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Abstract. We propose a decentralized approach that simultaneously al-
locates and decomposes high level tasks among various robots. The ap-
proach exploits HTN structures and algorithms, that are used within an
auction-based allocation scheme, and aims at dealing with complex tasks
with causal or temporal relations. The paper formalizes the approach,
and depicts how HTN planning processes are used to estimate bids and
distribute tasks. Results on a statistical series of coverage problems are
presented and their performance is assessed through a comparison with
a state of the art algorithm.

A key ingredient in multi-robot systems is the ability to distribute the tasks to
achieve within the robots. When the problem is not trivially solved, e.g. for small
sets of robots and tasks or if robots and tasks are typed so that a distribution is
readily defined, one must solve the Multi-Robot Task Allocation (MRTA) prob-
lem, for which the literature has proposed a whole corpus [12]. But if the mission
to be achieved by the multi-robot system is expressed at a rather high level, and
not directly as a series of tasks, it has to be decomposed into tasks, sub-tasks,
down to elementary actions. This decomposition can typically be achieved by a
planner, that optimises some criteria while satisfying the problem constraints.
The task allocation and decomposition problems are clearly not independent,
and both decompose-then-allocate and allocate-then-decompose methods have
drawbacks and yield sub-optimal solutions [15].

We propose in this paper an approach to solve both the planning and allo-
cation problems in a unified manner. As a supporting context, we consider the
problem of naval minehunting, in which a fleet of autonomous underwater vehi-
cles (AUVs) are tasked to localize, identify and neutralize mines to secure a given
area or channel. If some accomplished works exist regarding the trajectory op-
timisation of one AUV [21, 19], multi-robot technologies applied to minehunting
are still in an exploratory phase [6], and improvements on intelligent embedded
signal processing [1, 23] gives meaning to this research area.

While the initial mission planning phase amounts to a multi-robot cover-
age problem, this operational context brings various dynamic contingencies, as
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the system needs to cope with execution failures, delays, and allocation of new
tasks. These unforeseen events come directly from the mission definition, dur-
ing which identification and neutralization tasks will only appear at execution
for instance, and also from the mission environment. Besides, underwater com-
munications are severely constrained [10]: this may imply the establishemnt of
communication relays, for example to transmit large data to the operators for
identification purposes, which introduces temporal and causal constraints in the
mission. Importantly, it precludes the use of a centralized approach to ensure the
proper execution of a mission. Furthermore, the underwater environment yield
uncertainties in task execution, for instance underwater currents are difficult to
precisely predict, whereas they significantly impacts robots motions. All these
elements cannot be initially planned and require repair procedures that must be
executed on line, and which may call for a revision of the initial allocations.

Our approach integrates two well known allocation and planning paradigms:
market-based allocation (MBA) [8], and Hierarchical Task Network (HTN) plan-
ning [3] (figure 1).

3. Winner Determination

1. Announcement2. Bids
Estimation

4. Rewards 4. Rewards

2. Bids
Estimation

Fig. 1. Overview of the approach. The whole mission decomposed as a HTN is auc-
tioned. Each robot bids on the sub-tasks, a winner determination process allocates the
tasks and sends them to the robots (“rewards”).

MBA approaches rely on auctions: an auctioneer issues tasks to be allocated,
and robots reply with bids that express the utility for them to execute the tasks.
The auctioneer then allocates tasks to robots through solving a Winner Deter-
mination Problem (WDP). This approach is a solution of choice for underwater
contexts, as it is naturally decentralized and offers a common way to handle
MRTA problems in communication restricted environments [11, 24].
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HTN planning is a major research field in planning, whose core concept is to
reason with primitive tasks and compound tasks. Primitive tasks are tasks that
can be directly executed by agents, and compound tasks can be broken down
into others compound or primitive tasks, and whose definition encodes expert
knowledge on the problem domain [3]. In our approach, HTN planning is used
for two distinct purposes during the MBA protocol: for robots to define their
bids, and more interestingly for the auctioneer to solve the WDP. Indeed, posing
the WDP as a planning problem allows to integrate task dependencies, such as
temporal and causal constraints, which can be handled with an HTN approach,
thanks the expressivity of the problem representation and the efficacy of HTN
solvers [2, 4]. By integrating these two allocation and planning paradigms, our
ambition is to lay down the foundations of a principled approach that includes
task dependencies and constraints to solve complex multi-robot mission planning
and execution supervision problems.

In this paper, we focus only on the mission planning problem. The next
section reviews the related work, and section 2 introduces the basic concepts of
auction-based allocation and HTN planning. Section 3 is the core of the paper:
it introduces how the biding and winner determination processes of an auction
scheme are formalised and solved as HTN planning problems. Section 4 presents
and analyses a series of results.

1 RELATED WORK

Market-based approaches to solve the MRTA problem have been studied for
long [8]. Noteworthy, these approaches are naturally decentralized and hence al-
low to handle MRTA problems in communication restricted environments [11,
24]. In classic MRTA problems, a set of simple tasks has to be allocated. Tradi-
tional auction-based approaches handle these cases with good performances [14,
7, 5]. These schemes usually do not consider task dependencies and constraints.
Moreover, when dealing with complex tasks having more than one way to be
accomplished, i.e. when several solutions solve the problem, their plan quality is
sorely dependant on the order in which tasks are allocated.

Some work focused on integrating precedences or time windows constraints.
In [22], temporal constraints are dealt with a global Simple Temporal Network
(STN) and an iterated auction scheme. However, because their approach uses a
fixed plan, it is unable to handle complex tasks.

On the other hand, to cope with more complex MRTA problems with auction-
based approaches, the auctioneer, by reasoning on hierarchically linked tasks, can
choose and sell parts of a plan. For example in [25], which is a reference work
on merging auction schemes and hierarchically linked tasks, items for sale are
replaced by task trees: hierarchical constraints are represented with AND and
OR nodes, that allows complex tasks to be decomposed into less complex ones. A
direct benefit is to interleave decomposition and allocation, a key element to get
better performances while solving a complex MRTA problems. Indeed, by selling
parts of a task tree, auction schemes can deal with the expression of dependencies
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between tasks, reason on plans to solve a complex problem, and simultaneously
sell several tasks at once. Leveraging on [25], an architecture based on auctions
on task trees, while implementing the possibility for local bidders to buy a task
for other teammates is presented in [18]. In the same vein, [16] integrated the
possibility to resell a task if the winner finds a better decomposition.

In these works, the WDP solution is found in a greedy manner, by running
a breadth-first search algorithm on the received offers. This efficiently produces
good solutions, but their quality depends on the order in which nodes are visited.
Moreover, these algorithms do not tackle dependencies and constraints between
tasks. In fact in [18] the number of temporal constraints over a node is used to
order the allocation process but cross-schedules dependencies induced by these
temporal constraints are never checked while [25, 16] only suggest some per-
spectives relying on consensus and opportunistic subteam formation.

We believe that their greedy approach for solving WDP lacks sufficient flex-
ibility to integrate orderings, causal, or temporal constraints between tasks ef-
ficiently. However, we see in HTN planning, which is traditionally used for sat-
isfaction problems but is also able to handle cost optimization and temporal
constraints [3], an opportunity to handle these drawbacks. Therefore, we pro-
pose to formally define in this paper the basis of an approach exploiting HTN
planning for auction-based allocation solutions.

2 BACKGROUND

2.1 Basics of market-based allocation

Auctions allow items exchange between agents through bids issuing. To pro-
duce these bids, each bidder estimates for each auctioned item a cost4, that
are afterwards compared by the auctioneer which allocates tasks to agents by
maximizing a specified utility criteria. The most basic scheme is the Single-Item
(SI) auction [17]: in this scheme, only one item is put for sale by the auction-
eer. Each bidder produces a single bid, and the winner determination is usually
straightforward: the best bid wins. The steps of this scheme are (Fig. 1): 1. An-
nouncement: the auctioneer opens an auction by broadcasting the information
on the item for sale; 2. Bids estimation: each bidder estimates the cost as-
sociated to the item execution and sends its bid to the auctioneer; 3. Winner
Determination: once the auctioneer received all bids, or a deadline is reached,
it resolves the WDP to find an allocation; 4. Reward: if a winner has been
found at the previous step, the auctioneer sends him the tasks it has to execute.

Numerous variations of this scheme can be defined, depending on the nature
and number of the items that are traded, the bidding policy, or the criteria op-
timized by the WDP. In our work, the allocation scheme is based on Sequential
Single-Item (SSI) auctions. The main difference with respect to SI is that auc-
tions are lists of items: each bidder produces a bid for each item of the list. If
after solving the WDP some items remain not allocated, the auctioneer starts

4 or a reward or a utility – we use costs throughout the paper
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a new round. The process goes on until all items are allocated or a stop crite-
rion is reached. In order to ensure bids independence, a bidder can win at most
one item at each round. SSI allows robots to prioritize some items over others
and can speed up the overall allocation process, but has some pitfalls [17]: the
WDP complexity increases exponentially with the number of items and bids,
and it is difficult to express bids dependencies. However, these two points can
be addressed by auctioning over task trees [25].

2.2 HTN planning

We recall here the basic concepts of HTN planning [9, 13]. First, we define a
first-order language L that contains symbols used in HTN planning. L is a tuple
(V,C,P,TP ,TC ,L) where V is an infinite set of variable symbols, C is a finite
set of constants symbols, P is a finite set of predicate symbols, TP is a finite set
of primitive task symbols, TC is a finite set of compound task symbols, and L
is an infinite set of labels. A predicate p ∈ P is said ground if all its parameters
are constants of C. From this language, we can then define tasks:

Definition 1 (Tasks). Given a set of terms x1, . . . , xk issued from L, and t ∈
(TP ∪ TC) a task symbol, then t(x1, . . . , xk) is a task, i.e. an instance of t on
parameters x1, . . . , xk.

In HTN planning, primitive tasks are not decomposable, and compound tasks
can be decomposed into other tasks through methods. Both primitive and com-
pound tasks can have preconditions, i.e. a first-order formula on L, but only
primitive tasks can change the world by applying effects, denoted by literals
over L predicates. The decomposition of compound tasks is represented by par-
tially ordered sub-plans, named task networks. As tasks can appear several times
in a plan (e.g., a move to a same position by a same robot), we need to label
each occurence of a task t(x1, . . . , xk) in the plan with a label l ∈ L.

Definition 2 (Task network). A task network tn over a set of tasks X is a tuple
(L,≺, α) with the following elements:

1. L ⊂ L is a set of labels
2. ≺ is a strict partial order over L
3. α : L→ X maps labels to tasks

A task network is ground if its elements contain no variable. A task network
only composed of primitive tasks is called a primitive task network.

Definition 3 (Decomposition Method). A decomposition method m is a pair
(tc, tn) with tc a compound task and tn a task network. It states that tc can be
refined by tn, i.e. that one way of achieving tc is to achieve the tasks of tn.

Definition 4 (Planning Domain). A planning domainD is a tuple (L, TP , TC ,M)
with:

– L the underlying HTN language
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– TP and TC sets of primitive and compound tasks
– M a set of decomposition methods s.t. ∀m = (tc, tn) ∈ M , tc ∈ TC and tn

is a task network over TP ∪ TC .

Definition 5 (Planning Problem). A planning problem P is a tuple (D, sI , tnI)
where:

– D is a planning domain;
– sI is the initial state, defined as conjunction of ground literals of L;
– tnI is the initial task network.

Solving an HTN problem P = (D, sI , tnI) consists in finding a solution task
network tn such that tn is primitive and executable in sI , i.e., there is a sequence
of tn tasks, that respects the ordering constraints, in which the preconditions of a
task are valid in the state resulting from applying the previous task. HTN solving
algorithms generally iteratively build tn by exploring the possible decomposition
methods that can be applied from tnI [20, 3].

3 AUCTIONING HTN PLANS

Our approach is built upon SSI auctions using HTN structures as items to trade.
Bidders estimate bids on HTN tasks, using HTN planning. The auctioneer allo-
cates subtrees of the tasks network, ensuring that no nodes are allocated more
than once, by solving the WDP using HTN planning.

3.1 Auction definition

Items announced by the auctionneer represent tasks on which each robot bids.
All the robots involved in the auction must share a common knowledge about
the tasks that will be possibly announced, which is embodied in a common HTN
domain Dcom = (Lcom, ∅, TCcom

,Mcom), with Lcom a common language defin-
ing variables, constants and symbols known by all robots, TCcom

the common
compound tasks (note that there is no common primitive tasks), and Mcom the
methods that decompose the common tasks.

We rely on HDDL [13] in order to practically represent the common domain.
Listing 1.1 shows an extract of the common domain in HDDL for a coverage
mission. Lcom is defined by types, predicates, variables. . . The tasks that can
be allocated to the robots are cover tasks, which can be decomposed into other
cover sub-tasks using methods m-cover-d.

Note that from the point of view of HTN planning, L is fully known, i.e. all
elements are declared before planning. While it is reasonable for most elements
in L (variables, predicates, . . . ), it must be revised when dealing with constants,
that represent the considered objects. If these objects can be considered known
when performing a single auction, they can evolve during the mission (e.g., new
objects discovered, new areas to cover specified by the operator). The language
constants then cannot be fully defined in Dcom, and some constants may be
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( :types area − task )
( :predicates ( area−decomposit ion ?a ?a1 ?a2 − area ) )
( :task cover :parameters (? a − area ) )
( :method m−cover−d

:parameters (? a ?a1 ?a2 − area )
:task ( cover ?a )
:precondition ( area−decomposit ion ?a ?a1 ?a2 )
:subtasks (and ( cover ?a1 ) ( cover ?a2 ) ) )

Listing 1.1. Extract of the HDDL description of a coverage mission Dcom

sent when announcing a new auction. When new tasks have to be allocated,
the auctioneer sends an announcement message that contains these tasks. We
propose to structure this message through a grounded HTN tree.

Definition 6 (Grounded HTN Tree). Let P = (D, sI , tnI) a planning problem
with D = (L, TP , TC ,M) the associated domain. Without loss of generality, we
assume that tnI contains just a single ground compound task top with label
ltop ∈ L, for which there is exactly one method in M . The bipartite tree H =
(VT , VM , ET→M , EM→T ), consisting of labeled task vertices VT , labeled method
vertices VM , and edges ET→M and EM→T is a grounded HTN tree if:

1. vtop = (ltop, top) ∈ VT
2. Let vk = (lk, tk) ∈ VT , with lk ∈ L, tk ∈ TC , then ∀m ∈ M s.t. m = (tk, tn)

holds:
– vm = (lk,m) ∈ VM
– (vk, vm) ∈ ET→M

3. Let vk = (lk,mk) ∈ VM , with lk ∈ L,mk = (tk, tnk), tk ∈ TC , and tnk =
(Lk,≺k, αk) a task network. Then ∀lj ∈ Lk holds:
– vt = (lk,j , αk(lj)) ∈ VT
– (vm, vt) ∈ EM→T

4. H is minimal, such that 1 to 3 hold.

For this grounded HTN tree H to be finite (and then be buildable), we must
ensure that the HTN problem is acyclic.5 In order to build the grounded HTN
tree H that defines the tasks to allocate and their hierarchical decomposition,
the auctionneer relies on both the common domain Dcom, and a planning prob-
lem corresponding to the current auction. Listing 1.2 shows an extract of the
HDDL model of such a planning problem in which one top area a-1 is further
decomposed into a set of sub-areas to cover. The HTN tree H corresponding to
this problem is shown in Fig. 2.

From this grounded HTN structure, we can define the elements that consti-
tute the item for sale.

5 It is possible to verify that H is finite by first building the problem Task Decom-
position Graph (TDG), which is always finite, and then checking that the TDG is
acyclic [4].
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( :objects
a−1 a−1−1 a−1−2 a−1−2−d1 a−1−2−d2 − area
a−1−2−d1−1 a−1−2−d1−2 a−1−2−d2−1 a−1−2−d2−2 − area )

( :htn :tasks ( cover a−1 ) )
( : i n i t

( area−decomposit ion a−1 a−1−1 a−1−2−d1)
( area−decomposit ion a−1 a−1−1 a−1−2−d2)
( area−decomposit ion a−1−2−d1 a−1−2−d1−1 a−1−2−d1−2)
( area−decomposit ion a−1−2−d2 a−1−2−d2−1 a−1−2−d2−2) )

Listing 1.2. Extract of the HDDL problem describing an auction.

(l1, cv(a1))

(l1-1, cv(a1-1))(l1-2-d1, cv(a1-2-d1))

(l1, m-cover-d(a1, a1-1, a1-2-d1) (l1, m-cover-d(a1, a1-1, a1-2-d2)

(l1-2-d2, cv(a1-2-d2))

(l1-2-d1-1, cv(a1-2-d1-1))

(l2, m-cover-d(a1-2-d1, a1-2-d1-1, a1-2-d1-2)

(l1-2-d1-2, cv(a1-2-d1-2)) (l1-2-d2-1, cv(a1-2-d2-1))

(l5, m-cover-d(a1-2-d2, a1-2-d2-1, a1-2-d2-2)

(l1-2-d2-2, cv(a1-2-d2-2))

(l1-1, cv(a1-1))

(l8, cover(a1-2-d2-1))(l1-2-d1-2, cv(a1-2-d1-2))

(l1-2-d1-1, cv(a1-2-d1-1)) (l9, cover(a1-2-d2-2))

(l1-2-d2, cv(a1-2-d2))(l1-1', cv(a1-1))(l3, cover(a1-1))(l2, cover(a1-2-d1)) (l4, cover(a1-1)) (l5, cover(a1-2-d2))

(l1, cover(a1))

(l7, cover(a1-2-d1-2))

(l6, cover(a1-2-d1-1))

Fig. 2. Grounded HTN tree for the problem listed in Listing 1.2. Rounded rectangles
represent labeled tasks (in VT ), hexagons represent labeled methods (in VM ).

Definition 7 (Item for sale). An item for sale δ is a tuple (Hδ, Cδ, sδ, Lδ), with:

1. Hδ is a finite grounded HTN tree representing the decomposition constraints
between tasks;

2. Cδ contains language constants for this auction;
3. sδ is a set of atomic formulas on these constants;
4. Lδ is the set of task labels in Hδ that are sellable, i.e. on which robots can

produce bids.

3.2 Bid estimation

To benefit from the HTN model that is embodied both in the common domain
Dcom and the HTN tree Hδ of the items, bids are estimated using an HTN
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planner. This estimation is performed in two steps: first, a bid domain is built
from the common domain completed by Dloc, a local domain defining language,
primitive tasks, compound tasks and methods proper to the bidder; then, for
each sellable task, a bid estimation problem is defined and solved.

For example, in the coverage mission with the auction defined by the HTN
of Fig. 2, each robot bids on the cover tasks. The local domain encapsulates
the decomposition of these tasks, with respect to the basic actions that can be
performed by the robot (e.g., the coverage pattern may differ depending on the
robot sensors).

Each bidder builds its bid domain Dbid by extending the common domain
Dcom with its own local domain Dloc:

Dbid = (Lcom ∪ Lloc, TPloc , TCcom ∪ TCloc ,Mcom ∪Mloc) (1)

with TCcom
∩ (TCloc

∪ TPloc
) 6= ∅, and ∀t ∈ TCcom

,∃m = (t, tn) ∈ Mloc. These
two last conditions ensure that the local and common domains share elements.

In order to estimate its bid on the sellable tasks, each bidder then builds a
set of HTN planning problem corresponding to these tasks.

Definition 8 (Bid Estimation Problems). Let Dbid be the bid domain built by
the bidder, and (Hδ, Cδ, sδ, Lδ) the received item for sale. Then, for each label
l ∈ Lδ, we define a bid estimation problem Pl = (Dbid, sl, tnl), with:

– sl the initial state, containing state sδ, the associated constants Cδ, and a
bidder local initial state sloc;

– tnl the task network containing only the task in Hδ with label l.

The bidder then solves each bid estimation problem Pl. In practice, we gen-
erate an HDDL model corresponding to Dbid and Pl, and call an HTN solver. If
the solver returns a solution plan to Pl, then the solution plan cost c∗l is used as a
bid value for l. Thereby, the bids from each bidder are defined as b = (Lbid, C

∗
bid),

with Lbid ⊆ Lδ set of labels on which the bidder bids and C∗bid a set of costs
associated to each label l ∈ Lbid.

3.3 Winner determination

Once the auctioneer has received the bids from the bidders, it allocates tasks by
solving the WDP. To do so, it builds a HTN problem Pwdp = (Dwdp, swdp, tnwdp),
where Dwdp is the WDP domain that corresponds to the common domain Dcom
extended with:

– one primitive task that corresponds to allocating a task to a robot. This task
is modeled so that a robot can be allocated only one task at each round, and
integrates a cost predicate corresponding to bids. Each task to sell in Lδ can
then be decomposed in this allocation task through a method,

– in case a task is not allocated, we need a second primitive task that corre-
sponds to reselling the task in the next round. Each task to sell can also be
decomposed into this reselling task,
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– new symbols in the associated language Lwdp that correpond to these new
tasks, predicates and variables.

swdp is the auction initial state sδ extended with the bids received from the
bidders, and tnwdp is the task network encoding the auction HTN Hδ.

Finding a task allocation then corresponds to solving Pwdp, minimizing the
total cost, i.e. the sum of bids on the allocated tasks. To give a sound problem
to the HTN solver, we need to define a cost to the reselling primitive tasks
(otherwise the solver would interpret a null cost, and reselling all tasks would
then always be the best solution).

The value of the resale cost is actually a way to control the allocation scheme:
we can indeed set the resale cost so that it allocates as much tasks as possible,
or on the contrary, decide to keep a task for the next round instead of allocating
it. We defined three domain-independent strategies to set the resale cost:

– MaxB : A pessimistic strategy about the bids that will be received in future
rounds, and that should therefore allocate as many tasks as possible at once.
For this strategy, the resale cost of each node is set as the maximum value
of the received bids for this node plus one. If there is no bid on the node,
the resale cost is set as the sum of the children resale costs plus one if this
is an AND node, or the maximum of children resale costs plus one if this is
an OR node (as in [25], we assume a bid is always made on leaf nodes).

– MinB : An optimistic strategy that may choose to not allocate a task when
a better allocation is expected during a further round. For this strategy, the
resale cost of each node is set as the minimum value of the received bids for
this node plus one. If there is no bid on the node, the resale cost is set as
the sum of the children resale costs plus one if this is an AND node, or the
minimum of children resale costs plus one if this is an OR node.

– MaxBL: A mixed strategy being either optimistic or pessimistic, depending
on the received bids. The resale cost is defined as with the MaxB strategy,
without considering bids on non-leaf nodes, i.e. systematically using the costs
of children.

3.4 Auctionning on several rounds

Depending on the allocation and resale decisions from the auctioneer, auction-
ing on several rounds can sometimes be necessary. To begin a new round, the
auctioneer creates a new item for sale δ′ by removing the tasks that have been
allocated. Of course, each bidder considers the tasks it has been awarded during
previous rounds to bid, by integrating its current allocated tasks in the bid es-
timation task networks tnl (Def. 8). The auctioning cycle goes on until all tasks
have been allocated.



Market-based Multi-robot coordination with HTN planning 11

4 EVALUATION

4.1 Experimental setup

In order to evaluate our approach, we consider a coverage mission of the naval
minehunting context. As we laid down the foundations of our approach in this
paper, this evaluation is done considering an abstract initial allocation problem.

In this coverage mission we consider two kinds of primitive actions: area
coverage and motion between two locations. Each action has a specific cost eval-
uation function, depending on the surface area and the distance to travel. The
objective is to minimize the global cost that includes motion and covering actions
for all robots. A series of auction HTNs are randomly generated for evaluation
purposes: they differ in the number of tasks to allocate in the decomposition,
and in the nature of considered ordering constraints. We generated 3 kind of
problems:

– Unordered problems, in which tasks are not constrained,
– Totally-ordered problems, in which decomposition of a task into children

tasks enforces a total order on the children,
– Partially-ordered problems, in which some constraints are randomly gener-

ated.

To optimize the bid estimation and WDP solving, we use the PANDA solver [4].
We evaluate our approach considering the three MaxBL, MaxB and MinB strate-
gies for the resale costs. The results are compared with the OpTradWinnerDe-
termine (OTWD) algorithm of [25] – only for unordered problems, as OTWD
does not handle ordering. In order to assess the optimality of the approaches, a
reference solution is provided by solving the complete allocation in a centralized
manner using PANDA. We generate HTNs with a varying number of tasks going
from 3 to 40 and with 3, 6 and 9 robots. For each of these values, results are av-
eraged over 9 runs of different HTNs. The decision architecture is implemented
using ROS2 and involves independent nodes working in parallel. The runs are
realized on a PC with an intel® coreTM i7-9750h CPU @ 2.60GHz and 16 GB.

4.2 Results

Figure 3 presents the average of four metrics for the unordered HTNs, as function
of the number of tasks and robots: solution quality, allocation duration, WDP
duration per auction round, and number of auction rounds.

Regarding the solution quality, our HTN planning approach with the MinB
strategy for resale costs globally outperforms other approaches, including the
OTWD algorithm: over all the tests, we perform as well as OTWD in 92% of
the samples and outperform it in 55% of the samples. As expected, MinB always
performs better than MaxB and MaxBL, by refining more the solution at the
expense of more rounds. By being either optimistic or pessimistic on the next
round, MaxBL has a more unpredictable performance.
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Fig. 3. Results for unordered HTNs showing the quality (top), allocation duration (2nd
row), WDP duration (3rd row) and number of necessary rounds (bottom) for 3, 6 and
9 robots (respectively left, middle, and right columns). The three MinB, MaxB, and
MaxBL approaches are compared to the centralized reference (continuous line) and the
OTWD algorithm.

Regarding the average WDP duration per round, our approaches are al-
ways longer than OTWD. But the required time increases only linearly with the
number of tasks, and the differences are not significant for the total allocation
duration that includes bids estimations (third row).

The number of rounds decreases with the number of robots. For 3 robots,
the number of rounds is 2.5 on average for OTWD, and 1.9, 1.8 and 1.7 for
the HTN planning with MinB, MaxB, and MaxBL strategies respectively. Since
the communication bandwidth is directly bound to the number of rounds and
robots, our approach is better suited than OTWD to communication restricted
environments.

Finally, figure 4 shows the solution quality on the HTNs with ordering con-
straints. As OTWD cannot integrate such constraints, we only compared with
the global reference. These results demonstrate the capability of our approach to
handle ordering constraints while solving allocation problems with good perfor-
mances, without any noticeable additional computation time than for unordered
problems.

5 CONCLUSION

We proposed and formalized a decentralized approach to handle the MRTA prob-
lem which relies on an auction-based allocation scheme combined with HTN
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Fig. 4. Solution quality on unordered, partially-ordered and totally-ordered HTNs for
3 robots, in comparison to the centralized reference.

planning. The approach reasons on hierarchically linked tasks to interleave al-
location and decomposition, and is able to express ordering constraints thanks
to the HTN planning formalism. The approach experimentally demonstrated its
ability to produce better quality allocations than a reference state of the art algo-
rithm. We proposed and evaluated different resale cost methods: this parameter
allows to control the allocation towards solutions focused either on quality or
efficient communications.

Up to now, the approach has only been evaluated on initial complex task
allocation problems. Nevertheless, it can intrinsically be used for mission exe-
cution supervision, to cope with execution errors and with the appearance of
new tasks, thus being able to tackle on line plan reparation problems. In the
same vein of improving the robustness of the approach, our framework will be
extended to handle allocation and planification under uncertainties. This could
be done by formulating uncertain bids and relying on HTN planning expressivity
to solve the WDP.

Futhermore, in order to have a finer control, future work will also explore
alternate methods to set the resale cost, using generic HTN heuristics or mission
dependant designs.
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11. Ferri, G., Munafò, A., Tesei, A., LePage, K.: A market-based task allocation frame-
work for autonomous underwater surveillance networks. In: OCEANS (2017)
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