11 step = 20
12 geometry = structures.sphere(step , R=8.2, mesh=’cube’)
13 material = materials.dummy (2.0)
14 struct = structures.struct(step , geometry , material)
15
16 ## incident field: plane wave , 400nm , lin. pol. || x
17 field_generator = fields.plane_wave
18 wavelengths = [400] # nm
19 kwargs = dict(inc_angle =0, inc_plane=’xz’, theta =0)
20 efield = fields.efield(field_generator ,
21 wavelengths=wavelengths , kwargs=kwargs)
22
23 ## environment: vacuum
24 n1 = 1.0
25 dyads = propagators.DyadsQuasistatic123(n1)
26
27 ## create simulation object
28 sim = core.simulation(struct , efield , dyads)
29
30
31 ## --- run the simulation ---
32 core.scatter(sim)
33
34
35 ## --- plot nearfield intensity inside sphere ---
36 ## using first (of one) field -config (= index 0)
37 ## slice through sphere center
38 visu.vectorfield_color_by_fieldindex(sim , 0,
39 projection=’XY’, slice_level =160)
40 visu.vectorfield_color_by_fieldindex(sim , 0,

41 projection=’XZ’, slice_level =0)
42 visu.vectorfield_color_by_fieldindex(sim , 0,
43 projection=’YZ’, slice_level =0)
44

Listing 1: Minimum example script. The plots generated by the
script are shown in Fig. D.20.

Appendix D.4. Technical documentation of main classes
and functions

For a detailed documentation of all functions
and classes as well as many commented examples
and tutorials, please visit the online documentation
https://wiechapeter.gitlab.io/pyGDM2-doc. We provide
here merely a very brief description of the core classes
and functions.

Main classes:

core.simulation
(class)

constructor arguments:
• struct: instance of structures.struct
• efield: instance of fields.efield
• dyads: class defining simulation environment

structures.struct
(class)

constructor arguments:
• step: discretization stepsize (in nm)
• geometry: list of meshpoint coordinates

(x, y, z) (in nm)
• material: structure material dispersion,
instance of materials.CLASS or list of
materials (one for each meshpoint)

fields.efield
(class)

constructor arguments:
• field_generator: field generator function

(e.g. from fields module)
• wavelengths: list of wavelengths at which to

do the simulation (in nm)
• kwargs (optional): dict (or list of dict) with

further kwargs for the field generator
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propagators.DyadsQuasistatic123
(class)

constructor arguments:
• n1: refractive index for layer 1 (substrate)
• n2: ref. index for layer 2 (center layer)
• n3: ref. index for layer 3 (top cladding)
• spacing: thickness of layer 2
• radiative_correction: whether or not to use

the radiative correction term

Main core functions:

core.scatter / core.scatter_mpi
(function)

arguments:
• sim: instance of core.simulation
• method (optional): inversion method,

default: “lu”
• calc_H (optional): calculate internal

magnetic field, default: “False”

core.decay_rate
(function)

arguments:
• sim: instance of core.simulation
• wavelength target wavelength
• r_probe list of coordinates to evaluate
• method (optional): inversion method,

default: “scipyinv”
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